
February 27, 2017
RT0978
Computer Science; Mathematics 8 pages

Research Report

Fast and Accurate Inference with Adaptive Ensemble
Prediction in Image Classification with Neural Networks

Hiroshi Inoue
IBM Research - Tokyo
IBM Japan, Ltd.
19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo 103-8510 Japan

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Fast and Accurate Inference with Adaptive Ensemble Prediction
in Image Classification with Deep Neural Networks

Hiroshi Inoue
IBM Research - Tokyo
inouehrs@jp.ibm.com

Abstract
Ensembling multiple predictions is a widely
used technique to improve the accuracy of
various machine learning tasks. In image
classification tasks, for example, averaging the
predictions for multiple patches extracted from
the input image significantly improves accuracy.
Using multiple networks trained independently
to make predictions improves accuracy further.
One obvious drawback of the ensembling
technique is its higher execution cost during
inference. If we average 100 predictions, the
execution cost will be 100 times as high as the
cost without the ensemble. This higher cost
limits the real-world use of ensembling, even
though using it is almost the norm to win image
classification competitions. In this paper, we
describe a new technique called adaptive
ensemble prediction, which achieves the
benefits of ensembling with much smaller
additional execution costs. Our observation
behind this technique is that many easy-to-
predict inputs do not require ensembling. Hence
we calculate the confidence level of the
prediction for each input on the basis of the
probability of the predicted label, i.e. the
outputs from the softmax, during the
ensembling computation. If the prediction for
an input reaches a high enough probability on
the basis of the confidence level, we stop
ensembling for this input to avoid wasting
computation power. We evaluated the adaptive
ensembling by using various datasets and
showed that it reduces the computation time
significantly while achieving similar accuracy
to the naive ensembling.

1. Introduction

The huge computation power of today’s computing
systems, equipped with GPUs, special ASICs, FPGAs,
or multi-core CPUs, makes it possible to train deep
networks using tremendous datasets. Although such
high-performance systems can be used for training,
actual inference in the real world may be executed on

small devices such as a handheld device or an embedded
controller, which have much smaller computation power
and energy supply than the large systems used for
training the network. Hence, a method to achieve high
prediction accuracy with limited computation resources
is needed to enable more applications to be deployed in
the real world. To reduce the computation costs in the
inference phase, Hinton et al. (2015) created a smaller
network for deployment by distilling the knowledge
from an ensemble of multiple models. Han et al. (2016)
also targeted deployment for small (mobile) devices and
showed that large networks can be significantly
compressed after training by pruning unimportant
connections and by quantizing each connection.

Ensembling multiple predictions is a widely used
technique to improve the accuracy of various machine
learning tasks (e.g. Hansen and Salamon 1990, Zhou et
al. 2002) at the cost of more computation power. In the
image classification tasks, for example, accuracy is
significantly improved by ensembling the local
predictions for multiple patches extracted from the input
image to make the final prediction. Moreover, accuracy
is further improved by using multiple networks trained
independently to make local predictions. Krizhevsky et
al. (2012) averaged 10 local predictions using 10 patches
extracted from the center and the 4 corners with and
without horizontal flipping in their Alexnet paper.
GoogLeNet by Szegedy et al. (2015) averaged up to
1,008 local predictions by using 144 patches and 7
networks. In their paper, they reported that averaging
1,008 predictions reduced the top-5 error of ImageNet
classification task by 3.45% whereas averaging 10
predictions with one model reduced the error by 0.92%
compared with the baseline prediction without
ensembling. In some ensemble methods, meta-learning
during the training to learn how to best mix the multiple
local predictions from the networks is used (e.g. Tekin et
al. 2016). In the Alexnet or GoogLeNet papers, however,
the significant improvements were obtained by just
averaging the predictions without the meta-learning. In
this paper, we do not use meta-learning either.

Although the benefits of ensemble prediction are quite
significant, one obvious drawback is its higher execution
cost during inference. If we make the final prediction by

ensembling 100 predictions, we need to make 100 local
predictions, and hence the execution cost will be 100
times as high as that without ensembling. This higher
execution cost limits the real-world use of ensembling
especially on small devices, even through using it is
almost the norm to win image classification competitions
that emphasize prediction accuracy.

