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Abstract

We review Boltzmann machines extended for time-series. These models often have recurrent
structure, and back propagration through time (BPTT) is used to learn their parameters. The per-
step computational complexity of BPTT in online learning, however, grows linearly with respect
to the length of preceding time-series (i.e., learning rule is not local in time), which limits the
applicability of BPTT in online learning. We then review dynamic Boltzmann machines (DyBMs),
whose learning rule is local in time. DyBM’s learning rule relates to spike-timing dependent
plasticity (STDP), which has been postulated and experimentally confirmed for biological neural
networks.

1 Introduction

The Boltzmann machine is a stochastic model for representing probability distributions over binary
patterns [28]. In this paper, we review Boltzmann machines that have been studied as stochastic
(generative) models of time-series. Such Boltzmann machines define probability distributions over
time-series of binary patterns. They can also be modified to deal with time-series of real-valued
patterns, similar to Boltzmann machines modified for real-valued patterns (e.g., Gaussian Boltzmann
machines; see Section 6.3 from [28]). We will follow the probabilistic representations of [28] for intuitive
interpretations in terms of probabilities.

In Section 3, we start with a Conditional Restricted Boltzmann Machine (CRBM) [40], which is
a conditional Boltzmann machine (Section 4 from [28]) that gives conditional probability of the next
pattern given a fixed number of preceding patterns. A limitation of a CRBM is that it can take into
account only the dependency within a fixed horizon, and as we increase the length of this horizon, the
complexity of learning grows accordingly.

To overcome this limitation of CRBMs, researchers have proposed Boltzmann machines having
recurrent structures, which we review in Section 4. These include spiking Boltzmann machines [12],
temporal restricted Boltzmann machines (TRBMs) [37], recurrent temporal restricted Boltzmann ma-
chines (RTRBMs) [38], and extensions of those models. A standard approach to learning those models
having recurrent structures is back propagation through time (BPTT).

However, BPTT is undesirable when we learn time-series in an online manner, where we update the
parameters of a model every time a new pattern arrives. Such online learning is needed when we want
to quickly adapt to a changing environment or when we do not have sufficient memory to store the
time-series. Unfortunately, the per-step computational complexity of BPTT in online learning grows
linearly with respect to the length of preceding time-series. This computational complexity limits the
applicability of BPTT to online learning.

In Section 5, we review the dynamic Boltzmann machine (DyBM) [32, 31] and its extensions. The
DyBM’s per-step computational complexity in online learning is independent of the length of preceding
time-series. We discuss how the learning rule of the DyBM relates to spike-timing dependent plasticity
(STDP), which has been postulated and experimentally confirmed for biological neural networks.
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This survey paper is based on a personal note prepared for the third of the four parts of a tutorial
given at the 26th International Joint Conference on Artificial Intelligence (IJCAI-17) held in Mel-
bourne, Australia on August 21, 2017. See a tutorial webpage1 for information about the tutorial. A
survey corresponding to the first part of the tutorial (Boltzmann machines and energy-based models)
can be found in [28]. We follow the definitions and notations used in [28].

2 Learning energy-based models for time-series

Consider a possibly multi-dimensional time-series:

x ≡ (x[t])Tt=0, (1)

where x[t] denotes the binary pattern (vector) at time t. We will use x[s,t] to denote the time-series of
the patterns from time s to t.

A goal of learning time-series is to maximize the log-likelihood of a given time-series x (or a
collection of multiple time-series) with respect to the distribution Pθ(·) defined by a model under
consideration, where we use θ to denote the set of the parameters of the model:

f(θ) ≡ logPθ(x) =

T∑
t=0

logPθ(x
[t] |x[0,t−1]), (2)

where Pθ(x
[t] |x[0,t−1]) denotes the conditional probability that the pattern at time t is x[t] given that

the patterns up to time t−1 is x[0,t−1]. Here, Pθ(x
[0] |x[0,−1]) denotes the probability that the pattern

at time 0 is x[0], where x[0,−1] should be interpreted as an empty history.
We study models where the probability is represented with energy Eθ(·) as follows:

Pθ(x) =
∑
h̃

Pθ(x, h̃), (3)

where

Pθ(x,h) =
exp

(
− Eθ(x,h)

)
∑
x̃

∑
h̃

exp
(
− Eθ(x̃, h̃)

) , (4)

the summation with respect to x̃ is over all of the possible binary time-series of length T , and the
summation with respect to h̃ is over all of the possible hidden values.

The gradient of f(θ) can then be represented as follows (see (73)):

∇f(θ) = −Etarget [Eθ [∇Eθ(X,H) |X]] + Eθ [∇Eθ(X,H)] , (5)

where X represents the random time-series, H represents the random hidden values, Eθ denotes the
expectation with respect to the model distribution Pθ, and Etarget denotes the expectation with respect
to the target distribution, which in our case is the empirical distribution of time-series. When a single
time-series x is given as the target, (5) is reduced to

∇f(θ) = −Eθ [∇Eθ(x,H)] + Eθ [∇Eθ(X,H)] , (6)

In other words, f(θ) can be maximized by maximizing the sum of

ft(θ) ≡ logPθ(x
[t] |x[0,t−1]), (7)

1https://researcher.watson.ibm.com/researcher/view group.php?id=7834
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where

Pθ(x
[t] |x[0,t−1]) =

∑
h̃

Pθ(x
[t],h |x[0,t−1]) (8)

Pθ(x
[t],h |x[0,t−1]) =

exp
(
− Eθ(x[t],h | x[0,t−1])

)
∑
x̃[t]

∑
h̃

exp
(
− Eθ(x̃[t], h̃ | x[0,t−1])

) , (9)

and Eθ(x
[t],h | x[0,t−1]) is the conditional energy of (x[t],h) given x[0,t−1].

The gradient of ft(θ) is given analogously to ∇f(θ):

∇ft(θ) = −Etarget

[
Eθ

[
∇Eθ(X [t],H |X [t],x[0,t−1])

]]
+ Eθ

[
∇Eθ(X [t],H | x[0,t−1])

]
. (10)

When the target is a single time-series x, we have

∇ft(θ) = −Eθ
[
∇Eθ(x[t],H |x[0,t−1])

]
+ Eθ

[
∇Eθ(X [t],H | x[0,t−1])

]
. (11)

3 Non-recurrent Boltzmann machines for time-series

By (2), any model that can represent the conditional probability Pθ(x
[t] |x[0,t−1]) can be used for

time-series. In this section, we start with a Boltzmann machine that can be used to model a D-th
order Markov model for an arbitrarily determined D. In D-th order Markov models, the conditional
probability can be represented as

Pθ(x
[t] |x[0,t−1]) = Pθ(x

[t] |x[t−D,t−1]). (12)

3.1 Conditional restricted Boltzmann machines

Figure 1a shows a particularly structured Boltzmann machine called Conditional Restricted Boltzmann
Machine (CRBM) [40]. A CRBM represents the conditional probability on the right-hand side of (12).
In the figure, we set D = 2.

The CRBM consists of D + 1 layers of visible units and a layer of hidden units. The units within
each layer have no connections, but units between different layers may be connected to each other.
Each visible layer corresponds to a pattern at a time s ∈ [t−D, t].

The CRBM is a conditional Boltzmann machine shown in Figure 2c from [28] but with a particular
structure to represent time-series. The visible layers corresponding to x[t−D,t−1] are the input, and
the visible layer corresponding to x[t] is the output. The parameters θ of the CRBM are independent
of t.

More formally, the energy of a CRBM is given by

Eθ
(
x[t],h | x[t−D,t−1]) = −(bV)> x[t] − (bH)> h− h WHV x[t] −

D∑
d=1

(x[t−d])>W[d] x[t], (13)

where x[t] is output, x[t−D,t−1] is input, and h is hidden.
We can then represent the conditional probability as follows (see (14) from [28]):

Pθ(x
[t] |x[t−D,t−1]) =

∑
h̃

Pθ(x
[t], h̃ |x[t−D,t−1]), (14)
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Figure 1: Conditional restricted Boltzmann machines.

where

Pθ(x
[t], h̃ |x[t−D,t−1]) =

exp
(
− Eθ

(
x[t], h̃ | x[t−D,t−1]))∑

x̃[t]

(
− Eθ

(
x̃[t], h̃ | x[t−D,t−1])) , (15)

and the summation with respect to h̃ is over all of the possible binary hidden patterns, and the
summation with respect to x̃[t] is defined analogously.

One can then learn the parameters θ = (bV,hh,WHV,W[1], . . . ,WD) of the model by following a
gradient-based method in Section 4 from [28].

3.2 Extensions of conditional restricted Boltzmann machines

The CRBM has been extended in various ways. Taylor et al. study a CRBM with multiple layers of
hidden units [40] (see Figure 1b). Memisevic and Hinton study a CRBM extended with three-way
interactions (i.e., a higher order Boltzmann machine), which they refer to as a gated CRBM [24].
Specifically, the energy of the gated CRBM involves

−
∑
i,j,k

wi,j,k xi yj hk, (16)

where x denotes input values, y denotes output values, and h denotes hidden values. A drawback of
the gated CRBM is its increased number of parameters due to the three-way interactions. Taylor and
Hinton study a factored CRBM, where the three-way interaction is represented with a reduced number
of parameters as follows [39]:

−
∑
f

∑
i,j,k

wv
i,f w

y
j,f w

h
k,f xi yj hk, (17)

where the summation with respect to f is over a set of factors under consideration.
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(a) Structure of a spiking Boltzmann machine

likelihood of the one-step reconstructions is complicated because changing a weight
changes the probability distribution of the reconstructions:

@L1

@wij

= < sisj >
1 � < sisj >

1 +
@Q1

@wij

�
@L1

@Q1
(3)

where Q1 is the distribution of the one-step reconstructions of the training data and
Q1 is the equilibrium distribution (i.e. the stationary distribution of prolonged
Gibbs sampling). Fortunately, the cumbersome third term is su�ciently small that
ignoring it does not prevent the vector of weight changes from having a positive
cosine with the true gradient of the di�erence of the log likelhoods so the following
very simple learning rule works much better than Eq. 2.

