
JetZ

Contents:

1. Introduction
2. The JetZ research project
3. The first JetZ result: The IBM JavaCard

SmartCard basics
JavaCard
(VISA) OpenPlatform
IBM JavaCard capabilities
Usage and Productization

4. Future paths
5. Conclusion

1. Introduction
This document gives a short overview on what the JetZ, the Java embedded Technology -- Zurich
project is all about. The first result of this project, the IBM JavaCard, is highlighted in some more
detail. This way, the basic foundation, i.e., cutting-edge Java VM technology, and very concrete
implementation benefits of our approach are presented.

2. The JetZ research project
As already mentioned above, JetZ stands for Java embedded Technology -- Zurich.
This very much captures, what the JetZ project is about: We are developing Java technolgy for
resource-constrained embedded devices. This entails very efficient Java Virtual Machines, low-level
device drivers suitable for Java on embedded platforms, and the required system libraries on the
respective hardware. The JetZ project follows good engineering practices in that the developed system
is highly portable, scalable, and efficient. These claims are substantiated below.

Portability

The software we have developed is portable in the sense, that it is easy to adapt to different hardware
platforms. This has been achieved by writing all device-independent parts in a very general C dialect
understood by almost every C compiler. Only the most device-dependent parts of any particular JetZ
engine are written in Assembler.
This goal has been constantly adhered to during development by ensuring that the same code base can
be built at any time for 8-bit processors, and 32-bit processors (big endian and little endian alike). The
net result is a runtime environment that is guaranteed to behave identical on the different platforms.
Code once tested on a PC under Windows 95/98/NT/2000 or Linux works identically on the JetZ VM
on the 8-bit SmartCard CPU.

http://bluez.zurich.ibm.com/

Scalability

Contrary to most embedded Java development approaches, JetZ did not begin by trimming down a
regular, JDK-type Virtual Machine. Instead, we chose to approach the implementation solely based on
the specifications of the Java language and runtime published by Sun Microsystems. This has two
major benefits: One is that no overhead from old Virtual Machine technology found its way into the
JetZ system. Only the parts of Java that are essentially required on a particular platform are present. If
no threading is necessary, not even the slightest data structure or code only necessary to support
threading is present in a JetZ built. The same holds true for example for Garbage Collection, or the
range of supported data types.
The second advantage gained by not basing our implementation on JDK-type code is that this
technology is free of any copyright claims by outside parties, i.e., it constitutes a clean-room
implementation in the legal sense of the word. Practically, this means that we do not have to pay
license fees to Sun Microsystems for any system using this software.

Performance

Of course, everybody tends to claim that the own system is the most highly performing one available.
In this section, we will only give a basic rationale for this property in JetZ systems. In the section on
the actual JavaCard implementation using a JetZ-type runtime system, we can give hard numbers on
the performance of a typical reference application.
There is no number one reason for the outstanding performance of JetZ VMs. It is the result of the
combination of the different properties of the JetZ system:

Scalability: Only the required components are available in one particular configuration. No
additional overhead incurred by dormant code or data structures has to be carried around.
Preprocessing: All code to be executed on the VM is preprocessed on a converter in our
development environment. In this conversion step, information not essential at run time are
stripped, and all possible static analyses are made, thus reducing the need for an on-chip bytecode
verification. The resultant code is a factor of 2 to 5 smaller than the original Java classfiles, but
still contains all runtime structures to enable the virtual machine to actually interpret the code
with all the security benefits known from this approach.
Specialized bytecode: Due to the preprocessing of standard Java classfiles, specially optimized
bytecodes are executed in the Virtual Machine.

The net result of this approach is that the functionality of a Java virtual machine is effectively split in
two intimately connected, but nevertheless separate parts: One is run during development, the other at
execution time on the embedded device. Integrity and authenticity of downloaded code is checked
using standard code signing techniques. The required cryptographic methods are bundled with all JetZ
software, if they are not already present on the respective hardware. The converter for any given
platform JetZ supports is always provided together with the Virtual Machine. It is a standalone
program that may also be run immediately prior to upload of new, standard Java classfiles into an
embedded device.

Advantages

The main advantages of the architecture outlined above for a user of the JetZ technology are listed
below in the order in which they were important for us during development. Each topic concludes
with a link to the respective part substantiating the claim in the concrete JavaCard implementation.