To make the ensemble prediction more feasible in a
wider range of applications, we have developed adaptive
ensemble prediction, which achieves the benefits of
ensembling with much smaller additional costs. Our
observation behind this technique is that many easy-to-
predict inputs do not require ensembling. We use the
output produced by the softmax, which is at the end of
the neural network, for the predicted class label as the
probability of the prediction. During the ensembling
process, we calculate the confidence level of the
probability obtained from local predictions for each
input. If an input reaches a high enough confidence level,
we stop ensembling and making more local predictions
for this input to avoid wasting computation power. We
evaluated the adaptive ensembling by using four image
classification datasets: ILSVRC 2012, CIFAR-10,
CIFAR-100, and SVHN. Our results showed that the
adaptive ensemble prediction reduces the computation
time significantly while achieving similar accuracy to
the naive ensemble prediction.

2. Ensembling and Probability of Prediction

This section describes the observations that have
motivated us to develop our proposed technique: how the
ensemble prediction improves the accuracy of
predictions with different probabilities.

To show the relationship between the probability of the
prediction and the effect of ensembling, we evaluate the
prediction accuracy for the ILSVRC 2012 dataset with
and without ensembling of two predictions made by two
independently trained networks. Figure 1(a) shows the
results of this experiment with GoogLeNet; the two
networks follow the design of GoogLeNet and use
exactly the same configurations (hence the differences
come only from the random number generator). In the
experiment, we 1) evaluated the 50,000 images from the
validation set of the ILSVRC 2012 dataset using the first
network, 2) sorted the images by the probability of the
prediction, and 3) evaluated the images with the second
network and assessed the accuracy after ensembling two
local predictions using the arithmetic mean. The x-axis
of Figure 1(a) shows the percentile of the probability
from high to low, i.e. going left (right), input images
become easier (harder) to predict. The gray dashed line
shows the average probability for each percentile class.
On average for all images, the ensemble improves
accuracy well, although we only averaged two
predictions. Interestingly, we can observe that the
improvements only come in the right of the figure. There
are almost no improvements by ensembling two

predictions on the left side, i.e. easy-to-predict images
with highly probable predictions, even when there is a
non-negligible number of mispredicted samples. For
example, in the 50- to 60-percentile range, the error rate
is 29.6% and is not improved by averaging two
predictions from different networks. In this range, the
average probability of prediction is 79.4%.

To determine whether or not this characteristic of
ensembling is unique to GoogLeNet architecture, we
conducted the same experiment using Alexnet as another
network architecture and show the results in Figure 1(b).
Although the prediction error rate is higher for Alexnet
than for GoogLeNet, we observe similar characteristics
of improvements by ensembling. Again, the
improvements by ensembling are only observed in the
right of the figure, i.e. for hard-to-predict images. These
characteristics of the improvements by the ensemble are
not unique to an ILSVRC dataset; we have observed
similar trends in other datasets.

Figure 1. Improvements by ensemble and probabilities of
predictions in ILSVRC 2012 validation set. X-axis shows
percentile of probability of first local predictions from high (left)
to low (right). Ensemble reduces error rates for samples with
low probabilities but does not affect samples with high
probabilities.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 15 25 35 45 55 65 75 85 95

er
ro

r r
at

e
/ p

ro
ba

bi
lit

y

Percentile of probability of predicted label

top-1 error rate without ensemble top-1 error rate with ensemble
probability of prediction

accuracy improved
by ensembling

more probable
(easy-to-predict images)

less probable
(hard-to-predict images)

accuracy not improved
by ensembling

(a) GoogLeNet

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 15 25 35 45 55 65 75 85 95

er
ro

r r
at

e
/ p

ro
ba

bi
lit

y

Percentile of probability of predicted label

top-1 error rate without ensemble top-1 error rate with ensemble
probability of prediction

accuracy improved
by ensembling

more probable
(easy-to-predict images)

less probable
(hard-to-predict images)

accuracy not
improved by
ensembling

(b) Alexnet

These results motivate us to make our adaptive ensemble
prediction for reducing the additional cost of ensembling
while keeping the benefit of improved accuracy. Once
we obtain high enough prediction probability for an
input image, doing further local predictions and
ensembling will waste computation power without
improving accuracy. The challenge is how to identify the
condition in which to terminate ensembling. As
described later, we identify the termination condition on
the basis of the confidence level of the probability.