�wij = �
�
< sisj >

0 � < sisj >
1
�

(4)

4 Restricted Boltzmann machines through time

Using a restricted Boltzmann machine we can represent time by spatializing it, i.e.
taking each visible unit, i, and hidden unit, j, and replicating them through time
with the constraint that the weight wij� between replica t of i and replica t + �
of j does not depend on t. To implement the desired temporal smoothing, we also
force the weights to be a smooth function of � that has the shape of the temporal
kernel, shown in Figure 3. The only remaining degree of freedom in the weights
between replicas of i and replicas of j is the scale of the temporal kernel and it is
this scale that is learned. The replicas of the visible and hidden units still form
a bipartite graph and the probability distribution over the hidden replicas can be
inferred exactly without considering data that lies further into the future than the
width of the temporal kernel.

One problem with the restricted Boltzmann machine when we spatialize time is
that hidden units at one time step have no memory of their states at previous time
steps; they only see the data. If we were to add undirected connections between
hidden units at di�erent time steps, then the architecture would return to a fully
connected Boltzmann machine in which the hidden units are no longer conditionally
independent given the data. A useful trick borrowed from Elman nets is to allow the
hidden units to see their previous states, but to treat these observations like data
that cannot be modi�ed by future hidden states. Thus, the hidden states may still
be inferred independently without resorting to Gibbs sampling. The connections
between hidden layer weights also follow the time course of the temporal kernel.
These connections act as a predictive prior over the hidden units. It is important
to note that these forward connections are not required for the network to model a
sequence, but only for the purposes of extrapolating into the future.
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Figure 3: The form of the temporal kernel.
1

(b) r(·) used in [12]

Figure 2: A spiking Boltzmann machine studied in [12]. In (b), we use the figure in the version available
at http://www.cs.toronto.edu/∼fritz/absps/nips00-ab.pdf.

4 Boltzmann machines for time-series with recurrent struc-
tures

4.1 Spiking Boltzmann machines

A spiking Boltzmann machine studied in [12] can be shown to be essentially equivalent to the Boltz-
mann machine illustrated in Figure 2. This Boltzmann machine consists of input units, output units,
and hidden units. The input units represent historical values of visible units and hidden units. Al-
though hidden units are random and cannot be simply given as input, Hinton and Brown make the
approximation of using sampled values H(−∞,t−1](ω) as the input hidden units [12].

Specifically, given the visible values x[<t] ≡ x(−∞,t−1] and sampled hidden values H [<t](ω) up to
time t− 1, the energy with the visible values x[t] and hidden values h[t] at time t can be represented
as follows:

Eθ(x
[t],h[t] | x[<t],H [<t](ω)) = −(bV)> x[t] − (bH)> h[t] − (h[t])> r(τ) WHV x[t]

−
∞∑
τ=1

(H [t−τ ](ω))> r(τ) WHH h[t] −
∞∑
τ=1

(x[t−τ ])> r(τ) WVH h[t]

−
∞∑
τ=1

(H [t−τ ](ω))> r(τ) WHV x[t] −
∞∑
τ=1

(x[t−τ ])> r(τ) WVV x[t], (18)

where r(·) is an arbitrarily chosen function and is not the target of learning. Namely, the Boltzmann
machine has an infinite number of units but can be characterized by a finite number of parameters
θ ≡ (bV,bH,WVV,WVH,WHV,WHH). Figure 2(b) shows the specific r(·) used in [12]2.

Notice that the Boltzmann machine in Figure 2 can be seen as a restricted Boltzmann machine
(RBM) whose bias and weight can depend on x[<t] and H [<t](ω), because (18) can be represented as

Eθ(x
[t],h[t] | x[<t],H[<t](ω)) = −bH(t, ω) h[t] − bV(t, ω) x[t] − h[t] W x[t], (19)

2Although it is not clear from the descriptions in [12], the labels in the horizontal axis should probably be shifted by
one, so that r(0) = 0, r(1) ≈ 0.1, and so on.
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where bH(t, ω) is the time-varying bias for hidden units, bV(t, ω) is the time-varying bias for visible
units, and W is the weight between visible units and hidden units:

bH(t, ω) ≡ bH +

∞∑
τ=1

(H [t−τ ](ω))> r(τ) WHH +

∞∑
τ=1

(x[t−τ ])> r(τ) WVH (20)

bV(t, ω) ≡ bV +

∞∑
τ=1

(H [t−τ ](ω))> r(τ) WHV +

∞∑
τ=1

(x[t−τ ])> r(τ) WVV (21)

W ≡ r(0) WHV. (22)

We can then represent the conditional probability as follows:

Pθ(x
[t] |x[<t],H(−∞,t−1(ω)) =

∑
h̃[t]

Pθ

(
x[t], h̃[t] |x[<t],H(−∞,t−1](ω)

)
(23)

where

Pθ(x
[t], h̃[t] |x[<t],H [<t](ω)) =

exp
(
− Eθ

(
x[t], h̃[t] | x[<t],H(−∞,t−1](ω)

))
∑
x̃[t]

exp
(
− Eθ

(
x̃[t], h̃[t] | x[<t],H [<t](ω)

)) . (24)

We now discuss the choice of r(0) = 0, which appears to be the case in Figure 2(b). In this case,
the energy is reduced to

Eθ(x
[t],h[t] | x[<t],H [<t](ω)) = −(bH(t, ω))> h[t] − (bV(t, ω))> x[t]. (25)

Because there are no connections between visible units and hidden units at time t, the hidden values
at t do not affect the distribution of the visible values at t. The only role of the hidden units is that
the sampled hidden values are used to update the time-varying bias, bV(s, ω) and bH(s, ω) for s > t.
A problem is that there is no mechanism that allows us to learn appropriate values of WVH and
WHH until we observe succeeding visible values. Namely, the hidden values h[t] are sampled with the
dependency on WVH and WHH, but whether the sampled hidden values are good or not can only be
known when those hidden values are used as input. This helps us to learn appropriate values of WHV,
but not WVH or WHH. See [30] for further discussion.

4.2 Temporal restricted Boltzmann machines

Sutskever and Hinton study a model related to a CRBM, which they refer to as a temporal restricted
Boltzmann machine (TRBM) [37]. While a CRBM defines the conditional distribution of the (visible
and hidden) values at time t given only the visible values from time t−D to t−1, a TRBM defines the
corresponding conditional probability given both the visible values and the hidden values from time
t −D to t − 1. See Figure 3a. Similar to the CRBM, the parameters θ of the TRBM do not depend
on time t.

Unlike the CRBM, the TRBM is not a conditional RBM. This is because the TRBM with a single
parameter is used for every t, and the distribution of hidden values is shared among those TRBM at
varying t. In particular, hidden values of the TRBM can depend on the future visible values.

Because this dependency makes learning and inference hard, it is ignored in [37]. Namely, the
values at each time t is conditionally independent of the values after time t given the values at and
before time t. In particular, the distribution of the hidden values at time t is completely determined
by the visible values up to time t. The distribution of the hidden values before time t can thus be
considered as input when we use the TRBM to define the conditional distribution of the values at time
t (see Figure 3b). For each sampled values of hidden units, TRBM in 3b is a CRBM.
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Figure 3: Temporal restricted Boltzmann machines. In (b), the gray circles indicate that expected
values are used for the input hidden units.

Furthermore, in [37], the expected values (see Section 5.4 from [28]) are used for the hidden values.
Then the input hidden units in Figure 3b takes real values in [0, 1] that are completely determined by
the visible values before time t.

More formally, with the approximations in [37], the TRBM with parameter θ defines the probability
distribution over the time-series of visible and hidden values as follows:

Pθ(x) =

T∏
t=0

∑
h̃[t]

Pθ(x
[t], h̃[t] |x[t−D,t−1], r[t−D,t−1]), (26)

where

Pθ(x
[t], h̃[t] |x[t−D,t−1], r[t−D,t−1]) =

exp
(
− Eθ(x[t], h̃[t] |x[t−D,t−1], r[t−D,t−1])

)
∑
x̃[t]

exp
(
− Eθ(x̃[t], h̃[t] |x[t−D,t−1], r[t−D,t−1])

) (27)

is the conditional distribution defined by the Boltzmann machine shown in Figure 3b, where r[t−D,t−1]

are expected hidden values. Specifically, (27) is used to compute

r[t] = Eθ[H
[t] | x[0,t]], (28)

which is subsequently used with (27) for t← t+ 1, where the expectation in (28) is with respect to

Pθ(h
[t] | x[0,t−1]) =

Pθ(x
[t],h[t] | x[t−D,t−1], r[t−D,t−1])∑

x̃[t]

Pθ(x̃
[t],h[t] | x[t−D,t−1], r[t−D,t−1])

. (29)

Notice that r[t] can be computed from x[0,t] in a deterministic manner with dependency on θ.
However, this dependency on θ is ignored in learning TRBMs.

4.3 Recurrent temporal restricted Boltzmann machines

To overcome the intractability of the TRBM without approximations, Sutskever et al. study a refined
model of TRBM, which they refer to as a recurrent temporal restricted Boltzmann machine (RTRBM)
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Figure 4: A recurrent temporal restricted Boltzmann machine.

[38]. The RTRBM simplifies the TRBM by removing connections between visible layers and connec-
tions between hidden layers that are separated by more than one lag. This means that the (visible and
hidden) values at time t are conditionally independent of the the visible values before time t and the
hidden values before time t − 1 given the hidden values at time t − 1. Similar to the approximation
made for the TRBM in Figure 3b, the RTRBM uses the expected values for the hidden values at time
t − 1 but defines the conditional distribution of the (visible and hidden) values at time t over their
binary values. See Figure 4.