Performance: Code executed on a JetZ VM runs with a speed comparable to that of
special-purpose code for any particular device. This is mainly due to the fact that JetZ is mainly

used for programming control-flow problems. All time- and resource-consuming operations like
communications or cryptography are implemented in efficient, platform-dependent system library
modules. [JavaCard example]
Size: Awareness of the hardware costs and power consumption properties of RAM,
EEPROM/Flash, and ROM as found in typical embedded devices led to a VM that requires in its
smallest configuration 3600 Bytes for its code in ROM and 256 Bytes of RAM for its execution.
[JavaCard example]
Security: Integrity of the runtime system, i.e., the sandboxing known from Java is sustained.
[JavaCard example]
Hardware constraints: The special properties of embedded hardware, e.g., the different
memory-access characteristics of RAM vs. EEPROM has been taken into account in the design
of the runtime and system libraries of JetZ. In this respect, a JetZ VM significantly eases the job
of application developers. [JavaCard example]
Ease of development: By having identically performing runtime environments on PCs, developers
can concentrate on the problem, and do not have to worry about slightly changing semantics of
execution as known on today’s JDK-type Java implementations. [JavaCard example]

3. The first JetZ result: The IBM JavaCard

SmartCard basics
A SmartCard is a credit-card sized device bearing a microprocessor under a usually golden-colored
contact plate. It is defined in all respects, including dimension, electrical, and physical properties by a
standard issued by the International Organization for Standardization (ISO). The standard ISO 7816 in
particular defines and limits the extensions of the silicon die embedded into the plastic card body to be
at most 25 square millimeter. It also defines the microprocessor powering, clocking, and the
communications protocol. Various hardware manufacturers produce chips conforming to these
constraints. The distinguishing factor is always the type of microprocessor (8-, 16-, or 32 bit), the
amount of ROM, RAM, EEPROM or Flash memory, and the presence of various coprocessors.
Examples for the latter are DES or RSA computational engines, or hardware communications support.
All of these dimensions contribute to the ultimate difference in hardware, the price of the SmartCard.
Given the immense volumes of current SmartCard sales, and the even bigger contemplated numbers,
even minute differences in price can make a huge difference. Therefore, the least requirements the
software running on the SmartCard has, the more inexpensive, and the more competitive the whole
package can be.
A relatively recent development are SmartCards using a contactless, i.e., an RF interface. They are
primarily used in building access or transportation applications. The communications protocol is
executed ’over the air’ using an antenna embedded into the plastic body of the SmartCard. ISO is also
standardizing this type of SmartCard under ISO 14443.

Special issues

Compared with regular computers, the following are the main differences imposed by the SmartCard
hardware and software environments.

Persistent Memory: As compared to RAM, EEPROM has a write-access time of typically 7
milliseconds and therefore is some factor of 10000 slower than RAM. Also, due to the
technology employed, a program can only rely on a limited number of writes (typ.
100000-500000) to succeed.

Consistency: As a SmartCard does not contain a power source of its own, it is totally dependent
on external power supply and clocking. Therefore, care for the consistency of the internal,
persistent data structures must be taken when programming a system. Inadvertent, or malicious
power interruptions are the main cause for breaches of a SmartCards integrity.
Standards: A SmartCard must fully comply to the spirit of the ISO 7816 or 14443 standards to
be interoperable with the plethora of SmartCard terminal equipment already deployed worldwide.
Programming: There is much more diversity in SmartCard hardware and operating system
support than is currently present for example in the PC area, thus making SmartCard application
programming a tedious, error-prone, and expensive undertaking.
Production turn-around: Due to the production process of SmartCards, there is an extremely
long turn-around between ROM code readiness and card availability. Typically, this is between 5
and 8 weeks. Reducing this turn-around time benefits significantly the use of SmartCards in
today’s fast moving world.