Also, we show the results when mixing GoogLeNet and
Alexnet in the appendix.

3. Related Work

Various prediction methods that ensemble the outputs
from many classifiers (e.g. neural networks) have been
widely studied to achieve higher accuracy in machine
learning tasks. Boosting (Freund and Schapire 1996) and
Bagging (Breiman 1996) are famous examples of
ensemble methods. Boosting and Bagging produce
enough variances in classifiers included in an ensemble
by changing the training set for each classifier. In recent
studies on image classifications with deep neural
networks, however, random numbers (e.g. for
initialization or for ordering input images) used in the
training phase can give sufficient variances in networks
even using the same training set for all classifiers
(networks). Hence, we use networks trained using the
same training set and network architecture in this study.

The higher execution cost of the ensembling is a known
problem, so we are not the first to attack it. For example,
Hinton et al. (2015) also tackled the high execution cost
of the ensembling. Unlike us, they trained a new smaller
network by distilling the knowledge from an ensemble of
networks by following Buciluǎ et al. (2006).

In our technique, we use the probability of the
predictions to control the ensembling during the
inference. Typically, the probability of the prediction
generated by the softmax is used during the training of
the network; the cross entropy of the probabilities is
often used as the objective function of the optimization.
However, using the probability for purposes other than
the target of the optimization is not unique to us. For
example, Hinton et al. (2015) used the probabilities from
the softmax while distilling the knowledge from the
ensemble. As far as we know, ours is the first study
focusing on the relationship between the probability of
the prediction and the effect of ensembling with current
deep neural networks. Opitz and Maclin (1999) showed
an important observation related to ours. They showed
that the large part of the gain of ensembling came from
the ensembling of the first few local predictions. Our
observation discussed in the previous section enhances
Opitz’s observation from a different perspective: most
gain of the ensembling comes from hard-to-predict
samples.

4. Adaptive Ensemble Prediction

4.1 Basic Idea

This section details our proposed adaptive ensemble
prediction method. As shown in Figure 1, the ensemble
typically does not improve the accuracy of predictions if
a local prediction is highly probable. Hence, we
terminate ensembling without processing all N local
predictions on the basis of the probabilities of the
predictions. We execute the following steps:

1) start from i = 1
2) obtain i-th local prediction, i.e. the probability for

each class label. We denote the probability for label
L of i-th local prediction ,

3) calculate the average probabilities for each class
label

∑ ,

4) if i < N and the termination condition is not satisfied,
increment i and repeat from step 2

5) output the class label that has the highest average
probability arg max as the final prediction.

4.2 Termination Conditions

For the termination condition in Step 3, we test two
conditions: one based on a simple static threshold, and
the other on a confidence level.

4.2.1 STATIC-THRESHOLD-BASED TERMINATION
CONDITION
We can use a simple condition on the basis of a pre-
determined threshold T to terminate the ensembling. In
this condition, we just compare the highest average
probability max against the threshold T. If the
average probability exceeds the threshold, i.e.
max , we do not execute further local
predictions for ensembling.

4.2.2 CONFIDENCE-LEVEL-BASED TERMINATION
CONDITION
Instead of the pre-defined threshold, we can use the
confidence intervals (CIs) as a termination condition. We
first find the label that has the highest average
probability (predicted label). Then, we calculate the CI
of the probabilities using i local predictions. If the
calculated CI of the predicted label does not overlap with
the CIs for other labels, i.e. the predicated label is the
best prediction with a certain confidence level, we
terminate the ensembling and output the predicted label
as the final prediction.

We calculate the confidence interval for the probability
of label L using i local predictions by

1 ∑ ,
2

1
1 (1)

Here, z means the student-t distribution for the
confidence level and the number of samples i.

Preferably, we want to do pair-wise comparisons
between the predicted label and all other labels.
However, computing CIs for all labels is costly,
especially when there are many labels. To avoid excess
costs of computing CIs, we compare the probability of
the predicted label against the total of the probabilities of
other labels. Since the total of the probabilities of all
labels (including the predicted label) is 1.0 by definition,
the total probabilities for the labels other than the
predicted label are 1 and the CI is the same size
as that of the probability of the predicted label. Hence,
our termination condition is

1 2 1 ∑ ,
2

1
1 (2)

We avoid computing CI if 0.5 to avoid wasteful
computation because the termination condition of
equation 2 cannot be met in such cases.