More formally, let r[t−1] denote the expected values of the hidden units at time t− 1:

r[t−1] ≡ Eθ

[
H[t−1] |x[0,t−1]], (30)

where H[t−1] is the random vector representing the hidden values at time t, and Eθ[· |x[0,t−1]] represents
the conditional expectation given the visible values up to time t − 1. The probability distribution of
the values at time t is then given by

Pθ(x
[t],h[t] | r[t−1]) =

exp
(
− Eθ(x[t],h[t] | r[t−1])

)
∑
x̃,h̃

exp
(
− Eθ(x̃[t], h̃[t] | r[t−1])

) , (31)

where the conditional energy is given by

Eθ(x
[t],h[t] | r[t−1]) ≡ −(bV)>x[t] − (bH)>h[t] − (r[t−1])>U h[t] − (x[t])>W h[t]. (32)

4.3.1 Inference

The marginal conditional distribution of visible values at time t−1 can then be represented as follows:

Pθ(x
[t] | r[t−1]) =

exp
(
− Fθ(x[t] | r[t−1])

)
∑
x̃[t]

exp
(
− Fθ(x̃[t] | r[t−1])

) , (33)

where the conditional free-energy is given by

Fθ(x
[t] | r[t−1]) ≡ − log

∑
h̃[t]

exp
(
− Eθ(x[t], h̃[t] | r[t−1])

)
. (34)
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Once the visible values at time t is given, the conditional probability distribution of the hidden
values at time t can be represented as follows:

Pθ(h
[t] | r[t−1],x[t]) =

exp
(
− Eθ(h[t] | r[t−1],x[t])

)
∑
h̃[t]

exp
(
− Eθ(h̃[t] | r[t−1],x[t])

) , (35)

where the (bV)>x[t] term is canceled out between the numerator and the denominator, and the con-
ditional energy is given by

Eθ(h
[t] | r[t−1],x[t]) ≡ −

(
bH + U> r[t−1] + W> x[t]

)>
h[t]. (36)

By Corollary 1 from [28], the hidden values at time t are conditionally independent of each other given
r[t−1] and x[t]:

Pθ(h
[t] | r[t−1],x[t]) =

∏
i

Pθ(h
[t]
i | r

[t−1],x[t]), (37)

where

Pθ(h
[t]
i | r

[t−1],x[t]) =
exp

(
− b[t]i h

[t]
i

)
1 + exp

(
− b[t]i

) , (38)

where b
[t]
i is the i-th element of

b[t] ≡ bH + U> r[t−1] + W> x[t] (39)

for t ≥ 1, and

b[0] ≡ binit + W> x[0]. (40)

where we now follow [38] and allow the hidden units at time 0 to have own bias binit that can differ
from bH. The expected values are thus given by

r[t] =
1

1 + exp
(
b[t]
) , (41)

where the operations are defined elementwise.

4.3.2 Learning

The parameters of an RTRBM can be trained through back propagation through time, analogous to
recurrent neural networks, but with contrastive divergence. To understand how we can train RTRBMs,
Figure 5 shows an RTRBM unfolded through time. Recall that the expected values of hidden units
are deterministically updated from r[t−1] to r[t] according to (39)-(41). Hence, r[t] can be understood
as hidden values of a recurrent neural network (RNN) [34]. An RTRBM can then be seen as an RNN
but gives an RBM as an output instead of real values, which would be given as an output from the
standard RNN. We will derive the learning rule of the RTRBM, closely following [25] but using our
notations.

When an RTRBM is unfolded through time, its energy can be represented as follows:

Eθ(x,h) = −
T∑
t=0

(bV)>x[t] − (binit)>h[0] −
T∑
t=1

(bH)>h[t] −
T∑
t=0

(x[t])>W h[t] −
T∑
t=1

(r[t−1])>U h[t].

(42)
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Figure 5: A recurrent temporal restricted Boltzmann machine unfolded through time, where T = 4.

By (5), we can maximize the log-likelihood of a given time-series x with a gradient-based approach.
What we need in (5) is the gradient of the energy with respect to the parameter. A caveat is that the
energy in (42) depends on r[·], which in turn depends on θ in a recursive manner. Also, expectation
with respect to Ptheta in (5) needs to be computed with approximation such as contrastive divergence
(see Section 5.2).

We first study the last term of (42). Let

Qs ≡
T∑
t=s

(r[t−1])>U h[t] (43)

= (r[s−1])>U h[s] +Qs+1, (44)

for s ∈ [1, T ], where QT+1 ≡ 0, so that Q ≡ Q1 is the last term of (42). Taking the partial derivative

with respect to r
[s−1]
i , we obtain

∂Qs

∂r
[s−1]
i

=
∂

∂r
[s−1]
i

(r[s−1])>U h[s] +
∑
j

∂r
[s]
j

∂r
[s−1]
i

∂Qs+1

∂r
[s]
j

(45)

= Ui,: h
[s] +

∑
j

r
[s]
j (1− r[s]j )ui,j

∂Qs+1

∂r
[s]
j

, (46)

where Ui,: denotes the i-th row of U, ui,j denotes the (j, i)-th element of U, and the last equality
follows from (39)-(41). In vector-matrix notations, we can write

∇r[s−1]Qs = U
(
h[s] + r[s] · (1− r[s]) · ∇r[s]Qs+1

)
, (47)

where · denotes elementwise multiplication. Because Qs is not a function of r[0], . . . , r[s−2], we have

∇r[s−1]Q = ∇r[s−1]Qs. (48)

Therefore, the partial derivative of Q with respect to r[s−1] is given recursively as follows:

∇r[s−1]Q = U
(
h[s] + r[s] · (1− r[s]) · ∇r[s]Q

)
(49)

for s = 1, . . . , T and

∇r[T ]Q = 0. (50)
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We now take the derivative of Q with respect to the parameters in θ, starting with U:

dQ

dui,j
=

T∑
t=0

∑
k

∂r
[t]
k

∂ui,j

∂Q

∂r
[t]
k

+
∂Q

∂ui,j
(51)

=

T∑
t=1

r
[t]
j (1− r[t]j ) r

[t−1]
i

∂Q

∂r
[t]
j

+

T∑
t=1

r
[t−1]
i h

[t]
j , (52)

where the last equality follows from (39)-(41). In vector-matrix notations, we can write

∇UQ =

T∑
t=1

r[t−1]
(
r[t] · (1− r[t]) · ∇r[t]Q+ h[t]

)>
, (53)

where ∇r[t]Q is given by (49)-(50).
The gradient of Q with respect to other parameters can be derived as follows:

∇WQ =
T∑
t=0

x[t]
(
r[t] · (1− r[t]) · ∇r[t]Q

)>
(54)

∇bHQ =

T∑
t=1

r[t] · (1− r[t]) · ∇r[t]Q (55)

∇binitQ = r[0] · (1− r[0]) · ∇r[0]Q (56)

∇bVQ = 0 (57)

The gradients of Q can be used to show the following gradients of the energy:

∇UEθ(x,h) = −
T∑
t=1

r[t−1]
(
r[t] · (1− r[t]) · ∇r[t]Q+ h[t]

)>
(58)

∇WEθ(x,h) = −
T∑
t=0

x[t] (h[t])> −
T∑
t=0

x[t]
(
r[t] · (1− r[t]) · ∇r[t]Q

)>
(59)

∇bHEθ(x,h) = −
T∑
t=1

h[t] −
T∑
t=1

r[t] · (1− r[t]) · ∇r[t]Q (60)

∇binitEθ(x,h) = −h[0] − r[0] · (1− r[0]) · ∇r[0]Q (61)

∇bVEθ(x,h) = −
T∑
t=0

x[t], (62)

where ∇r[t]Q is given by (49)-(50). The gradient of the log-likelihood of the given time-series x now
follows from (72) in [28].

4.3.3 Extensions

The RTRBM has been extended in various ways. Mittleman et al. study a structured RTRBM, where
units are partitioned into blocks, and only the connections between particular blocks are allowed [25].
Lyu et al. replaces the RNN of RTRBM with the one with Long Short-Term Memory (LSTM) [22].
Schrauwen and Buesing replaces the RNN of RTRBM with an echo state network [36].

An RNN-RBM slightly generalizes RTRBM by relaxing the constraint of the RTRBM that r[t] must
be the expected value of h[t] [7]. Namely, an RNN-RBM is an RNN but gives an RBM as an output,
where the RNN and RBM do not share parameters, while an RTRBM shares parameters between an
RNN and an RBM.
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5 Dynamic Boltzmann machines

BPTT is not desirable for online learning, where we update θ every time a new pattern x[t] is observed.
The per-step computational complexity of BPTT in online learning grows linearly with the length of
the preceding time-series. Such online learning, however, is needed for example when we cannot store
all observed patterns in memory or when we want to adapt to changing environment.

The dynamic Boltzmann machine (DyBM) is proposed as a time-series model that allows efficient
online learning [31, 32]. The per-step computational complexity of the learning rule of a DyBM is
independent of the length of the preceding time-series. In Section 5.1, we start by reviewing the
DyBM introduced in [31, 32] with relation of its learning rule to spike-timing dependent plasticity
(STDP).

In Section 5.2, we study the relaxation of some of the constraints that the DyBM has required in
[31, 32] in a way that it becomes more suitable for inference and learning [27]. The primary purpose of
these constraints in [31, 32] was to mimic a particular form of STDP. The relaxed DyBM generalizes
the original DyBM and allows us to interpret it as a form of logistic regression for time-series data.

In Section 5.3, we review DyBMs dealing with real-valued time-series [27, 8]. These DyBMs are
analogous to how Gaussian Boltzmann machines [23, 43, 13] deal with real-valued patterns as opposed
to Boltzmann machines [2, 14] for binary values. The Gaussian DyBM can be related to a vector
autoregressive (VAR) model [21]. Specifically, we show that a special case of the Gaussian DyBM is a
VAR model having additional variables that capture long term dependency of time-series. These addi-
tional variables correspond to DyBM’s eligibility traces, which represent how recently and frequently
spikes arrived from a neuron to another. We also review an extension of the Gaussian DyBM to deal
with time-series patterns in continuous space [17].

