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Abstract Based on the Lorentzian model of the magnetic recording channel the effect of increasing
linear density is investigated. It is observed that for a fixed turbo equalization scheme, which consists of
a 16-state NPML detector and a decoder for a fixed LDPC code, the gap between the performance of
the turbo equalization scheme and the Shamai-Laroia bound of the channel increases substantially with
increasing linear density. Two complementary methods for reducing this gap to capacity at high linear
densities are considered. First, without increasing the complexity, noticeable gains can be obtained by
using a 1/(1 ⊕ D) precoder for the partial response channel. Second, selecting a longer partial response
target provides substantial gains at high densities. Moreover, when both methods are applied, the two
individual gains add up.



1 Introduction

Low-density parity-check (LDPC) codes are currently recognized to be the best class of codes to efficiently
approach the Shannon limit on the additive white Gaussian noise (AWGN) channel [1]. LDPC codes
have also been proposed for magnetic recording as outer codes in a turbo equalization scheme, where
the partial response channel plays the role of the “inner code”. At low and medium linear densities, the
performance of such iterative detection/decoding schemes is close to the information-theoretical limits as
given by the Shamai-Laroia bound for channel capacity. Specifically, the performance of high-rate LDPC
codes of moderate lengths is only at about 1.5 dB from the capacity bound [2], [3], [4].

At low and medium linear densities, the gap to capacity of the turbo equalization scheme considered
is small. It is observed that this gap opens up considerably for high linear densities. Two independent
methods are presented to reduce this gap at high linear densities.

2 Channel Model and System Parameters

We will use the widely adopted Lorentzian model for the magnetic recording channel. Thus, we will
assume that the read-back pulse of a single transition is well approximated by a Lorentzian pulse

s(t) =
1

1 + ( 2t

PW50

)2
,

where PW50 denotes the pulse width at half of its amplitude. The read-back signal of a sequence of
recorded antipodal data symbols xk ∈ {±1} is then given by

r(t) =
∑

k

xk[s(t − kT ) − s(t − (k − 1)T )] + n(t), (1)

where T denotes the symbol duration and n(t) is white noise with two-sided spectral density N0/2.
The signal-to-noise ratio (SNR) is defined as SNR = Es/(N0/2), where Es denotes the energy of the
Lorentzian pulse s(t).

The unitless parameter Dc = PW50/T is called the channel normalized linear density. Similarly, one
defines the user normalized linear density Du = PW50/Tu = DcR for a coded system with code rate R
and user symbol duration Tu = T/R.

The noise-predictive maximum likelihood (NPML) detection method is based on the selection of an
optimized detector target f(D) = f0 + f1D + . . . + fLDL with spectral nulls at dc and optionally also at
the Nyquist frequency [5]. In particular, detector target polynomials of the form f(D) = (1 − D)p(D)
and f(D) = (1−D2)p(D), where p(D) = 1+p1D+ . . .+pL′DL

′

is a noise-whitening filter, are commonly
used in practical systems and have also been considered in this paper.

To obtain a discrete-time channel the read-back signal (1) is suitably low-pass filtered and sampled,
which results in a discrete-time read-back sequence

yk =

L∑

i=0

xk−ifi + n′

k
, (2)

where the n′

k
are Gaussian noise samples, which in general are slightly correlated.

To assess the performance of the turbo equalization scheme, we consider an information-theoretic
approach as in [2], [4]. A good approximation for the uniform-input information rate of the recording
channel is given by the Shamai-Laroia (SL) bound [6], [7]. Given the spectrum of the channel and the
spectrum of the additive Gaussian noise, the SL bound can be computed in a straight forward manner
[4],[6].

The focus of this paper is on precoding and enhanced whitening methods and, therefore, we want to
minimize the effects of misequalization. Thus, we have chosen long zero forcing equalizers with 20 taps.
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At the moderate Du = 2.6, we have used a 5-pole Butterworth low-pass filter with cutoff frequency at
Nyquist. At Du = 3.6, we have used a slightly lower cutoff, namely, fc = 0.4.