Since the CI cannot be calculated with only one local
prediction as is obvious from equation 1 to avoid zero
divisions, we can use a hybrid of the two termination
conditions. We use the static-threshold-based condition
only for the first local prediction (i.e. i = 1) with a quite
conservative threshold, and after the second local
prediction is calculated, the confidence-level-based
condition is used.

5. Experiments

5.1 Implementation

In this section, we investigate the effects of adaptive
ensemble prediction on the prediction accuracy and the
execution cost using various image classification tasks:
ILSVRC 2012, Street View House Numbers (SVHN),
CIFAR-10, and CIFAR-100 (with fine and course labels)
datasets.

For the ILSVRC 2012 dataset, we use GoogLeNet as the
network architecture and train the network using the
stochastic gradient descent with momentum as the
optimization method. For other datasets, we use a
network that has six convolutional layers with batch
normalization (Ioffe and Szegedy 2015) followed by two
fully connected layers. We used the same network
architecture except for the number of neurons in the
output layer. We train the network using Adam (Kingma
and Ba 2015) as the optimizer. For each task, we trained

two networks independently. During the training, we
used data augmentations by extracting a patch from a
random position of the input image and using random
horizontal flipping. Since adaptive ensemble prediction
is an inference-time technique, it does not affect the
network training. We executed the training and the
inference on a Tesla K40 GPU for the ILSVRC 2012
dataset and a Tesla K20 GPU for other datasets.

We averaged up to 20 local predictions using ensembling.
We created 10 patches from each input image by
extracting from the center and the four corners with and
without horizontal flipping by following Alexnet. For
each patch, we made two local predictions using two
networks. The patch size is 224×224 for the ILSVRC
2012 dataset and 28×28 for the other datasets. For
adaptive ensemble prediction, we made local predictions
in the following order: (center, no flip, network1),
(center, no flip, network2), (center, flipped, network1),
(center, flipped, network2), (top-left, no flip, network1),
…, (bottom-right, flipped, network2). For the inference,
we use a batch of 200 samples. As we repeated local
predictions, the batch became smaller as computation for
parts of samples terminated.

5.2 Results

Tables 1, 2, and 3 show how adaptive ensemble
prediction affected the accuracy of predictions and the
execution costs. Here, for our adaptive ensemble, we use
the confidence-level-based termination condition with a
95% confidence level combined with the static threshold
of 99.99% at the first local prediction.

We tested two different configurations: with one
network (i.e. up to 10 local predictions) and two
networks (up to 20 local predictions). In all datasets, the
ensemble improved the accuracy in a tradeoff for the
increased execution costs as expected. Using two
networks doubled the number of local predictions on
average (from 10 to 20) and increased both the benefit
and drawback. If we use further local predictions (e.g.
original GoogLeNet averaged up to 1,008 predictions),
the benefit and the cost will become much more
significant. Comparing our adaptive ensemble with the
naive ensemble, our adaptive ensemble similarly
improved accuracy (from 92% to 99% when we use two
networks and from 83% to 99% when we use one
network) while reducing the execution time by 2.1x to
2.8x and by 2.3x to 3.5x for the one-network and two-
network configurations, respectively. These performance
boosts came from the reduced number of local
predictions used in the ensembles. The reductions were
up to 6.9x and 12.7x for the one-network and two-
network configurations. The reductions in the execution
time over the naive ensemble were smaller than the
reduction in the number of averaged predictions because
of the additional overhead due to the confidence interval
calculation, which was written in Python in the current
implementation. Also, mini batches gradually became

small as ensembling for parts of samples terminated. The
smaller batch sizes reduced the efficiency of execution
on current GPUs. Since the speedup by our adaptive
technique over the naive ensemble became larger as the
number of max predictions to ensemble increased, the
benefit of our adaptive technique will become more
impressive if we use larger ensemble configurations.