5.1 Dynamic Boltzmann machines for binary-valued time-series

5.1.1 Finite dynamic Boltzmann machines3

The DyBM in [31, 32] is defined as a limit of a sequence of Boltzmann machines (DyBM-T ) consisting
of T layers as T tends to infinity (see Figure 6). Formally, the DyBM-T is defined as the CRBM (see
Section 3.1) having T layers of N visible units (T − 1 layers of input units and one layer of output
units) and no hidden units, so that its conditional energy is defined as

Eθ(x
[t] | x[t−T+1,t−1]) = −b>x[t] −

T−1∑
δ=1

(x[t−δ])>W[δ] x[t], (63)

where the weight of the DyBM-T (W[1], . . . ,W[T−1]) assumes a particular parametric form with a
finite number of parameters that are independent of T , which we discuss in the following.

The parametric form of the weight in the DyBM-T is motivated by observations from biological
neural networks [1] but leads to particularly simple, exact, and efficient learning rule. In biological
neural networks, STDP has been postulated and supported experimentally. In particular, the weight
from a pre-synaptic neuron to a post-synaptic neuron is strengthened, if the post-synaptic neuron fires
(generates a spike) shortly after the pre-synaptic neuron fires (i.e., long term potentiation or LTP).
This weight is weakened, if the post-synaptic neuron fires shortly before the pre-synaptic neuron fires
(i.e., long term depression or LTD). These dependency on the timing of spikes is missing in the Hebbian
rule for the Boltzmann machine (see (36) from [28]).

To have a learning rule with the characteristics of STDP with LTP and LTD, the DyBM-T assumes

the weight of the form illustrated in Figure 7. For δ > 0, we define the weight, w
[δ]
i,j , as the sum of two

weights, ŵ
[δ]
i,j and w

[−δ]
j,i :

w
[δ]
i,j = ŵ

[δ]
i,j + ŵ

[−δ]
j,i , (64)

3This section closely follows [31].
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Figure 6: A dynamic Boltzmann machine unfolded through time (Figure 1(c) from [31]).

where

ŵ
[δ]
i,j =


0 if δ = 0
ui,j λ

δ−d if δ ≥ d
−vi,j µ−δ otherwise.

(65)

for λ, µ ∈ [0, 1). For simplicity, we assume a single decay rate λ for δ ≥ d and a single decay rate µ
for δ < d, as opposed to multiple ones in [31, 32]. For simplicity, we assume that the conduction delay
d is uniform for all connections, as opposed to variable conduction delay in [32]. See also [9, 29] for
ways to tune the values of the conduction delay.

In Figure 7, the value of ŵ
[δ]
i,j is high when δ = d, the conduction delay from i-th (pre-synaptic)

unit to the j-th (post-synaptic) unit. Namely, the post-synaptic neuron is likely to fire (i.e., x
[0]
j = 1)

immediately after the spike from the pre-synaptic unit arrives with the delay of d (i.e., x
[−d]
i = 1). This

likelihood is controlled by the LTP weight ui,j . The value of ŵ
[δ]
i,j gradually decreases, as δ increases

from d. That is, the effect of the stimulus of the spike arrived from the i-th unit diminishes with time
[1].

The value of ŵ
[d−1]
i,j is low, suggesting that the post-synaptic unit is unlikely to fire (i.e., x

[0]
j = 1)

immediately before the spike from the i-th (pre-synaptic) unit arrives. This unlikelihood is controlled

by the LTD weight vi,j . As δ decreases from d − 1, the magnitude of ŵ
[δ]
i,j gradually decreases [1].

Here, δ can get smaller than 0, and ŵ
[δ]
i,j with δ < 0 represents the weight between the spike of the

pre-synaptic neuron that is generated after the spike of the post-synaptic neuron.

5.1.2 Dynamic Boltzmann machine as a limit of a sequence of finite dynamic Boltzmann
machines4

The DyBM is defined as a limit of the sequence of DyBM-T as T → ∞. Because each DyBM-T
is a CRBM, we can also define the limit of the sequence of the conditional probability defined by
DyBM-T , and this limit is considered as the conditional probability defined by the DyBM. Likewise,
the conditional energy of the DyBM is defined as the limit of the sequence of the conditional energy
of DyBM-T .

4This section closely follows [27].
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Figure 7: The figure illustrates Equation (64) with particular forms of Equation (65) (Figure 2 from

[31]). The horizontal axis represents δ, and the vertical axis represents the value of w
[δ]
i,j (solid curves),

ŵ
[δ]
i,j (dashed curves), or ŵ

[−δ]
j,i (dotted curves). Notice that w

[δ]
i,j is defined for δ > 0 and is discontinuous

at δ = d. On the other hand, ŵ
[δ]
i,j and ŵ

[−δ]
j,i are defined for −∞ < δ <∞ and discontinuous at δ = di,j

and δ = −dj,i, respectively, where recall that we assume di,j = dj,i = d in this paper.

Specifically, as T →∞, the conditional energy of DyBM-T in (63) converges to

Eθ(x
[t] | x[<t]) = −b>x[t] −

∞∑
d=1

(x[t−d])>W[d] x[t], (66)

where the convergence is due to the parametric form (65). This conditional energy in turn defines
the conditional distribution via (9), where we now have no hidden units. Although the conditional
energy (66) of the DyBM involves an infinite sum, it can be evaluated with a finite sum because of the
parametric form (65).

In fact, the DyBM can be understood as an artificial model of a spiking neural network where all
computation for inference and learning is performed locally at each synapse using only the information
available around the synapse. Specifically, a (pre-synaptic) neuron is connected to a (post-synaptic)
neuron via a first-in-first-out (FIFO) queue and a synapse (see Figure 8). At each discrete time t, a

neuron i either fires (x
[t]
i = 1) or not (x

[t]
i = 0). The spike travels along the FIFO queue and reaches

the synapse after conduction delay, d. In other words, the FIFO queue has the length of d − 1 and
stores, at time t, the spikes that have been generated by the pre-synaptic neuron from time t− d+ 1
to time t− 1.

Each synapse in a DyBM stores a quantity called a synaptic eligibility trace. The value of the
synaptic eligibility increases when a spike arrives at the synapse from the FIFO queue; otherwise, it is

decreased by a constant factor. Specifically, at time t, the value of the synaptic eligibility trace, α
[t]
i ,

that is stored at the synapse from a pre-synaptic neuron i is updated as follows:

α
[t]
i = λ (α

[t−1]
i + x

[t−d+1]
i ), (67)

where λ is a decay rate and satisfies 0 ≤ λ < 1. Figure 9 shows an example of how the value of
the synaptic eligibility trace changes depending on the spikes arrived at the synapse. Observe that
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Figure 9: The value of a synaptic or neural eligibility trace as a function of time. For a synaptic
eligibility trace at a synapse, the bars represent the spikes arrived from a FIFO queue at that synapse.
For a neural eligibility trace at a neuron, the bars represent the spikes generated by that neuron.

α
[t]
i represents how recently and frequently spikes arrived from a pre-synaptic neuron i and can be

represented non-recursively as follows:

α
[t−1]
i =

t−d∑
s=−∞

λt−s−d x
[s]
i . (68)

Each neuron in a DyBM stores a quantity called a neural eligibility trace5. The value of the neural
eligibility increases when the neuron fires; otherwise, it is decreased by a constant factor. Specifically,

at time t, the value of the neural eligibility trace, γ
[t]
i , at a neuron i is updated as follows:

γ
[t]
i = µ (γ

[t−1]
i + x

[t]
i ), (69)

where µ is a decay rate and satisfies 0 ≤ µ < 1. Observe that γ
[t]
i represents how recently and frequently

the neuron i has fired and can be represented non-recursively as follows:

γ
[t−1]
i =

t−1∑
s=−∞

µt−s x
[s]
j (70)

A neuron in a DyBM fires according to the probability distribution that depends on the energy of
the DyBM. A neuron is more likely to fire when the energy becomes lower if it fires than otherwise.

5We assume a single neural eligibility trace, as opposed to multiple ones in [32], at each neuron.
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Let Eθ,j
(
x
[t]
j |x[<t]

)
be the energy associated with a neuron j at time t, which can depend on whether

j fires at time t (i.e., x
[t]
j ) as well as the preceding spiking activities of the neurons in the DyBM (i.e.,

x[<t]). The firing probability of a neuron j is then given by

Pθ,j(x
[t]
j |x

[<t]) =
exp

(
− Eθ,j(x[t]j |x[<t])

)∑
x̃∈{0,1}

exp
(
− Eθ,j(x̃|x[<t])

) (71)

for x
[t]
j ∈ {0, 1}. Specifically, Eθ,j

(
x
[t]
j |x[<t]

)
can be represented as follows:

Eθ,j
(
x
[t]
j |x

[<t]
)

= −bj x[t]j + ELTP
θ,j

(
x
[t]
j |x

[<t]
)

+ ELTD
θ,j

(
x
[t]
j |x

[<t]
)
, (72)

where bj is the bias parameter of a neuron j and represents how likely j spikes (j is more likely to fire
if bj has a large positive value), and we define

ELTP
θ,j

(
x
[t]
j |x

[<t]
)
≡ −

N∑
i=1

ui,j α
[t−1]
i x

[t]
j (73)

ELTD
θ,j

(
x
[t]
j |x

[<t]
)
≡

N∑
i=1

vi,j β
[t−1]
i x

[t]
j +

N∑
k=1

vj,k γ
[t−1]
k x

[t]
j , (74)

where β
[t−1]
i represents how soon and frequently spikes will arrive at the synapse from the FIFO queues

from i to j:

β
[t−1]
i ≡

t−1∑
s=t−d+1

µs−t x
[s]
i . (75)

Although β
[t−1]
i can also be represented in a recursive manner, recursively computed β

[t−1]
i is prone to

numerical instability.
In (73), the summation with respect to i is over all of the pre-synaptic neurons that are connected to

j. Here, ui,j is the weight parameter from i to j and represents the strength of Long Term Potentiation
(LTP). This weight parameter is thus referred to as LTP weight. A neuron j is more likely to fire

(x
[t]
j = 1) when α

[t−1]
i is large for a pre-synaptic neuron i connected to j (spikes have recently arrived

at j from i) and the corresponding ui,j is positive and large (LTP from i to j is strong).
In (74), the summation with respect to i is over all of the pre-synaptic neurons that are connected

to j, and the summation with respect to k is over all of the post-synaptic neurons which j is connected
to. Here, vi,j represents the strength of Long Term Depression from i to j and referred to as LTD
weight. The neuron j is less likely to fire when βi is large for a pre-synaptic neuron i connected to j
(spikes will soon and frequently reach j from i) and the corresponding vi,j is positive and large (LTD
from i to j is strong). The second term in (74) represents that a pre-synaptic neuron j is less likely to
fire if a post-synaptic neuron has recently and frequently fired (γk is large), and the strength of this
LTD is given by vj,k. Notice that the timing of a spike is measured with respect to when the spike
reaches synapse, where the spike from a pre-synaptic neuron has the delay d, and the spike from a
post-synaptic neuron reaches immediately.

The learning rule of the DyBM has been derived in a way that it maximizes the log likelihood of
given time-series with respect to the probability distribution given by (71) [32]. Specifically, at time t,
the DyBM updates its parameters according to

bj ← bj + η
(
x
[t]
j − Eθ,j [X

[t]
j | x

[<t]]
)

(76)

ui,j ← ui,j + η α
[t−1]
i

(
x
[t]
j − Eθ,j [X

[t]
j | x

[<t]]
)

(77)

vi,j ← vi,j + η β
[t−1]
i

(
Eθ,j [X

[t]
j | x

[<t]]− x[t]j
)

+ η γ
[t−1]
j

(
〈X [t]

i 〉 − x
[t]
i

)
(78)
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for each of neurons i and j, where η is a learning rate, x
[t]
j is the training data given to j at time t,

and Eθ,j [X
[t]
j | x[<t]] denotes the expected value of x

[t]
j (i.e., firing probability of a neuron j at time

t) according to the probability distribution given by (71). By following stochastic gradient methods
[6, 18, 10, 41, 33], the learning rate η may be adjusted over time t.

5.1.3 Relation to spike-timing dependent plasticity6

In spike-timing dependent plasticity (STDP), the amount of the change in the weight between two
neurons that fired together depends on the precise timings when the two neurons fired. STDP sup-
plements the Hebbian rule [11] and has been experimentally confirmed in biological neural networks
[5].

In (77), ui,j is increased (LTP gets stronger) when x
[t]
j = 1 is given to j. Then j becomes more

likely to fire when spikes from i have recently and frequently arrived at j (i.e., α
[·]
i is large). This

amount of the change in ui,j depends on α
[t−1]
i , exhibiting a key property of STDP. In particular, ui,j

is increased by a large amount if spikes from i have recently and frequently arrived at j.
According to the second term on the right-hand side of (78), vi,j is increased (LTD gets stronger)

when x
[t]
j = 0 is given to a post-synaptic neuron j. Then j becomes less likely to fire when spikes from

i are expected to reach j soon (i.e., β
[·]
i is large). This amount of the change in vi,j is large if there

are spikes in the FIFO queue from i to j and they are close to j. According to the last term of (78),

vi,j is increased when x
[t]
i = 0 is given to the pre-synaptic i, and this amount of the change in vi,j is

proportional to γj (i.e., how frequently and recently the post-synaptic j has fired). This learning rule
of (78) thus exhibits some of the key properties of LTD with STDP.

In (76), bj is increased when x
[t]
j = 1 is given to j, so that j becomes more likely to fire (in

accordance with the training data), but the amount of the change in bj is small if j is already likely

to fire (Eθ,j [X
[t]
j | x[<t]] ≈ 1). This dependency on Eθ,j [X

[t]
j | x[<t]] can be considered as a form of

homeostatic plasticity [42, 20].

Related work There has been a significant amount of the prior work towards understanding STDP
from the perspectives of machine learning [26, 4, 35]. For example, Nessler et al. show that STDP
can be understood as approximating the expectation maximization (EM) algorithm [26]. Nessler et
al. study a particularly structured (winner-take-all) network and its learning rule for maximizing the
log likelihood of given static patterns. On the other hand, the DyBM does not assume particular
structures in the network, and the learning rule having the properties of STDP applies for any synapse
in the network. Also, the learning rule of the DyBM maximizes the log likelihood of given time-series,
and its learning rule does not involve approximations beyond what is assumed in stochastic gradient
methods [6].

5.2 Giving flexibility to the DyBM7

It has been shown in [32] that the DyBM in Section 5.1 has the capability of associative memory and
anomaly detection for sequential patterns, but the applications of the DyBM have been limited to
simple tasks with relatively low dimensional time-series. In [27], we relax some of the constraints of
this DyBM in a way that it gives more flexibility that is useful for learning and inference.

Specifically, observe that the first term on the right-hand side of (74) can be rewritten with the

6This section closely follows [27].
7This section closely follows [27].
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definition of β
[t−1]
i in (75) as follows:

N∑
i=1

vi,j β
[t−1]
i x

[t]
j =

N∑
i=1

t−1∑
s=t−d+1

vi,j µ
s−t x

[s]
i x

[t]
j (79)

=

N∑
i=1

d−1∑
δ=1

v
[δ]
i,j x

[t−δ]
i x

[t]
j , (80)

where we let v
[δ]
i,j ≡ vi,j µ

−δ. Here, v
[δ]
i,j represents how unlikely j fires at time t if i fired at time

t − δ. The parametric form of v
[δ]
i,j ≡ vi,j µ

−δ assumes that this LTD weight decays geometrically as
the interval, δ, between the two spikes increases.

In the following, we relax this constraint on v
[δ]
i,j for δ = 1, . . . , d − 1 and assumes that these LTD

weights can take independent values. Then the energy of the DyBM with N neurons can be represented
conveniently with matrix and vector operations:

Eθ(x
[t]|x[<t]) ≡

N∑
j=1

Eθ,j(x
[t]
j |x

[<t]) (81)

− b>x[t] − (α
[t−1]
λ )>U x[t] +

d−1∑
δ=1

(x[t−δ])>V[δ] x[t] + (x[t])>V γ[t−1]
µ , (82)

where b ≡ (bj)j=1,...,N is a vector, U ≡ (ui,j)(i,j)∈{1,...,N}2 is a matrix, and other boldface letters are

defined analogously (a vector is lowercase and a matrix is uppercase). For eligibility traces (α
[t−1]
λ and

γ
[t−1]
µ ), we append the subscript to explicitly represent the dependency on the decay rate (λ and µ).

The functional form of the energy completely determines the dynamics of a DyBM, and relaxing its
constraints allows the DyBM to represent a wider class of dynamical systems.

Notice that the last term of (82) can be divided into two terms:

(x[t])>V γ[t−1]
µ = (γ[t−1]

µ )>V x[t] (83)

= (α[t−1]
µ )>V x[t] +

d−1∑
δ=1

(x[t−δ])>V̂[δ] x[t], (84)

where α
[t−1]
µ is the same as the vector of synaptic eligibility traces but with the decay rate µ, and

V̂[δ] ≡ µ−δ V. Comparing (84) and (82), we find that, without loss of generality, the energy of the
DyBM can be represented with the following form:

Eθ(x
[t]|x[<t]) = −

(
b> +

d−1∑
δ=1

(x[t−δ])>W[δ] +

L∑
`=1

(α
[t−1]
λ`

)>U[`]

)
x[t], (85)

where we define W[δ] = −V[δ] − V̂[δ]. The energy in (85) reduces to the original energy in (72) when
W[δ] = −µ−δ V − µδ V>, U[1] = U, U[2] = −µd V>, λ1 = λ, λ2 = µ, and L = 2. With L > 2, one
can also incorporate multiple synaptic or neural eligibility traces with varying decay rates in [32].

Equivalently, we can represent the energy using neural eligibility traces, γµ`
, instead of synaptic

eligibility traces, αλ`
, as follows:

Eθ(x
[t]|x[<t]) = −

(
b> +

d−1∑
δ=1

(x[t−δ])>W[δ] +

L∑
`=1

(γ[t−1]
µ`

)>V`

)
x[t]. (86)
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5.2.1 Learning rule in vector-matrix notations

The learning rule corresponding to the representation with (85) is as follows:

b← b + η (x[t] − Eθ[X [t] | x[<t]]) (87)

W[δ] ←W[δ] + η x[t−δ] (x[t] − Eθ[X [t] | x[<t]])> (88)

U[`] ← U[`] + ηα
[t−1]
λ`

(x[t] − Eθ[X [t] | x[<t]])> (89)

for each δ and each `, where Eθ[X
[t] | x[<t]] is the conditional expectation with respect to

Pθ(x
[t] | x[<t]) =

exp(−Eθ(x[t] | x[<t]))∑
x̃[t]

exp(−Eθ(x̃[t] | x[<t]))
. (90)

Specifically,

Eθ[X
[t] | x[<t]] =

exp(m[t])

1 + exp(m[t])
(91)

with

m[t] ≡ b> +

d−1∑
δ=1

(x[t−δ])>W[δ] +

L∑
`=1

(α
[t−1]
λ`

)>U[`], (92)

where exponentiation and division of vectors are elementwise.
The form of (91) implies that the DyBM is a kind of a logit model, where the feature vector,

(x[t−d+1], . . . ,x[t−1],α
[t−1]
λ ,α

[t−1]
µ ), depends on the prior values, x[<t], of the time-series. By applying

the learning rules given in (76)-(78) to given time-series, we can learn the parameters of the DyBM
or equivalently the parameters of the logit model (i.e., b, W[δ] for δ = 1, . . . , d − 1, and U[`] for
` = 1, . . . , L) in (91).

