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Abstract 
Ensembling multiple predictions is a widely 
used technique to improve the accuracy of 
various machine learning tasks. In image 
classification tasks, for example, averaging the 
predictions for multiple patches extracted from 
the input image significantly improves accuracy. 
Using multiple networks trained independently 
to make predictions improves accuracy further. 
One obvious drawback of the ensembling 
technique is its higher execution cost during 
inference. If we average 100 predictions, the 
execution cost will be 100 times as high as the 
cost without the ensemble. This higher cost 
limits the real-world use of ensembling, even 
though using it is almost the norm to win image 
classification competitions. In this paper, we 
describe a new technique called adaptive 
ensemble prediction, which achieves the 
benefits of ensembling with much smaller 
additional execution costs. Our observation 
behind this technique is that many easy-to-
predict inputs do not require ensembling. Hence 
we calculate the confidence level of the 
prediction for each input on the basis of the 
probability of the predicted label, i.e. the 
outputs from the softmax, during the 
ensembling computation. If the prediction for 
an input reaches a high enough probability on 
the basis of the confidence level, we stop 
ensembling for this input to avoid wasting 
computation power. We evaluated the adaptive 
ensembling by using various datasets and 
showed that it reduces the computation time 
significantly while achieving similar accuracy 
to the naive ensembling. 

1.  Introduction 

The huge computation power of today’s computing 
systems, equipped with GPUs, special ASICs, FPGAs, 
or multi-core CPUs, makes it possible to train deep 
networks using tremendous datasets. Although such 
high-performance systems can be used for training, 
actual inference in the real world may be executed on 

small devices such as a handheld device or an embedded 
controller, which have much smaller computation power 
and energy supply than the large systems used for 
training the network. Hence, a method to achieve high 
prediction accuracy with limited computation resources 
is needed to enable more applications to be deployed in 
the real world. To reduce the computation costs in the 
inference phase, Hinton et al. (2015) created a smaller 
network for deployment by distilling the knowledge 
from an ensemble of multiple models. Han et al. (2016) 
also targeted deployment for small (mobile) devices and 
showed that large networks can be significantly 
compressed after training by pruning unimportant 
connections and by quantizing each connection.  

Ensembling multiple predictions is a widely used 
technique to improve the accuracy of various machine 
learning tasks (e.g. Hansen and Salamon 1990, Zhou et 
al. 2002) at the cost of more computation power. In the 
image classification tasks, for example, accuracy is 
significantly improved by ensembling the local 
predictions for multiple patches extracted from the input 
image to make the final prediction. Moreover, accuracy 
is further improved by using multiple networks trained 
independently to make local predictions. Krizhevsky et 
al. (2012) averaged 10 local predictions using 10 patches 
extracted from the center and the 4 corners with and 
without horizontal flipping in their Alexnet paper. 
GoogLeNet by Szegedy et al. (2015) averaged up to 
1,008 local predictions by using 144 patches and 7 
networks. In their paper, they reported that averaging 
1,008 predictions reduced the top-5 error of ImageNet 
classification task by 3.45% whereas averaging 10 
predictions with one model reduced the error by 0.92% 
compared with the baseline prediction without 
ensembling. In some ensemble methods, meta-learning 
during the training to learn how to best mix the multiple 
local predictions from the networks is used (e.g. Tekin et 
al. 2016). In the Alexnet or GoogLeNet papers, however, 
the significant improvements were obtained by just 
averaging the predictions without the meta-learning. In 
this paper, we do not use meta-learning either. 

Although the benefits of ensemble prediction are quite 
significant, one obvious drawback is its higher execution 
cost during inference. If we make the final prediction by 



ensembling 100 predictions, we need to make 100 local 
predictions, and hence the execution cost will be 100 
times as high as that without ensembling. This higher 
execution cost limits the real-world use of ensembling 
especially on small devices, even through using it is 
almost the norm to win image classification competitions 
that emphasize prediction accuracy.  