To study the differences due to the termination condition
in our adaptive ensemble, we show the relationship

between the prediction accuracy and the computation
cost for ILSVRC 2012 and CIFAR-10 datasets in Figure
2. We used 2 networks in this experiment, i.e. up to 20
predictions were ensembled. In the figure, the x-axis is
the number of ensembled predictions, so smaller means
faster. The y-axis is the improvements in classification
error rate over the baseline (no ensemble), so higher
means better. We tested the static-threshold-based
conditions by changing the threshold T and drew lines in

Table 1. Prediction accuracy with and without adaptive ensemble

dataset
/ network

class
labels

classification error rate (lower is better)
with one network

classification error rate
with two networks

no
ensemble

naive
ensemble

our adaptive
ensemble

naive
ensemble

our adaptive
ensemble

CIFAR-10 10 8.39% 6.97%
(-1.41%)

7.00%
(-1.39%)

6.23%
(-2.16%)

6.34%
(-2.04%)

SVHN 10 4.40% 3.44%
(-0.96%)

3.50%
(-0.90%)

3.19%
(-1.21%)

3.29%
(-1.11%)

CIFAR-100
(course label) 20 20.63% 17.84%

(-2.79%)
18.04%

(-2.59%)
16.56%

(-4.07%)
16.78%

(-4.06%)
CIFAR-100
(fine label) 100 30.28% 27.04%

(-3.24%)
27.34%

(-2.94%)
25.04%

(-5.24%)
25.15%

(-5.13%)

ILSVRC
2012

top-1
error 1000

32.36% 30.21%
(-2.15%)

30.26%
(-2.10%)

28.11%
(-4.25%)

28.12%
(-4.24%)

top-5
error

12.67% 11.11%
(-1.37%)

11.35%
(-1.14%)

9.99%
(-2.50%)

10.21%
(-2.28%)

Ratios in parenthesis show improvements in error rate over baseline (no ensemble).

Table 2. Execution time with and without adaptive ensemble

dataset

execution time per sample (lower is better)
with one network

execution time per sample
with two networks

no
ensemble

naive
ensemble

our adaptive
ensemble

naive
ensemble

our adaptive
ensemble

CIFAR-10 0.30 msec
(1.0x)

2.55 msec
(8.37x)

0.98 msec
(3.20x)

4.98 msec
(16.34x)

1.61 msec
(5.28x)

SVHN 0.28 msec
(1.0x)

2.52 msec
(9.09x)

0.89 msec
(3.20x)

4.96 msec
(17.83x)

1.43 msec
(5.13x)

CIFAR-100
(course label)

0.31 msec
(1.0x)

2.55 msec
(8.28x)

1.04 msec
(3.58x)

4.99 msec
(16.16x)

1.87 msec
(6.01x)

CIFAR-100
(fine label)

0.31 msec
(1.0x)

2.56 msec
(8.36x)

1.25 msec
(4.07x)

4.99 msec
(16.28x)

2.15 msec
(7.03x)

ILSVRC 2012 3.75 msec
(1.0x)

35.84 msec
(9.56x)

16.67 msec
(4.45x)

70.74 msec
(18.86x)

30.10 msec
(8.03x)

Ratios in parenthesis show relative slowdown over baseline (no ensemble).

Table 3. Number of local predictions ensembled with and without adaptive ensemble

dataset

local predictions ensembled (lower is better)
with one network

local predictions ensembled
with two networks

no
ensemble

naive
ensemble

our adaptive
ensemble

naive
ensemble

our adaptive
ensemble

CIFAR-10

1 10

1.66

20

1.92
SVHN 1.44 1.57

CIFAR-100 c 2.74 4.09
CIFAR-100 f 3.59 5.93
ILSVRC 2012 3.94 7.40

the figure. Similarly, we evaluated the confidence-level-
based condition with three confidence levels with the
static threshold of 99.99% only at the first local
prediction. We also evaluated the naive ensemble
(averaging the pre-defined number of predictions) by
changing the number of predictions to average. From the
figure, the threshold T can be used as a knob to control
the tradeoff between the accuracy and the computation
cost as well as the number of predictions on average in
the naive ensemble. For both our adaptive ensemble with
the static threshold and the naive ensemble, the naive
ensemble with 20 predictions is at one end of the
tradeoff because it corresponds with T=100%. The
baseline, which does not execute ensemble, is at the
other end, which always terminates at the first prediction

regardless of the probability. By comparing the two lines,
the adaptive ensemble with the static threshold achieved
accuracy better than or comparable to the naive
ensemble using the same number of predictions on
average unless the threshold T was too small. This means
that the probability of prediction is an effective criterion
to control the number of predictions to ensemble. From
Figure 1, it is reasonable that an excessively small
threshold T, e.g. less than 80%, decreases the accuracy
since it will significantly miss the opportunity that we
can gain from ensembling.