JavaCard
The term JavaCard is copyrighted by Sun Microsystems, and defines a SmartCard as outlined above
bearing a Java-type virtual machine for execution of bytecodes in an interpreted way similar to the one
laid down in Sun’s Java language and runtime specification. The specification currently has the level
2.1, and is being developed jointly by Sun Microsystems, and the JavaCard Forum, a collection of the
world’s major SmartCard manufacturers. In short, a JavaCard is for all means and purposes a
SmartCard; it can be used in all cases where currently SmartCards are used. From the outside, it is not
different than other SmartCards. The main difference is, that programming the SmartCard can now be
done using Java as the language, a Virtual Machine as the execution platform, and common Java
development tools.
In the following, a rough breakdown of the software present on the JavaCard is given.

Device drivers: The lowest level of functionality. It provides access to the typically two or three
main devices with which the SmartCard processor interacts:

Communications: Each SmartCard hardware has some I/O facilities providing access to the
physical contacts to the outside world. In the case of contact-based SmartCards, one of the
two main communications protocols, T=0 or T=1 must be provided to interact with
SmartCard terminals. In the case of contactless SmartCards, the upcoming ISO 14443
standard T=CL protocol would need to be supported.
Memory access: Each SmartCard hardware has different types of transient and persistent
storage facilities. The first is usually static RAM, the latter EEPROM, increasingly also
Flash RAM. The device drivers must cater for efficient use of the various possible page
sizes. This improves general timing behavior and the lifetime of the memory.
Cryptography: This is an optional element, but usually the one that mainly defines the
practical usefulness of a SmartCard. If no DES coprocessor is provided, the complete
algorithm is implemented in this low-level driver making use of the SmartCard main
processor. If it is, as in the case of public key support, some driver code has to be written to
efficiently execute encryption, decryption, signature, or hash functions.

Virtual Machine: It interprets bytecode instructions as defined in the JavaCard specification. The
latter differs from the standard, JDK-type Virtual Machine specification in that not all data types
are supported (no floating and 32 bit operations), and that no multithreading support is required.
System libraries: A special set of Java APIs has been defined which regulates access to the device
driver’s capabilities. The JavaCard API also casts into a language-specific structure the
server-like behavior of the JavaCard as a SmartCard. In particular, it is specified that only one
application (one applet) can be active at any given time. All incoming commands from the

http://www.javacardform.org/
http://www.sun.com/
http://www.javasoft.com/products/javacard/

SmartCard terminal are directed to this applet’s process() method. Special SELECT
commands are used to switch between applets.
Special library functions are provided to efficiently load and link new code into a JavaCard.
These are part of the OpenPlatform specification outlined below.
ROM Applets: While the system libraries provide JavaCard specific interfacing to the actual
hardware, and therefore contain some amount of native code, this does not hold true for true Java
applets. Examples for the latter are standard SmartCard applications like loyalty, application
registration, e-cash, or signature applets. There are two big advantages of providing as much
functionality in Java as possible. The first is that the applet development can be carried out on
any JetZ-type Virtual Machine on any platform. The second one is that the code is guaranteed to
run unchanged on all devices featuring a JetZ-type Virtual Machine.

OpenPlatform
VISA has defined the OpenPlatform API and command specifications as a general guideline for
securely managing a multiapplication card in general, and loading new functionality onto it in
particular. Special care has been taken to devise a system that is highly resilient against common as
well as novel attacks to a multiapplication SmartCard. The concept of a CardDomain has been
introduced to capture the data structures representing the issuer of a SmartCard. It is used to control
access to the card as a whole. The second, optional concept of SecurityDomain represents the possibly
different applet issuers that are permitted to upload new functionality onto the same card.

IBM JavaCard capabilities
In this section, the raw numbers and features contained in the IBM JavaCard implementation based on
the JetZ technology is given.

Hardware

Infineon 66 series (formerly known as Siemens SLE66) bearing an Intel 8051-core microprocessor, a
big integer arithmetic coprocessor for public key computations, and a hardware-based true random
number generator. It features 1200 Bytes of RAM, 16 kBytes of EEPROM, and 32 kBytes of ROM.