To make the ensemble prediction more feasible in a 
wider range of applications, we have developed adaptive 
ensemble prediction, which achieves the benefits of 
ensembling with much smaller additional costs. Our 
observation behind this technique is that many easy-to-
predict inputs do not require ensembling. We use the 
output produced by the softmax, which is at the end of 
the neural network, for the predicted class label as the 
probability of the prediction. During the ensembling 
process, we calculate the confidence level of the 
probability obtained from local predictions for each 
input. If an input reaches a high enough confidence level, 
we stop ensembling and making more local predictions 
for this input to avoid wasting computation power. We 
evaluated the adaptive ensembling by using four image 
classification datasets: ILSVRC 2012, CIFAR-10, 
CIFAR-100, and SVHN. Our results showed that the 
adaptive ensemble prediction reduces the computation 
time significantly while achieving similar accuracy to 
the naive ensemble prediction. 

2.  Ensembling and Probability of Prediction 

This section describes the observations that have 
motivated us to develop our proposed technique: how the 
ensemble prediction improves the accuracy of 
predictions with different probabilities. 

To show the relationship between the probability of the 
prediction and the effect of ensembling, we evaluate the 
prediction accuracy for the ILSVRC 2012 dataset with 
and without ensembling of two predictions made by two 
independently trained networks. Figure 1(a) shows the 
results of this experiment with GoogLeNet; the two 
networks follow the design of GoogLeNet and use 
exactly the same configurations (hence the differences 
come only from the random number generator). In the 
experiment, we 1) evaluated the 50,000 images from the 
validation set of the ILSVRC 2012 dataset using the first 
network, 2) sorted the images by the probability of the 
prediction, and 3) evaluated the images with the second 
network and assessed the accuracy after ensembling two 
local predictions using the arithmetic mean. The x-axis 
of Figure 1(a) shows the percentile of the probability 
from high to low, i.e. going left (right), input images 
become easier (harder) to predict. The gray dashed line 
shows the average probability for each percentile class. 
On average for all images, the ensemble improves 
accuracy well, although we only averaged two 
predictions. Interestingly, we can observe that the 
improvements only come in the right of the figure. There 
are almost no improvements by ensembling two 

predictions on the left side, i.e. easy-to-predict images 
with highly probable predictions, even when there is a 
non-negligible number of mispredicted samples. For 
example, in the 50- to 60-percentile range, the error rate 
is 29.6% and is not improved by averaging two 
predictions from different networks. In this range, the 
average probability of prediction is 79.4%. 

To determine whether or not this characteristic of 
ensembling is unique to GoogLeNet architecture, we 
conducted the same experiment using Alexnet as another 
network architecture and show the results in Figure 1(b). 
Although the prediction error rate is higher for Alexnet 
than for GoogLeNet, we observe similar characteristics 
of improvements by ensembling. Again, the 
improvements by ensembling are only observed in the 
right of the figure, i.e. for hard-to-predict images. These 
characteristics of the improvements by the ensemble are 
not unique to an ILSVRC dataset; we have observed 
similar trends in other datasets. 

 

 
Figure 1. Improvements by ensemble and probabilities of 
predictions in ILSVRC 2012 validation set. X-axis shows 
percentile of probability of first local predictions from high (left) 
to low (right). Ensemble reduces error rates for samples with 
low probabilities but does not affect samples with high 
probabilities.  
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These results motivate us to make our adaptive ensemble 
prediction for reducing the additional cost of ensembling 
while keeping the benefit of improved accuracy. Once 
we obtain high enough prediction probability for an 
input image, doing further local predictions and 
ensembling will waste computation power without 
improving accuracy. The challenge is how to identify the 
condition in which to terminate ensembling. As 
described later, we identify the termination condition on 
the basis of the confidence level of the probability.  

Also, we show the results when mixing GoogLeNet and 
Alexnet in the appendix. 

3.  Related Work 

Various prediction methods that ensemble the outputs 
from many classifiers (e.g. neural networks) have been 
widely studied to achieve higher accuracy in machine 
learning tasks. Boosting (Freund and Schapire 1996) and 
Bagging (Breiman 1996) are famous examples of 
ensemble methods. Boosting and Bagging produce 
enough variances in classifiers included in an ensemble 
by changing the training set for each classifier. In recent 
studies on image classifications with deep neural 
networks, however, random numbers (e.g. for 
initialization or for ordering input images) used in the 
training phase can give sufficient variances in networks 
even using the same training set for all classifiers 
(networks). Hence, we use networks trained using the 
same training set and network architecture in this study.  

The higher execution cost of the ensembling is a known 
problem, so we are not the first to attack it. For example, 
Hinton et al. (2015) also tackled the high execution cost 
of the ensembling. Unlike us, they trained a new smaller 
network by distilling the knowledge from an ensemble of 
networks by following Buciluǎ et al. (2006).  