Obviously, how to decide the best threshold T is the
most important problem for the static threshold based
condition. The confidence-level-based condition resolves
this problem. The differences in the number of samples

Figure 2. Prediction accuracy and computation cost with naive ensemble and our adaptive ensemble using different termination
conditions. Static threshold T can be used to control tradeoff between accuracy and computation cost. Naive ensemble with all 20
predictions and no ensemble (0.0% in figure) are two tradeoff extremes. Confidence-level-based condition achieved better accuracy
than static-threshold-based conditions with same computation cost especially for CIFAR-10. Tuning of confidence level (CL) is less
sensitive than that of static threshold.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

0 5 10 15 20

im
pr

ov
em

en
ts

 i
n

er
ro

r r
at

e

average number of local predictions ensembled

Naive ensemble

Our adaptive ensemble
with static-threshold-based condition
Our adaptive ensemble
with confidence-level-based condition

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 5 10 15 20

im
pr

ov
em

en
ts

 i
n

er
ro

r r
at

e

average number of local predictions ensembled

Naive ensemble

Our adaptive ensemble
with static-threshold-based condition

Our adaptive ensemble
with confidence-level-based condition

ILSVRC 2012 dataset

CIFAR-10 dataset

m
or

e
ac

cu
ra

te

faster

faster

m
or

e
ac

cu
ra

te T=99%T=90%T=80%

T=70%

T=60%

T=99.999%
T=99.99%

T=99.9%
T=99%

T=95%
T=90%

C.L.=99%C.L.=95%

C.L.=90%

T=50%

C.L.=99%
C.L.=95%

C.L.=90%

T=80%

T: static threshold, C.L.: confidence level

average 20
predictions

average 20
predictions

T: static threshold, C.L.: confidence level

baseline
(no ensemble)

baseline
(no ensemble)

and the improvements in the error rate due to the choice
of the confidence level were much less significant than
the differences due to the static threshold in the static-
threshold-based condition. Hence task-dependent fine
tuning of the confidence level is not as important as the
tuning of the static threshold. As is obvious from Figure
2, the static threshold tuning is highly dependent on the
dataset and task. The easier tuning of the parameter is an
important advantage of the confidence-level-based
condition.

In addition to the benefit of the easier parameter tuning,
the confidence-level-based condition further reduced the
computation cost while maintaining the accuracy. The
gain with the confidence-level-based condition over the
static-threshold-based was significant especially for
CIFAR-10 whereas it was marginal for ILSVRC 2012.
These two datasets show the largest and smallest gain
with the confidence-level-based condition over the
static-threshold-based condition; other datasets showed
improvements between those of the two datasets shown
in Figure 2. By using the confidence-level-based
condition, the adaptive ensemble largely outperformed
the naïve ensemble for both data sets.

6. Conclusion

In this paper, we described our adaptive ensemble
prediction to reduce the computation cost of ensembling
many predictions. We were motivated to develop this
technique by our observation that ensembling does not
improve the prediction accuracy if the samples are easy
to predict. Our experiments using various image
classification tasks showed that our adaptive ensemble
makes it possible to avoid wasting computing power
without significantly sacrificing the prediction accuracy
by terminating ensembles on the basis of the
probabilities of the local predictions. The benefit of our
technique will become larger if we use more predictions
in an ensemble. Hence, we expect our technique to make
the ensemble techniques more valuable for real-world
systems by reducing the total computation power
required while maintaining good accuracies and
throughputs.

References
Leo Breiman, 1996, Bagging Predictors, Machine

Learning, 24(2), pp 123-140.

Cristian Buciluǎ, Rich Caruana and Alexandru
Niculescu-Mizil, 2006, Model compression, In
Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data <ining,
pp 535-541.

Yoav Freund and Robert E. Schapire, 1996, Experiments
with a New Boosting Algorithm, In Proceedings of
International Conference on Machine Learning, pp
148-156.