Device Drivers

We have implemented three types of device drivers. The first one provides cryptographic functionality
using the main processor for DES computations, and the cryptographic coprocessor for public key
cryptography. The IBM JavaCard therefore can compute DES, Triple DES, RSA with key lengths
varying between 512 and 1024 bits both using private key operations and CRT (Chinese remainder
theorem) operations. It can also run DSA, SHA1, and generate on-card both RSA and DSA private
keys. The latter capabilities are (so far) unique in JavaCards.
The second type of device driver handles the complete communications protocol as defined in
ISO7816. We have implemented the two major protocols, T=0 and T=1. This dual protocol capability
is rare in regular SmartCards, and (so far) unique in JavaCards. It ensures an optimum interoperability
with nearly all SmartCard terminals in the world, which are more or less evenly split between T=0 and
T=1.
The third major device driver category is the EEPROM and RAM memory management. Efficient
copying, and EEPROM access routines make up a significant part of good performance of a
SmartCard. This part is specially designed to most effectively cater to the higher-layer services, e.g.,
Java garbage collection, as outlined below.

Virtual Machine

The JavaCard virtual machine implements 127 different bytecodes. It provides all the runtime security
checks known from regular Java, e.g., stack overflow, array boundary checks, or type-safe assignment
of objects. It provides an efficient execption handling mechanism and offers the complete set of object
oriented features known from regular JDK-type Java.

System libraries

The IBM JavaCard implements the complete set of APIs as required in the JavaCard standard. As
optional components, a highly efficient RAM management, cryptographic capability access, and
transaction support have been implemented. All optional elements have been created out of a concern
for optimum performance and code size.
The concept of Transient and Persistent Environment for efficient RAM usage has been submitted to
Sun and the JavaCard Forum. It is a major departure from the standard Java memory management
model, as it introduces the difference between persistent (EEPROM) and transient (RAM) memory at
the application programming level. It has been motivated by the general JetZ concerns of resource
constraints as present in embedded devices. It has found the blessing of both Sun and the SmartCard
industry. Application developers familiar with the problems of embedded devices have found it most
useful, too. Similar statements hold true for our small cryptographic API called CryptoZ, and our
proposal for support of long-lived transactions.

OpenPlatform

The full set of capabilities defined in VISA OpenPlatform, specification level 1.0+ has been
implemented. This includes secure applet upload using single and triple DES session keys over the OP
CardDomain. Also implemented is the SecurityDomain concept. Besides the low-level linking
routines used during applet upload, all code of the IBM OpenPlatform implementation are written in
Java.
Development of the complete OpenPlatform functionality took place on a Linux machine with a 32 bit
version of the JetZ engine for reasons of convenience. After running the converter for the 8051
platform of the JavaCard hardware, the system ran there immediately OK.

Applets

In order to fully comply with the VISA requirements for an OpenPlatform card, the standard
applications EMV PSE (Payment Systems Environment) and EasyEntry are present as applets in the
ROM mask.
Also available in ROM is an applet providing convenient access to the cryptographic capabilities of
the IBM JavaCard. Its abstraction is that of a vault, or cryptographic object contained, thus facilitating
its use as a cryptographic service provider for PC-DLLs offering PKCS#11 services.

VisaCash performance

In an effort to make the capabilities of all JavaCards comparable at the level where performance and
size matter in the end, i.e., the application level, we have implemented an applet fully compliant to the
VISA specifications for VisaCash. It is an electronic cash protocol based on DES cryptography which
is used in existing SmartCard installations. The applet is written entirely in Java, and has been
functionally certified by VISA. It received an excellent rating in terms of security and correctness.
Below, we have listed the raw performance of the main VisaCash operations as they can be measured
from outside the card at a card clock rate of 3.75 MHz:

VisaCash operation Performance (in milliseconds)

SELECT 16.74

INIT LOAD 66.96

LOAD 139.59

INIT UPDATE 23.06

UPDATE 108.62

INIT PURCHASE 19.06

PURCHASE 177.91

READ BINARY 8.84

In a more direct comparison between the performance of a standard VisaCash card (native code
implementation) from Orga, and a VisaCash applet running on the JavaCard Virtual Machine
developed by Sun Microsystems, the performance advantage of our JetZ technology becomes clearly
visible.

Summary

This section shall be concluded by reminding the reader again of the fact that the hardware on which
this plethora of functionality is provided, bears just 32 KBytes of ROM into which all the code fits,
and 1200 Bytes of RAM for the machine stack, the Java runtime stack, the communications and
cryptographic buffers.
To close the circle to the promise of JetZ, we have made available another configuration of the IBM
JavaCard, running in 20 kBytes of ROM and 256 Bytes of RAM. Missing from all the features
outlined above are only the VISA applets, the garbage collector, and support for public key
cryptography. None of the JetZ code in C has been changed to assembler.