In our technique, we use the probability of the 
predictions to control the ensembling during the 
inference. Typically, the probability of the prediction 
generated by the softmax is used during the training of 
the network; the cross entropy of the probabilities is 
often used as the objective function of the optimization. 
However, using the probability for purposes other than 
the target of the optimization is not unique to us. For 
example, Hinton et al. (2015) used the probabilities from 
the softmax while distilling the knowledge from the 
ensemble. As far as we know, ours is the first study 
focusing on the relationship between the probability of 
the prediction and the effect of ensembling with current 
deep neural networks. Opitz and Maclin (1999) showed 
an important observation related to ours. They showed 
that the large part of the gain of ensembling came from 
the ensembling of the first few local predictions. Our 
observation discussed in the previous section enhances 
Opitz’s observation from a different perspective: most 
gain of the ensembling comes from hard-to-predict 
samples. 

4.  Adaptive Ensemble Prediction 

4.1  Basic Idea 

This section details our proposed adaptive ensemble 
prediction method. As shown in Figure 1, the ensemble 
typically does not improve the accuracy of predictions if 
a local prediction is highly probable. Hence, we 
terminate ensembling without processing all N local 
predictions on the basis of the probabilities of the 
predictions. We execute the following steps: 

1) start from i = 1 
2) obtain i-th local prediction, i.e. the probability for 

each class label. We denote the probability for label 
L of i-th local prediction  ,  

3) calculate the average probabilities for each class 
label  

∑ ,  

4) if i < N and the termination condition is not satisfied, 
increment i and repeat from step 2 

5) output the class label that has the highest average 
probability  arg max   as the final prediction. 

 

4.2  Termination Conditions 

For the termination condition in Step 3, we test two 
conditions: one based on a simple static threshold, and 
the other on a confidence level.  

4.2.1  STATIC-THRESHOLD-BASED TERMINATION 
CONDITION 
We can use a simple condition on the basis of a pre-
determined threshold T to terminate the ensembling. In 
this condition, we just compare the highest average 
probability max   against the threshold T. If the 
average probability exceeds the threshold, i.e. 
max , we do not execute further local 
predictions for ensembling. 

4.2.2  CONFIDENCE-LEVEL-BASED TERMINATION 
CONDITION 
Instead of the pre-defined threshold, we can use the 
confidence intervals (CIs) as a termination condition. We 
first find the label that has the highest average 
probability (predicted label). Then, we calculate the CI 
of the probabilities using i local predictions. If the 
calculated CI of the predicted label does not overlap with 
the CIs for other labels, i.e. the predicated label is the 
best prediction with a certain confidence level, we 
terminate the ensembling and output the predicted label 
as the final prediction. 

We calculate the confidence interval for the probability 
of label L using i local predictions by 



1 ∑ ,
2

1
1   (1) 

Here, z means the student-t distribution for the 
confidence level and the number of samples i. 

Preferably, we want to do pair-wise comparisons 
between the predicted label and all other labels. 
However, computing CIs for all labels is costly, 
especially when there are many labels. To avoid excess 
costs of computing CIs, we compare the probability of 
the predicted label against the total of the probabilities of 
other labels. Since the total of the probabilities of all 
labels (including the predicted label) is 1.0 by definition, 
the total probabilities for the labels other than the 
predicted label are 1  and the CI is the same size 
as that of the probability of the predicted label. Hence, 
our termination condition is  

1 2 1 ∑ ,
2

1
1  (2) 

We avoid computing CI if 0.5 to avoid wasteful 
computation because the termination condition of 
equation 2 cannot be met in such cases. 

Since the CI cannot be calculated with only one local 
prediction as is obvious from equation 1 to avoid zero 
divisions, we can use a hybrid of the two termination 
conditions. We use the static-threshold-based condition 
only for the first local prediction (i.e. i = 1) with a quite 
conservative threshold, and after the second local 
prediction is calculated, the confidence-level-based 
condition is used. 

5.  Experiments 

5.1  Implementation 

In this section, we investigate the effects of adaptive 
ensemble prediction on the prediction accuracy and the 
execution cost using various image classification tasks: 
ILSVRC 2012, Street View House Numbers (SVHN), 
CIFAR-10, and CIFAR-100 (with fine and course labels) 
datasets. 