5.3 Dynamic Boltzmann machines for real-valued time-series

5.3.1 Gaussian dynamic Boltzmann machines8

In this section, we show how a DyBM can deal with real-valued time-series in the form of a Gaussian

DyBM [27, 8]. A Gaussian DyBM assumes that x
[t]
j follows a Gaussian distribution for each j:

p
(j)
θ (x

[t]
j |x

[<t]) =
1√

2π σ2
j

exp
(
−
(
x
[t]
j −m

[t]
j

)2
2σ2

j

)
, (93)

where m
[t]
j is given by (92), and σ2

j is a variance parameter. This Gaussian distribution is in contrast
to the Bernoulli distribution of the DyBM given by (71).

The conditional energy of the Gaussian DyBM can be represented as follows:

Eθ(x
[t] | x[<t]) =

N∑
j=1

(x
[t]
j −m

[t]
j )2

2σ2
j

(94)

=

N∑
j=1

(x
[t]
j − bj)2

2σ2
j

−
d−1∑
δ=1

N∑
i=1

N∑
j=1

x
[t−δ]
i w

[δ]
i,j x

[t]
j −

L∑
`=1

N∑
i=1

N∑
j=1

α
[t−1]
i,λ`

u
[`]
i,j x

[t]
j + C, (95)

8This section closely follows [27].
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where C is the term that does not depend on x[t]. Because C is canceled out between the numerator

and the denominator in (9), we omit it from the conditional energy. By letting W
[δ]
σ be the matrix

whose (i, j)) element is w
[δ]
i,j/σ

2
j and U

[`]
σ be the matrix whose (i, j)) element is u

[`]
i,j/σ

2
j , the conditional

energy of the Gaussian DyBM can be represented as follows:

Eθ(x
[t] | x[<t]) =

N∑
j=1

(x
[t]
j − bj)2

2σ2
j

−
d−1∑
δ=1

(x[t−δ])>W[δ]
σ x[t] −

L∑
`=1

(α
[t−1]
λ`

)>U[`]
σ x[t]. (96)

The conditional energy of the Gaussian DyBM may be compared against the energy of the Gaussian
Bernoulli restricted Boltzmann machine (see [19] or (181) from [28]).

We now derive a learning rule for the Gaussian DyBM in a way that it maximizes the log-likelihood
of given time-series x:

∑
t

log pθ(x
[t]|x[<t]) =

∑
t

N∑
i=1

log pi(x
[t]
i |x

[−∞,t−1]), (97)

where the summation over t is over all of the time steps of x, and the conditional independence between

x
[t]
i and x

[t]
j for i 6= j given x[<t] is the fundamental property of the DyBM as shown in [32].

The approach of stochastic gradient is to update the parameters of the Gaussian DyBM at each
step, t, according to the gradient of the conditional probability density of x[t]:

∇ log pθ(x
[t]|x[<t]) = −

N∑
i=1

(1

2
∇ log σ2

i +∇
(
x
[t]
i −m

[t]
i )2

2σ2
i

)
, (98)

where the equality follow from (93). From (98) and (92), we can derive the derivative with respect to
each parameter as follows:

∂

∂bj
log pθ(x

[t]|x[−∞,t−1]) =
x
[t]
j − µ

[t]
j

σ2
j

x
[t]
j (99)

∂

∂ui,j
log pθ(x

[t]|x[−∞,t−1]) =
x
[t]
j − µ

[t]
j

σ2
j

α
[t−1]
i,j (100)

∂

∂w
[δ]
i,j

log pθ(x
[t]|x[−∞,t−1]) =

x
[t]
j − µ

[t]
j

σ2
j

x
[t−δ]
i (101)

∂

∂σj
log pθ(x

[t]|x[−∞,t−1]) = − 1

σj
+

(
x
[t]
j − µ

[t]
j

)2
σ3
j

, (102)

where δ ∈ {1, . . . , d− 1}, ` ∈ {1, . . . , }, and i, j ∈ {1, . . . , N}.
These parameters are thus updated with learning rate η as follows:

b← b + η
x[t] −m[t]

σ2
(103)

σ ← σ + η

(
x[t] −m[t]

)2 − σ2

σ3
(104)

W[δ] ←W[δ] + η x[t−δ]

(
x[t] −m[t]

σ2

)>
(105)

U[`] ← U[`] + ηα
[t−1]
λ`

(
x[t] −m[t]

σ2

)>
(106)
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where division and exponentiation of vectors are elementwise, and m[t] is given by (92).
The maximum likelihood estimator of x[t] by the Gaussian DyBM is given by m[t] in (92). The

Gaussian DyBM can thus be understood as a modification to the standard vector autoregressive (VAR)
model. Specifically, the last term in the right-hand side of (92) involves eligibility traces, which can
be understood as features of historical values, x(−∞,t−d], and are added as new variables to the VAR
model. Because the value of the eligibility traces can depend on the infinite past, the Gaussian DyBM
can take into account the history beyond the lag d− 1.

5.3.2 Natural gradients9

In this section, we study a learning rule based on natural gradient for the Gaussian DyBM. Consider
a stochastic model that gives the probability density of a pattern x as pθ(x). With natural gradients
[3], the parameters, θ, of the stochastic model are updated as follows:

θt+1 = θt − η G−1(θt)∇ log pθ(x) (107)

at each step t, where η is the learning rate, and G(θ) denotes the Fisher information matrix:

G(θ) ≡
∫
pθ(x)

(
∇ log pθ(x)∇ log pθ(x)>

)
dx. (108)

Due to the conditional independence in (97), it suffices to derive a natural gradient for each Gaussian
unit. Here, we consider the parametrization with mean m and variance v ≡ σ2. The probability density
function of a Gaussian distribution is represented with this parametrization as follows:

p(x;m, v) =
1√
2π v

exp

(
− (x−m)2

2v

)
. (109)

The log likelihood of x is then given by

log p(x;m, v) = − (x−m)2

2v
− 1

2
log v − 1

2
log 2π. (110)

Hence, the gradient and the inverse Fisher information matrix in (107) are given as follows:

∇ log pθ(x) =

(
x−m
v

(x−m)2

2v2 − 1
2v

)
(111)

G−1(θ) =

(
1
v 0
0 1

2v2

)−1
=

(
v 0
0 2v2

)
, (112)

The parameters θt ≡ (mt, vt) are then updated as follows:

mt+1 = mt + η (x−mt) (113)

vt+1 = vt + η
(
(x−mt)

2 − vt
)
. (114)

In the context of a Gaussian DyBM, the mean is given by (92), where m
[t]
j is linear with respect

to bj , wi,j , and u
[`]
i,j . Also, the variance is given by σ2

j . Hence, the natural gradient gives the learning
rules for these parameters as follows:

b← b + η (x[t] −m[t]) (115)

σ2 ← σ2 + η
((

x[t] −m[t]
)2 − σ2

)
(116)

W[δ] ←W[δ] + η x[t−δ] (x[t] −m[t])> (117)

U[`] ← U[`] + ηα
[t−1]
λ`

(x[t] −m[t])>, (118)

where the exponentiation of a vector is elementwise. We can compare (115)-(118) against what the
standard gradient gives in (103)-(106).

9This section closely follows [27].
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5.3.3 Using nonlinear features in Gaussian DyBMs

The Gaussian DyBM is a linear model and has limited capability in modeling complex time-series. A
way to take into account non-linear features of time-series with a Gaussian DyBM is to apply non-
linear mapping to input time-series and feed the resulting non-linear features as additional input to
the Gaussian DyBM. An example of such non-linear mapping is an echo state network (ESN) [16].

An ESN maps an input sequence, x, into ψ recursively as follows:

ψ[t] = (1− ρ)ψ[t−1] + ρ tanh
(
Wrecψ

[t−1] + Win x[t]
)
, (119)

where Wrec and Win are randomly chosen and fixed parameters10, and ρ is a leak parameter satisfying
0 < ρ < 1. In (119), tanh is a hyperbolic tangent function but may be replaced with other nonlinear
functions such as a sigmoid function.

An eligibility trace may be considered as a linear counterpart of the nonlinear features created by
an ESN. Because these features are generated by mappings with fixed parameters and just given as
input to a Gaussian DyBM, the learning rules for the Gaussian DyBM stay unchanged. The nonlinear
DyBM in [8] uses an ESN in a slightly different manner.

5.4 Functional dynamic Boltzmann machines

We now review a functional DyBM, which models time-series of functions (patterns over a continuous
space Z) [17]. Recall that a Gaussian DyBM defines the conditional distribution of the next real-valued
vector given the preceding sequence of real-valued vectors. A functional DyBM defines the conditional
distribution of the next function (i.e., g[t]) given the preceding sequence of partial observations of

preceding functions. At each time s, a set of points Z [s] ≡ (z
[s]
i )i=1,...,Ns

is observed, where Ns is the
number of points that are observed at s.