We have considered three high-rate LDPC codes having a code length that approximately matches the
sector size. To obtain a code of rate about 8/9, we have constructed a shortened array code of dimension
K = 4131 and length N = 4652 as described in [8]. It has column weight j = 4 and row weights k = 35
and 36. The second code has rate about 16/17 and is also an array code with parameters K = 4096,
N = 4361, j = 4, and k = 65 and 66. The third code was provided by MacKay [9]: it is a randomly
generated code of rate about 16/17 with parameters K = 4095, N = 4376, j = 4, and k = 61, 62 and 63.

The schedule for the iterative detector/decoder was selected as follows. The channel output is passed
to the detector, which produces a soft-output vector. This soft-output vector is then passed to the decoder
to obtain reliability information about the channel input. These reliability values are passed back to the
detector as apriori information. This loop from the detector to the decoder and back to the detector will
be counted as one turbo iteration. Unless specified otherwise, we have always limited the number of such
turbo iterations to at most 10.

3 Precoding

At low normalized linear densities, where the dominant error event1 is +, precoding does not improve
but deteriorates performance as predicted in [10]. This effect is illustrated in Fig. 1, where a 1/(1 ⊕ D)
precoder has been used together with a rate-4096/4361 LDPC code. It is therefore surprising that at
high linear densities a noticeable gain can be achieved by precoding the partial-response channel with
1/(1⊕D). For Du = 3.6 and high-rate LDPC codes a gain of 0.25 dB is obtained by precoding. In Fig. 2,
the two LDPC codes both have rates close to 16/17. The precoding gain is essentially the same for the
randomly constructed code of rate 4095/4376 as well as for the array-type code of rate 4096/4361. This
shows that the precoding gain does not depend on the way the LDPC code has been constructed. Note
that the observed precoding gain is not in contradiction to the results in [10], because in that paper no
statements are made for the case where + − + is the dominant error event.
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Figure 1: Block-error rate of a rate-4096/4361 LDPC code at Du = 2.6 with and without precoding.

1For notational convenience, we only indicate error events that start with +. For example, +−+ stands for both +−+

and − + −.
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Figure 2: Block-error rate of two LDPC codes of rate 4096/4361 and 4095/4376 at Du = 3.6 with and
without precoding.

Fig. 2 also shows the SL bounds. At the high linear density Du = 3.6, the performance of the precoded
scheme at a block-error rate (BLER) of 10−4 is at 2.3 dB away from the SL bound; thus, this gap is
much larger than the corresponding gap in Fig. 1, which is only 1.2 dB. This gap increases substantially
if the code rate R is reduced and the channel density Dc increased to maintain a fixed user density Du.
For example, at Du = 3.6, the gap to the SL bound is 3.1 and 3.4 dB with and without precoding, resp.,
for the rate-4131/4652 LDPC code with at most 10 turbo iterations (see Fig. 3).
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Figure 3: Block-error rate of a rate-4131/4652 LDPC code at Du = 3.6 with and without precoding.
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The potential precoding gain depends on the normalized linear density. For a fixed Du, one observes
larger precoding gains for LDPC codes of lower rate R because they run a higher normalized linear
channel density Dc = Du/R. When comparing the simulation results of the rate-4096/4361 and the
rate-4131/4652 LDPC codes for the same user density Du = 3.6, it is apparent that the lower-rate code
has a slightly larger precoding gain, which is 0.3 dB (compare Figs. 2 and 3). Moreover, as shown in
Fig. 3, increasing the maximum number of iterations from 10 to 30 in the turbo equalizer slightly improves
performance by a similar amount both with and without precoding.