For the ILSVRC 2012 dataset, we use GoogLeNet as the 
network architecture and train the network using the 
stochastic gradient descent with momentum as the 
optimization method. For other datasets, we use a 
network that has six convolutional layers with batch 
normalization (Ioffe and Szegedy 2015) followed by two 
fully connected layers. We used the same network 
architecture except for the number of neurons in the 
output layer. We train the network using Adam (Kingma 
and Ba 2015) as the optimizer. For each task, we trained 

two networks independently. During the training, we 
used data augmentations by extracting a patch from a 
random position of the input image and using random 
horizontal flipping. Since adaptive ensemble prediction 
is an inference-time technique, it does not affect the 
network training. We executed the training and the 
inference on a Tesla K40 GPU for the ILSVRC 2012 
dataset and a Tesla K20 GPU for other datasets. 

We averaged up to 20 local predictions using ensembling. 
We created 10 patches from each input image by 
extracting from the center and the four corners with and 
without horizontal flipping by following Alexnet. For 
each patch, we made two local predictions using two 
networks. The patch size is 224×224 for the ILSVRC 
2012 dataset and 28×28 for the other datasets. For 
adaptive ensemble prediction, we made local predictions 
in the following order: (center, no flip, network1), 
(center, no flip, network2), (center, flipped, network1), 
(center, flipped, network2), (top-left, no flip, network1), 
…, (bottom-right, flipped, network2). For the inference, 
we use a batch of 200 samples. As we repeated local 
predictions, the batch became smaller as computation for 
parts of samples terminated.  

5.2  Results 

Tables 1, 2, and 3 show how adaptive ensemble 
prediction affected the accuracy of predictions and the 
execution costs. Here, for our adaptive ensemble, we use 
the confidence-level-based termination condition with a 
95% confidence level combined with the static threshold 
of 99.99% at the first local prediction. 

We tested two different configurations: with one 
network (i.e. up to 10 local predictions) and two 
networks (up to 20 local predictions). In all datasets, the 
ensemble improved the accuracy in a tradeoff for the 
increased execution costs as expected. Using two 
networks doubled the number of local predictions on 
average (from 10 to 20) and increased both the benefit 
and drawback. If we use further local predictions (e.g. 
original GoogLeNet averaged up to 1,008 predictions), 
the benefit and the cost will become much more 
significant. Comparing our adaptive ensemble with the 
naive ensemble, our adaptive ensemble similarly 
improved accuracy (from 92% to 99% when we use two 
networks and from 83% to 99% when we use one 
network) while reducing the execution time by 2.1x to 
2.8x and by 2.3x to 3.5x for the one-network and two-
network configurations, respectively. These performance 
boosts came from the reduced number of local 
predictions used in the ensembles. The reductions were 
up to 6.9x and 12.7x for the one-network and two-
network configurations. The reductions in the execution 
time over the naive ensemble were smaller than the 
reduction in the number of averaged predictions because 
of the additional overhead due to the confidence interval 
calculation, which was written in Python in the current 
implementation. Also, mini batches gradually became 



small as ensembling for parts of samples terminated. The 
smaller batch sizes reduced the efficiency of execution 
on current GPUs. Since the speedup by our adaptive 
technique over the naive ensemble became larger as the 
number of max predictions to ensemble increased, the 
benefit of our adaptive technique will become more 
impressive if we use larger ensemble configurations.  

To study the differences due to the termination condition 
in our adaptive ensemble, we show the relationship 

between the prediction accuracy and the computation 
cost for ILSVRC 2012 and CIFAR-10 datasets in Figure 
2. We used 2 networks in this experiment, i.e. up to 20 
predictions were ensembled. In the figure, the x-axis is 
the number of ensembled predictions, so smaller means 
faster. The y-axis is the improvements in classification 
error rate over the baseline (no ensemble), so higher 
means better. We tested the static-threshold-based 
conditions by changing the threshold T and drew lines in 

Table 1. Prediction accuracy with and without adaptive ensemble 

dataset 
/ network 

# class 
labels 

classification error rate (lower is better)
with one network 

classification error rate 
with two networks 

no  
ensemble 

naive 
ensemble 

our adaptive 
ensemble 

naive 
ensemble 

our adaptive 
ensemble 

CIFAR-10 10 8.39% 6.97%
(-1.41%)