Song Han, Huizi Mao and William J. Dally, 2016, Deep
Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman
Coding, In Proceedings of International Conference on
Learning Representations.

Lars Kai Hansen and Peter Salamon, 1990, Neural
Network Ensembles, In IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10), pp 993-
1001.

Geoffrey Hinton, Oriol Vinyals and Jeff Dean, 2015,
Distilling the Knowledge in a Neural Network, In
arXiv:1503.02531 [stat.ML].

Sergey Ioffe and Christian Szegedy, 2015, Batch
Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, In
arXiv:1502.03167 [cs.LG].

Diederik Kingma and Jimmy Ba, Adam: A Method for
Stochastic Optimization, In arXiv:1412.6980 [cs.LG].

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton,
2012, ImageNet Classification with Deep
Convolutional Neural Networks, In Proceedings of
Advances in Neural Information Processing Systems
25, pp 1106-1114.

David Opitz and Richard Maclin, 1999, Popular
ensemble methods: An empirical study, In Journal of
Artificial Intelligence Research, 11, pp 169-198.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan and Vincent Vanhoucke and Andrew
Rabinovich, 2015, Going Deeper with Convolutions,
In Proceedings of Computer Vision and Pattern
Recognition.

Cem Tekin, Jinsung Yoon and Mihaela van der Schaar,
2016, Adaptive Ensemble Learning with Confidence
Bounds. In arXiv:1512.07446 [cs.LG].

Zhi-Hua Zhou, Jianxin Wu and Wei Tang, 2002,
Ensembling neural networks: Many could be better
than all, In Artificial Intelligence, 137(1-2), pp 239-263.

Appendix
In Chapter 2, we showed that ensembling two
predictions from two networks of the same network
architecture can improve the prediction accuracy only
for hard-to-predict samples, which have low
probabilities of prediction. In this appendix, we show the
results when we mix the predictions from GoogLeNet
and Alexnet. Figure 3(c) shows the result when we use
GoogLeNet as the first prediction and Alexnet as the
second. As in Figure 1, the x-axis shows the percentile of
the probability of the prediction by GoogLeNet from
high to low, i.e. going left (right), input images become
easier (harder) to predict.

For the leftmost region, i.e. 0- to 40-percentile samples,
the ensemble from the two different networks predicts as
accurately as GoogLeNet, which has higher prediction

accuracy than Alexnet. For the rightmost region, i.e. 70-
to 100-percentile samples, the ensemble improves the
error rate over that of GoogLeNet alone. These
characteristics are consistent with the cases using two
identical networks shown in Figure 1. The interesting
results are in the middle of these two regions, from 40-
to 70-percentile samples. In this region, the ensemble
slightly worsens the prediction accuracy below that from
GoogLeNet alone. This is because GoogLeNet has better
prediction performance than Alexnet, so the samples in
this region are easy to predict for GoogLeNet but not for
Alexnet. Although we study the ensemble of predictions
from the same network in this paper, we need to take this
behavior into account when extending this work to use
predictions from different networks. When we use the
predictions from Alexnet as the first prediction, the
ensemble improves the accuracy for much wider regions
as shown in Figure 3(d).

Figure 3. Improvements by ensemble and probabilities of predictions in ILSVRC 2012 validation set when we mix predictions from
GoogLeNet and Alexnet. X-axis shows percentile of probability of first local predictions from high (left) to low (right).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 15 25 35 45 55 65 75 85 95

er
ro

r r
at

e
/ p

ro
ba

bi
lit

y

Percentile of probability of predicted label

top-1 error rate from GoogLeNet alone top-1 error rate with ensemble
probability of prediction (by GoogLeNet)

accuracy improved
by ensembling

more probable
(easy-to-predict images)

less probable
(hard-to-predict images)

accuracy not affected
by ensembling

(c) GoogLeNet
+ Alexnet

accuracy
degraded
by ensembling

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 15 25 35 45 55 65 75 85 95

er
ro

r r
at

e
/ p

ro
ba

bi
lit

y

Percentile of probability of predicted label

top-1 error rate from Alexnet alone top-1 error rate with ensemble
probability of prediction (by Alexnet)

accuracy improved
by ensembling

more probable
(easy-to-predict images)

less probable
(hard-to-predict images)

(d) Alexnet +
GoogLeNet