Usage and Productization
The IBM JavaCard is currently in use by many different organizations. This entails educational
institutions, as well as systems integrators, and end users. Due to confidentiality agreements, only a
few can be currently named. In particular, actual SmartCard rollouts are kept under locks until the
actual event. To always keep you up to date on this, we are maintaining a Website referring to the
press releases announcing the respective rollouts.
At the time of writing, the most interesting project where this card is used, involved the US General
Services Administration (GSA). It is so far the sole JavaCard product rollout in the US. The cards are
issued by CitiBank, NY. Integration services have been provided by IBM, 3G-International, and GTE.
The card is used to log on to computers using a biometric authentication procedure and strong
cryptography. It also serves as a loyalty card for the existing American Airlines frequent flyer
program. Further applications may be loaded on demand using the secure OpenPlatform applet upload
process. A sample press release is accessible at
http://www.fcw.com/pubs/fcw/1999/0426/fcw-newsgsa-4-26-99.html

http://www.fcw.com/pubs/fcw/1999/0426/fcw-newsgsa-4-26-99.html
http://bluez.zurich.ibm.com/JavaCard/press/
http://bluez.zurich.ibm.com/JavaCard/press/

4. Future paths
After having proven the viability and applicability of the JetZ approach to the smallest computer for
which a Java runtime was desired, the SmartCard, the project now focuses on new categories of
embedded devices. For one, these are SmartCard terminals. This will solve many of the
interoperability problems currently seen in these devices. From an engineering perspective, this will
be a straightforward application of our current JavaCard technology, since these devices typically
carry the same class of processor as the actual SmartCards do.
A significantly more interesting area will be the one of mobile phones. Here, the new dimension of
power consumption will be playing a serious role in the deployment of Java virtual machine
technology. The VM may not require more resources than the core functionality of the device, i.e.,
providing mobile connectivity over the air. IBM already participates actively in the respective
standardization bodies in this area. We are looking forward to backing these efforts by a reference
implementation if so desired by a major mobile phone provider.
A third area of applicability of JetZ is foreseen for the PDA form factor. Here, resource constraints are
not as pressing as on mobile phones, but given the imminent merge of the core functions mobile
phone, PDA, and personal security/identification token, this is an area where JetZ technology can be
effectively employed.
In any case, it shall be possible to keep any code currently developed for the IBM JavaCard and run it
on any other device the JetZ VM becomes available. This is an important competitive advantage if
early product availability is desired. For example, a PDA bearing a JetZ-type Virtual Machine with the
JavaCard APIs could be used to sign electronic checks without requiring --as currently-- the IBM
JavaCard. In another scenario, a mobile phone may be used as a reloadable VisaCash token: The code
is available, it is certified, and just needs to be loaded in a secure manner to the device.

5. Conclusion
This document outlined the general ideas of the JetZ research project executed at the IBM Zurich
Research Laboratory. It showed the first practical result of this work, the IBM JavaCard, a small-scale
Java Virtual Machine running on an 8-bit SmartCard processor with extremely constrained resources,
e.g. with a mere 256 Bytes of RAM. The result of this work is available as a product: You can get it
for example from GemPlus, one company to whom the SmartCard technology part of JetZ has already
been licensed. It is called GemXpresso 210PK.

Michael Baentsch (mib@zurich.ibm.com)

http://www.zurich.ibm.com/~mib/
http://www.gemplus.com/
http://www.zurich.ibm.com/
http://www.zurich.ibm.com/

	JetZ
	
	Contents:

	1. Introduction
	2. The JetZ research project
	
	Portability
	Scalability
	Performance
	Advantages

	3. The first JetZ result: The IBM JavaCard
	SmartCard basics
	Special issues

	JavaCard
	OpenPlatform
	IBM JavaCard capabilities
	Hardware
	Device Drivers
	Virtual Machine
	System libraries
	OpenPlatform
	Applets
	VisaCash performance
	Summary

	Usage and Productization

	4. Future paths
	5. Conclusion