7.00%
(-1.39%)

6.23% 
(-2.16%) 

6.34%
(-2.04%)

SVHN 10 4.40% 3.44%
(-0.96%)

3.50%
(-0.90%)

3.19% 
(-1.21%) 

3.29%
(-1.11%)

CIFAR-100 
(course label) 20 20.63% 17.84%

(-2.79%)
18.04%

(-2.59%)
16.56% 

(-4.07%) 
16.78%

(-4.06%)
CIFAR-100 
(fine label) 100 30.28% 27.04%

(-3.24%)
27.34%

(-2.94%)
25.04% 

(-5.24%) 
25.15%

(-5.13%)

ILSVRC 
2012 

top-1 
error 1000 

32.36% 30.21%
(-2.15%)

30.26%
(-2.10%)

28.11% 
(-4.25%) 

28.12%
(-4.24%)

top-5 
error 

12.67% 11.11%
(-1.37%)

11.35%
(-1.14%)

9.99% 
(-2.50%) 

10.21%
(-2.28%)

Ratios in parenthesis show improvements in error rate over baseline (no ensemble). 
 
 

Table 2. Execution time with and without adaptive ensemble 

dataset 

execution time per sample (lower is better) 
with one network 

execution time per sample 
with two networks 

no  
ensemble 

naive 
ensemble 

our adaptive  
ensemble 

naive 
ensemble 

our adaptive  
ensemble 

CIFAR-10 0.30 msec 
(1.0x) 

2.55 msec
(8.37x)

0.98 msec
(3.20x)

4.98 msec 
(16.34x) 

1.61 msec
(5.28x)

SVHN 0.28 msec  
(1.0x) 

2.52 msec
(9.09x)

0.89 msec
(3.20x)

4.96 msec 
(17.83x) 

1.43 msec
(5.13x)

CIFAR-100 
(course label) 

0.31 msec 
(1.0x) 

2.55 msec
(8.28x)

1.04 msec
(3.58x)

4.99 msec 
(16.16x) 

1.87 msec
(6.01x)

CIFAR-100 
(fine label) 

0.31 msec 
(1.0x) 

2.56 msec
(8.36x)

1.25 msec
(4.07x)

4.99 msec 
(16.28x) 

2.15 msec
(7.03x)

ILSVRC 2012 3.75 msec 
(1.0x) 

35.84 msec
(9.56x)

16.67 msec
(4.45x)

70.74 msec 
(18.86x) 

30.10 msec
(8.03x)

Ratios in parenthesis show relative slowdown over baseline (no ensemble). 
 
 

Table 3. Number of local predictions ensembled with and without adaptive ensemble 

dataset 

# local predictions ensembled (lower is better) 
with one network 

# local predictions ensembled 
with two networks 

no  
ensemble 

naive 
ensemble 

our adaptive  
ensemble 

naive 
ensemble 

our adaptive 
ensemble 

CIFAR-10 

1 10

1.66

20 

1.92
SVHN 1.44 1.57

CIFAR-100 c 2.74 4.09
CIFAR-100 f 3.59 5.93
ILSVRC 2012 3.94 7.40

 



the figure. Similarly, we evaluated the confidence-level-
based condition with three confidence levels with the 
static threshold of 99.99% only at the first local 
prediction. We also evaluated the naive ensemble 
(averaging the pre-defined number of predictions) by 
changing the number of predictions to average. From the 
figure, the threshold T can be used as a knob to control 
the tradeoff between the accuracy and the computation 
cost as well as the number of predictions on average in 
the naive ensemble. For both our adaptive ensemble with 
the static threshold and the naive ensemble, the naive 
ensemble with 20 predictions is at one end of the 
tradeoff because it corresponds with T=100%. The 
baseline, which does not execute ensemble, is at the 
other end, which always terminates at the first prediction 

regardless of the probability. By comparing the two lines, 
the adaptive ensemble with the static threshold achieved 
accuracy better than or comparable to the naive 
ensemble using the same number of predictions on 
average unless the threshold T was too small. This means 
that the probability of prediction is an effective criterion 
to control the number of predictions to ensemble. From 
Figure 1, it is reasonable that an excessively small 
threshold T, e.g. less than 80%, decreases the accuracy 
since it will significantly miss the opportunity that we 
can gain from ensembling. 