The functional DyBM assumes that the conditional distribution of g[t](·) is given by a Gaussian
process, whose mean µ[t](·) varies over time depending on preceding functions as follows:

µ[t](z) = b(z) +

d−1∑
δ=1

∫
Z
w[δ](z, z′) g[t−δ](z′) dz′ +

L∑
`=1

∫
Z
u`(z, z

′)α
[t−1]
` (z′) dz′ (120)

for x ∈ Z, where b(·) is a functional bias, w[δ](·, ·) and u`(·, ·) are functional weight for each δ and for
each `, and

α
[t−1]
` (·) =

t−d∑
s=−∞

λt−s−d` g[s](·) (121)

is a functional eligibility trace for each `. The covariance kσ2(·, ·) of the Gaussian process consists of
two components such that

kσ2(z, z′) = k(z, z′) + σ2 δ(z, z′), (122)

where k(·, ·) is a arbitrary kernel, δ(·, ·) is a delta function, and σ is a hyperparameter.
For tractability, Kajino proposes particular parametrization for the functional bias and functional

weight [17]. Let P = (p1, . . . , pM ) be a set of arbitrarily selected M points in Z

b(z) = kσ2(z, P ) b (123)

w[δ](z, z′) = kσ2(z, P ) W[δ] kσ2(P, z′) (124)

u`(z, z
′) = kσ2(z, P ) U[`] kσ2(P, z′) (125)

10The spectral radius of Wrec is set smaller than 1.
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for each δ and each `, where

kσ2(z, P ) ≡ (kσ2(z, pi))i=1,...,M (126)

is a row vector, and

kσ2(P, z′) ≡ (kσ2(pi, z
′))i=1,...,M (127)

is a column vector.
Because g[t] is in the reproducing kernel Hilbert space with kernel kσ2 , substituting (123)-(125)

into (120) gives the following expression:

µ
[t]
θ (z) = kσ2(z, P )

(
b +

d−1∑
δ=1

W[δ] g[t−δ](P ) +

L∑
`=1

U[`] α
[t−1]
` (P )

)
, (128)

where g[t−δ](P ) is a column vector with i-th element being g[t−δ](pi), and the eligibility-trace vector

α
[t−1]
` (P ) can be recursively updated as follows:

α
[t]
` (P ) = λ`

(
α
[t−1]
` (P ) + g[t−d+1](P )

)
. (129)

Here, we use θ ≡ (b,W[1], . . . ,W[d−1],U[1], . . . ,U[L]) to collectively denote the parameters.
While g[s](pi) for i ∈ [1,M ] is not observed, Kajino uses a maximum a posteriori (MAP) estimator

ĝ[s](pi) in [17]:

ĝ[s](pi) = µ
[s]
θ (pi) + k(pi, Z

[t]) kσ2(Z [t], Z [t])−1
(
g[t](Z [t])− µ[t]

θ (Z [t]))
)
, (130)

where kσ2(Z [t], Z [t]) is an Ns ×Ns matrix with (i, j)-th element being kσ2(z
[t]
i , z

[t]
j ), and µ

[t]
θ (Z [t]) is a

column vector defined analogously to g[t](Z [t]).
The objective of learning a functional DyBM is to maximize the log likelihood of observed values.

The conditional probability density of the functional values of locations Z [t] at time t is given by

pθ(g
[t](Z [t]) | g[<t]) ∼ exp

(
− 1

2

(
g[t](Z [t])− µ[t]

θ (Z [t])
)>
kσ2(Z [t], Z [t])−1

(
g[t](Z [t])− µ[t]

θ (Z [t])
))
.

(131)

The objective is thus to maximize

f(θ) ≡
∑
t

ft(θ), (132)

where

ft(θ) ≡ log pθ(g
[t](Z [t]) | g[<t]) (133)

= −1

2

(
g[t](Z [t])− µ[t]

θ (Z [t])
)>
kσ2(Z [t], Z [t])−1

(
g[t](Z [t])− µ[t]

θ (Z [t])
)

+ C, (134)

where C is the term independent of θ.
The gradient of ft(θ) is given by

∇ft(θ) = ∇µ[t]
θ (Z [t])> kσ2(Z [t], Z [t])−1

(
g[t](Z [t])− µ[t]

θ (Z [t])
)
, (135)
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Figure 10: A dynamic Boltzmann machine with hidden units (modified Figure 1 from [30]).

where (128) gives

∂

∂bi
µ
[t]
θ (Z [t])> = kσ2(pi, Z

[t]) (136)

∂

∂w
[δ]
i,j

µ
[t]
θ (Z [t])> = kσ2(pi, Z

[t]) g[t−δ](pj) (137)

∂

∂u
[`]
i,j

µ
[t]
θ (Z [t])> = kσ2(pi, Z

[t])α
[t−1]
` (pj) (138)

for each i, j, δ, `.
The gradient implies the following learning rule with stochastic gradient:

b← b + η kσ2(P,Z [t]) kσ2(Z [t], Z [t])−1
(
g[t](Z [t])− µ[t]

θ (Z [t])
)

(139)

W[δ] ←W[δ] + η kσ2(P,Z [t]) kσ2(Z [t], Z [t])−1
(
g[t](Z [t])− µ[t]

θ (Z [t])
)
g[t−δ](P )> (140)

U[`] ← U[`] + η kσ2(P,Z [t]) kσ2(Z [t], Z [t])−1
(
g[t](Z [t])− µ[t]

θ (Z [t])
)
α
[t−1]
` (P )>, (141)

where η is a learning rate, and g[t−δ](P ) is estimated with the MAP estimator ĝ[t−δ](P ) in (130).

5.5 Dynamic Boltzmann machines with hidden units11

In this section, we study a DyBM with hidden units (see Figure 10). Each layer of this DyBM
corresponds to a time t − δ for 0 ≤ δ < ∞ and has two parts: visible and hidden. The visible part
x[t−δ] at the δ-th layer represents the values of the time-series at time t − δ. The hidden part h[t−δ]

represents the values of hidden units at time t−δ. Here, units within each layer do not have connections
to each other. We let x[<t] ≡ (x[s])s<t and define h[<t] analogously.

The Boltzmann machine in Figure 10 has bias parameter b and weight parameter (U, V, W, Z).
Let θ ≡ (V,W,b) be the parameters connected to visible units x[t] (from the units in the past, x[s] or
h[s] for s < t) and φ ≡ (U,Z). The conditional energy of this Boltzmann machine is given as follows:

Eθ,φ(x[t],h[t] | x[<t],h[<t]) = Eθ(x
[t] | x[<t],h[<t]) + Eφ(h[t] | x[<t],h[<t]), (142)

11This section closely follows [30].
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where we define

Eθ(x
[t] | x[<t],h[<t]) = −b>x[t] −

∞∑
δ=1

(x[t−δ])>W[δ] x[t] −
∞∑
δ=1

(h[t−δ])>V[δ] x[t] (143)

Eθ(h
[t] | x[<t],h[<t]) = −b>h[t] −

∞∑
δ=1

(x[t−δ])>U[δ] h[t] −
∞∑
δ=1

(h[t−δ])>Z[δ] h[t]. (144)

and assume the following parametric form for δ ≥ d:

W[δ] = λδ−d W[d] (145)

V[δ] = λδ−d V[d] (146)

Z[δ] = λδ−d Z[d] (147)

U[δ] = λδ−d U[d], (148)

where λ is a decay rate satisfying 0 ≤ λ < 1. Then the conditional energy can be represented as
follows:

Eθ(x
[t] | x[<t],h[<t])

= −b>x[t] −
d−1∑
δ=1

(x[t−δ])>W[δ] x[t] −
d−1∑
δ=1

(h[t−δ])>V[δ] x[t] − (α[t−1])>W[d] x[t] − (β[t−1])>V[d] x[t],

(149)

Eφ(h[s] | x[<s],h[<s])

= −
d−1∑
δ=1

(x[s−δ])>U[δ] h[s] −
d−1∑
δ=1

(h[s−δ])>Z[δ] h[s] − (α[s−1])>U[d]h[s] − (β[s−1])> Z[d]h[s]. (150)

where α[t−1] corresponds to the eligibility trace in the DyBM in (68), and we define an eligibility trace
β[t−1] for the hidden part analogously:

α[t−1] ≡
∞∑
δ=d

λδ−d x[t−δ] (151)

β[t−1] ≡
∞∑
δ=d

λδ−d h[t−δ]. (152)

The energy in (149)-(150) gives the conditional probability distribution over x[t] and h[t] given x[<t]

and h[<t]. Specifically, we have

Pθ(x
[t] | x[<t],h[<t]) =

exp(−Eθ(x[t] | x[<t],h[<t]))∑
x̃[t]

exp(−Eθ(x̃[t] | x[<t],h[<t]))
(153)

Pφ(h[s] | x[<s],h[<s]) =
exp(−Eφ(h[s] | x[<s],h[<s]))∑

h̃[t]

exp(−Eφ(h̃[s] | x[<s],h[<s]))
(154)

for any binary vectors x[t] and h[t].
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5.5.1 Learning a dynamic Boltzmann machine with hidden units

The DyBM with hidden units gives the probability of a time-series, x ≡ (x[t])t=`,...,u, by

Pθ,φ(x) =
∑
h̃

Pφ(h̃ | x)

u∏
t=`

Pθ(x
[t] | x[<t], h̃[<t]) (155)

where
∑

h̃ denotes the summation over all of the possible values of hidden units from time t = ` to
t = u, and

Pφ(h̃ | x) ≡
u∏
s=`

Pφ(h̃[s] | x[<s], h̃[<s]), (156)

where we arbitrarily define x[s] = 0 and h̃[s] = 0 for s < `.
We seek to maximize the log likelihood of a given x by maximizing a lower bound given by Jensen’s

inequality:

logPθ,φ(x) = log
(∑

h̃

Pφ(h̃ | x)

u∏
t=`

Pθ(x
[t] | x[<t], h̃[<t])

)
(157)

≥
∑
h̃

Pφ(h̃ | x) log
( u∏
t=`

Pθ(x
[t] | x[<t], h̃[<t])

)
(158)

=
∑
h̃

Pφ(h̃ | x)

u∑
t=`

logPθ(x
[t] | x[<t], h̃[<t]) (159)

=

u∑
t=`

∑
h̃[<t]

Pφ(h̃[<t] | x[<t−1]) logPθ(x
[t] | x[<t], h̃[<t])

≡ Lθ,φ(x), (160)

where the summation with respect to h̃[<t] is over all of the possible values of h̃[s] for s ≤ t− 1, and