A heuristic explanation for the effectiveness of the precoder 1/(1 ⊕ D) can be given in terms of
dominant error events of the detector. In the case of a single error event +, the correct binary channel
input sequence b and the erroneously decoded binary sequence from the detector, b̃, differ in one bit
position. When passed through the precoder inverse 1 ⊕ D, the two resulting sequences, say, b

inv and

b̃
inv

, will differ in two consecutive bit positions. Thus, with precoding the LDPC decoder has to deal
with an error pattern of two consecutive bit errors compared with a single bit error when no precoding
is used.

In the case of the error event +−+, the binary sequences b and b̃ differ in three consecutive positions

and, after the precoder inverse, b
inv and b̃

inv

differ in only two bit positions, which are three bits apart.
Thus, with precoding the LDPC decoder has to deal with a simpler error pattern of the form 1001 rather
than 111 when no precoding is used.

As LDPC codes are optimized for the AWGN channel, where the error positions are uncorrelated, one
expects that an LDPC code will perform the better the shorter the number of correlated error positions.
A shortcoming of this heuristic explanation is that it does not take the iterations between decoder and
detector into account. However, it seems to provide a qualitative explanation for the precoder loss and
gain at medium and high normalized linear density, respectively. Further investigations using the methods
of [10] for the error event + − + should allow one to obtain quantitative insights.

4 Enhanced Whitening

By using longer predictors p(D) one can achieve better whitening of the noise at the equalizer output.
The corresponding partial-response target f(D) will become longer and, thus, the soft-input/soft-output
detector will require a larger number of states, i.e., increased complexity. At medium linear normalized
densities, increasing the detector complexity results only in minimal performance improvements. As
illustrated in Fig. 4, for Du = 2.6 and a rate-4131/4652 LDPC code, a SNR gain of about 0.15 dB is
achieved by increasing the degree of the partial response target from 4 to 5.

However, at high normalized linear densities, the performance improvement is substantial. Specifically,
using the same rate-4131/4652 LDPC code, a gain of 0.75 dB is obtained at Du = 3.6 with a 32-state
detector compared to a 16-state detector (see again Fig. 4). The performance of a 32-state detector
together with a channel precoder (shown as dashed curve with circles in Fig. 4) gains an additional 0.3
dB over the 32-state detector scheme without precoding.

Note that the two methods to improve performance are complementary because the individual gains
from precoding and enhanced whitening add up to a total gain of about 1.1 dB over the 16-state detector
scheme without precoding. Combining the two methods, the initial gap to the SL bound of 3.4 dB can
be reduced to 2.3 dB.

5 Conclusions and Outlook

For the high-linear-density regime, where + − + is the dominant error event of the detector, two com-
plementary methods have been considered to improve the performance of iterative detection/decoding
schemes based on LDPC codes. On the one hand, precoding of the partial-response channel can achieve
noticeable gains of about 0.25 to 0.3 dB at essentially no increase in complexity. On the other hand,
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Figure 4: Block-error rate of a rate-4131/4652 LDPC code at Du = 2.6 and 3.6 with 16- and 32-state
detector.

substantial gains of 0.75 dB can be obtained using longer predictor filters and doubling the complexity
of the detector.

It was observed that information-theoretical considerations regarding the optimum rate of a coding
scheme cannot be easily transformed into practical gains in the high density regime. Capacity-based
arguments, for example, show that codes of rate 8/9 should perform better than rate-16/17 codes [2].
However, when comparing the performance of the 16-state detector schemes without precoding, the two
higher rate codes outperform the lower rate code (see Figs. 2 and 3) in terms of SNR. Thus, the promised
gains of the lower-rate code might only be realizable if one is willing to increase the complexity of the
detection/decoding scheme, as suggested by the findings shown in Fig. 4.

Future investigations might focus on alternative approaches to reducing the gap to capacity employing
other or complementary methods than enhanced whitening and precoding. A possible direction could be
the construction of LDPC codes that are matched to the partial-response channel rather than the AWGN
channel [11].
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