Obviously, how to decide the best threshold T is the 
most important problem for the static threshold based 
condition. The confidence-level-based condition resolves 
this problem. The differences in the number of samples 

 
Figure 2. Prediction accuracy and computation cost with naive ensemble and our adaptive ensemble using different termination 
conditions. Static threshold T can be used to control tradeoff between accuracy and computation cost. Naive ensemble with all 20 
predictions and no ensemble (0.0% in figure) are two tradeoff extremes. Confidence-level-based condition achieved better accuracy 
than static-threshold-based conditions with same computation cost especially for CIFAR-10. Tuning of confidence level (CL) is less 
sensitive than that of static threshold.  
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and the improvements in the error rate due to the choice 
of the confidence level were much less significant than 
the differences due to the static threshold in the static-
threshold-based condition. Hence task-dependent fine 
tuning of the confidence level is not as important as the 
tuning of the static threshold. As is obvious from Figure 
2, the static threshold tuning is highly dependent on the 
dataset and task. The easier tuning of the parameter is an 
important advantage of the confidence-level-based 
condition. 

In addition to the benefit of the easier parameter tuning, 
the confidence-level-based condition further reduced the 
computation cost while maintaining the accuracy. The 
gain with the confidence-level-based condition over the 
static-threshold-based was significant especially for 
CIFAR-10 whereas it was marginal for ILSVRC 2012. 
These two datasets show the largest and smallest gain 
with the confidence-level-based condition over the 
static-threshold-based condition; other datasets showed 
improvements between those of the two datasets shown 
in Figure 2. By using the confidence-level-based 
condition, the adaptive ensemble largely outperformed 
the naïve ensemble for both data sets. 

6.  Conclusion 

In this paper, we described our adaptive ensemble 
prediction to reduce the computation cost of ensembling 
many predictions. We were motivated to develop this 
technique by our observation that ensembling does not 
improve the prediction accuracy if the samples are easy 
to predict. Our experiments using various image 
classification tasks showed that our adaptive ensemble 
makes it possible to avoid wasting computing power 
without significantly sacrificing the prediction accuracy 
by terminating ensembles on the basis of the 
probabilities of the local predictions. The benefit of our 
technique will become larger if we use more predictions 
in an ensemble. Hence, we expect our technique to make 
the ensemble techniques more valuable for real-world 
systems by reducing the total computation power 
required while maintaining good accuracies and 
throughputs. 
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Appendix 
In Chapter 2, we showed that ensembling two 
predictions from two networks of the same network 
architecture can improve the prediction accuracy only 
for hard-to-predict samples, which have low 
probabilities of prediction. In this appendix, we show the 
results when we mix the predictions from GoogLeNet 
and Alexnet. Figure 3(c) shows the result when we use 
GoogLeNet as the first prediction and Alexnet as the 
second. As in Figure 1, the x-axis shows the percentile of 
the probability of the prediction by GoogLeNet from 
high to low, i.e. going left (right), input images become 
easier (harder) to predict.  

For the leftmost region, i.e. 0- to 40-percentile samples, 
the ensemble from the two different networks predicts as 
accurately as GoogLeNet, which has higher prediction 

accuracy than Alexnet. For the rightmost region, i.e. 70- 
to 100-percentile samples, the ensemble improves the 
error rate over that of GoogLeNet alone. These 
characteristics are consistent with the cases using two 
identical networks shown in Figure 1. The interesting 
results are in the middle of these two regions, from 40- 
to 70-percentile samples. In this region, the ensemble 
slightly worsens the prediction accuracy below that from 
GoogLeNet alone. This is because GoogLeNet has better 
prediction performance than Alexnet, so the samples in 
this region are easy to predict for GoogLeNet but not for 
Alexnet. Although we study the ensemble of predictions 
from the same network in this paper, we need to take this 
behavior into account when extending this work to use 
predictions from different networks. When we use the 
predictions from Alexnet as the first prediction, the 
ensemble improves the accuracy for much wider regions 
as shown in Figure 3(d). 

 
 

 

     
 
Figure 3. Improvements by ensemble and probabilities of predictions in ILSVRC 2012 validation set when we mix predictions from 
GoogLeNet and Alexnet. X-axis shows percentile of probability of first local predictions from high (left) to low (right).  
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