Pφ(h̃[<t] | x[<t−1]) ≡
t−1∏
s=`

Pφ(h̃[s] | x[<s], h̃[<s]). (161)

Learning weight to visible units The gradient of the lower bound with respect to θ is then given
by

∇θLθ,φ(x) =

u∑
t=`

∑
h̃[<t]

Pφ(h̃[<t] | x[<t−1])∇θ logPθ(x
[t] | x[<t], h̃[<t]). (162)

The right-hand side of (162) is a summation of expected gradients, which suggests a method of stochas-
tic gradient. Namely, at each step t, we sample H [t−1](ω) according to Pφ(h[t−1] | x[<t−1],h[<t−1])
and update θ on the basis of

∇θ logPθ(x
[t] | x[<t],H [<t](ω)). (163)

This learning rule is equivalent to the one for the model where all of the units are visible, except
that the values for the hidden units are given by sampled values. Therefore, the learning rule for θ
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follows directly from Section 5.1.2:

b← b + η
(
x[t] − Eθ

[
X [t] | x[<t],H [<t](ω)

])
(164)

W[d] ←W[d] + ηα[t−1]
(
x[t] − Eθ

[
X [t] | x[<t],H [<t](ω)

])>
(165)

V[d] ← V[d] + η β[t−1](ω)
(
x[t] − Eθ

[
X [t] | x[<t],H [<t](ω)

])>
(166)

W[δ] ←W[δ] + η x[t−δ]
(
x[t] − Eθ

[
X [t] | x[<t],H [<t](ω)

])>
(167)

V[δ] ← V[δ] + ηH [t−δ](ω)
(
x[t] − Eθ

[
X [t] | x[<t],H [<t](ω)

])>
(168)

for 1 ≤ δ < d, where Eθ[X
[t] | x[<t],H [<t](ω)] denotes the conditional expectation with respect to

Pθ(· | x[<t],H [<t](ω)), and we make explicit that β[s−1] is computed with sampled hidden values:

β[s−1](ω) =

∞∑
δ=d

λδ−dH [s−δ](ω). (169)

Learning weight to hidden units Now we take the gradient of Lθ,φ(x) with respect to φ:

∇φLθ,φ(x) =

u∑
t=`

∑
h̃[<t]

∇φpφ(h̃[<t] | x[<t−1]) log pθ(x
[t] | x[<t], h̃[<t]), (170)

where

∇φpφ(h̃[<t] | x[<t−1]) = ∇φ
t−1∏
s=`

pφ(h̃[s] | x[<s], h̃[<s]) (171)

=

t−1∑
s=`

∇φ log pφ(h̃[s] | x[<s], h̃[<s])

t−1∏
s′=`

pφ(h̃[s′] | x[<s′], h̃[<s′])

= pφ(h̃[<t] | x[<t−1])

t−1∑
s=`

∇φ log pφ(h̃[s] | x[<s], h̃[<s]). (172)

Plugging (172) into the right-hand side of (170), we obtain

∇φLθ,φ(x) =

u∑
t=`

∑
h̃[<t]

pφ(h̃[<t] | x[<t−1]) log pθ(x
[t] | x[<t], h̃[<t])

t−1∑
s=`

∇φ log pφ(h̃[s] | x[<s], h̃[<s]).

(173)

Similar to (162), the expression of (173) suggests a method of stochastic gradient: at each time t, we
sampleH [t−1](ω) according to pφ(h[t−1] | x[<t−1]) and update φ on the basis of the following stochastic
gradient:

log pθ(x
[t] | x[<t],H [<t](ω))Gt−1, (174)

where

Gt−1 ≡
t−1∑
s=`

∇φ log pφ(H [s](ω) | x[<s],H [<s](ω)). (175)

27



The learning rules for U and Z are derived from (174)-(175) as follows:

U[d] ← U[d] + η log pθ(x
[t] | x[<t],h[<t])

t−1∑
s=`

α[s−1]
(
H [s](ω)− Eφ

[
H[s] | x[<s],H [<s](ω)

])>
(176)

Z[d] ← Z[d] + η log pθ(x
[t] | x[<t],h[<t])

t−1∑
s=`

β[s−1](ω)
(
H [s](ω)− Eφ

[
H [s] | x[<s],H [<s](ω)

])>
(177)

U[δ] ← U[δ] + η log pθ(x
[t] | x[<t],h[<t])

t−1∑
s=`

x[s−δ]
(
H [s](ω)− Eφ

[
H[s] | x[<s],H [<s](ω)

])>
(178)

Z[δ] ← Z[δ] + η log pθ(x
[t] | x[<t],h[<t])

t−1∑
s=`

H [s−δ](ω)
(
H [s](ω)− Eφ

[
H [s] | x[<s],H [<s](ω)

])>
(179)

for 1 ≤ δ < d, where Eφ[H [s](ω) | x[<s],H [<s](ω)] denotes the conditional expectation with respect to
Pφ(· | x[<s],H [<s](ω)).

Computation of (173) involves mainly two interrelated inefficiencies. First, although (173) can be
approximately computed using sampled hidden values H [<t](ω) in the same way as (162), the samples
cannot be reused after updating φ because it was sampled from the distribution with the previous
parameter. Second, since each summand of Gt−1 depends on φ, Gt−1 also has to be recomputed after
each update. Thus, the computational complexity of (174) grows linearly with respect to the length
of the time-series (i.e., t− `), in contrast to (163), whose complexity is independent of that length.

Observe in (174) that ∇φLθ,φ(x) consists of the products of log pθ(x
[t] | x[<t],H [<t](ω)) and

∇φ log pφ(H [s](ω) | x[<s],H [<s](ω)) for s < t. Without the dependency on log pθ(x
[t] | x[<t],H [<t](ω)),

the parameter φ is updated in a way that H [s](ω) is more likely to be generated (i.e., the learning rule
would be equivalent to that for visible units). Such an update rule is undesirable, because H [s](ω) has
been sampled and is not necessarily what we want to sample again. The dependency on log pθ(x

[t] |
x[<t],H [<t](ω)) suggests that φ is updated by a large amount if the sampled H [s](ω) happens to make
the future values, x[t] for t > s, likely. Intuitively, weighting ∇φ log pφ(H [s](ω) | x[<s],H [<s](ω)) by
log pθ(x

[t] | x[<t],H [<t](ω)) for t > s is inevitable, because whether the particular values of hidden
units are good for the purpose of predicting future values will only be known after seeing future values.

Approximations One could approximately compute (175) recursively:

Gt ← γ Gt−1 + (1− γ)∇φ log pφ(H [t](ω) | x[<t],H [<t](ω)), (180)

where γ ∈ [0, 1) is a discount factor. The recursive update rule with γ < 1 puts exponentially small
weight γt−s on ∇φ log pφ(H [s](ω) | x[<s],H [<s](ω)) computed with an old value of φ (i.e., s � t).
This recursively computed Gt is related to the momentum in gradient descent [33].

In (176)-(179), the value of Eφ[H [s] | x[<s],H [<s](ω)] is computed with the latest values of φ.
Let φ[t−1] be the value of φ immediately before step t. With the recursive computation of (180), the
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learning rules of (176)-(179) are approximated with the following learning rules:

U[d] ← U[d] + η (1− γ) log pθ(x
[t] | x[<t],H [<t](ω))

t−1∑
s=`

γt−1−sα[s−1]
(
H [s](ω)− Eφ[s−1]

[
H [s] | x[<s],H [<s](ω)

])>
(181)

Z[d] ← Z[d] + η (1− γ) log pθ(x
[t] | x[<t],H [<t](ω))

t−1∑
s=`

γt−1−s β[s−1]
(
H [s](ω)− Eφ[s−1]

[
H [s] | x[<s],H [<s](ω)

])>
(182)

U[δ] ← U[δ] + η (1− γ) log pθ(x
[t] | x[<t],H [<t](ω))

t−1∑
s=`

γt−1−s x[s−δ]
(
H [s](ω)− Eφ[s−1]

[
H [s] | x[<s],H [<s](ω)

])>
(183)

Z[δ] ← Z[δ] + η (1− γ) log pθ(x
[t] | x[<t],H [<t](ω))

t−1∑
s=`

γt−1−sH [s−δ](ω)
(
H [s](ω)− Eφ[s−1]

[
H [s] | x[<s],H [<s](ω)

])>
(184)

for 1 ≤ δ < d, where H [s](ω) is a sample according to Pφ[s−1](· | x[<s],H [<s](ω)) for each s. In
(181)-(181), the quantity such as

G′t−1 ≡
t−1∑
s=`

γt−1−sα[s−1]
(
H [s](ω)− Eφ[s−1]

[
H [s] | x[<s],H [<s](ω)

])>
(185)

can be computed recursively as

G′t ← γ G′t−1 + (1− γ)α[t−1]
(
H [t](ω)− Eφ[s−1]

[
H [t] | x[<t],H [<t](ω)

])>
. (186)

In [30], we present an alternative approach of learning the DyBM with hidden units in a bidirectional
manner, where we consider a backward DyBM that shares the parameters of the (forward) DyBM. Our
key observation is that the parameters that are difficult to learn in the forward DyBM are relatively
easy to learn in the backward DyBM. By training both the forward DyBM and the backward DyBM,
we can effectively learn the parameters of the forward DyBM.

6 Conclusion

We have reviewed Boltzmann machines for time-series modeling. Such Boltzmann machines can be
used for prediction [8, 30, 17, 38, 7, 22] and anomaly detection based on observed time-series. They
may be also used to generate time-series such as human motion [40, 39, 38], music [22], and movies.

The use of Boltzmann machines is only one approach to modeling and learning time-series. Popular
time-series models include but not limited to recurrent neural networks [34], long short term memory
[15], autoregressive models, and hidden Markov models. As we have seen some of the examples, the
best time-series model for a particular application might be obtained by appropriately combining some
of existing time-series models.
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