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Abstract. Regulatory compliance of business operations is a critical problem for enterprises. As enterprises 

increasingly use business process management systems to automate their business processes, technologies to 

automatically check compliance of process models against compliance rules are becoming important. In this 

paper, we present a method for improving the reliability and minimizing the risk of failure of business process 

management systems from a compliance perspective. The proposed method allows for the separate modeling 

of both process models and compliance concerns. Business process models expressed in the Business Process 

Execution Language are transformed into Pi calculus and then into Finite State Machines. Compliance rules 

captured in the graphical Business Property Specification Language are translated into Linear Temporal Logic. 

Thus, process models can be verified against these compliance rules by means of model checking technology. 

The benefit of our method is threefold: Through the automated verification of a large set of business process 

models, our approach increases deployment efficiency and lowers the risk of installing non-compliant 

processes. Furthermore, it reduces the cost associated with inspecting business process models for compliance. 

Finally, compliance checking may guarantee compliance of new process models before their execution and 

thereby increases the reliability of business operations in general. 

 

Keywords: Model Transformation, Compliance, Compliance Rule Modeling, Business Process 

Modeling, Model Checking  

1．．．．Introduction 

Modern businesses face a broad number of challenges. While striving to please their customers, 

they must meet the expectations of their shareholders and remain profitable. Due to globalization 

and digitization, they are typically confronted with increased and highly dynamic competition. 

Consequently, investments in information technology (IT) have become a necessary condition to 

stay competitive and remain in business. As a result, many enterprises have recently shown a 

growing interest in business process management (BPM), which refers to all activities performed 

by businesses to model, automate, optimize, monitor and adopt their businesses processes
 1,2

. 

Thus, there has been an increased acceptance and adoption of so-called business process 

management systems (BPMS) in order to efficiently support, execute, and monitor business 

processes. 

 

The above development has been paralleled by a growing amount of regulatory requirements 

imposed on businesses. Prominent examples in the U.S. are the Gramm-Leach-Bliley Act 
3
, the 

Sarbanes Oxley Act (SOX)
 4

, and the USA Patriot Act 
5
. While these U.S. regulations have a very 

broad coverage, also many industry-specific regulations such as the international Basel II accord 
6
, 



European Money Laundering Regulation 
7
, and the Law of the People's Republic of China on the 

People's Bank of China 
8
 have been enacted all around the globe. Demonstrating compliance with 

legal requirements and international standards generally requires that affected companies 

document their business processes. While many enterprises try to regard such documentation 

requirements as an opportunity to identify their informal processes and to render their execution 

more efficient, for large enterprises with thousands of different business processes this alone 

represents a considerable challenge.  

 

Enterprises operating in heavily regulated industries such as financial services, health care, 

government, or national defense are likely governed by a large number of regulatory requirements. 

As these requirements must be implemented and enforced by a multitude of internal business and 

IT controls, many regulations nowadays recommend the use of respected standards such as 

COBIT 
9
 and ITIL 

10
 for the implementation of an enterprise’s IT systems. These standards consist 

of well-defined abstract process definitions that can tailored according to a company’s individual 

needs. 

 

Because of the increasing amount of relevant regulations and standards, enterprises need a 

comprehensive compliance management approach as discussed in Abrams et al. 
11 

and Giblin et 

al. 
12

. They need to be able to understand the implications of new regulations for their business and 

its processes. As business processes are increasingly managed using BPMSs, regulatory 

requirements often necessitating changes to the structure of particular work flows directly impact 

business process modeling. Thus, whenever a new regulatory requirement is enacted, a company 

needs to know what its impact is. Three effects are possible: existing business processes must be 

adapted or removed; new business processes must be introduced; or there is no impact because all 

business processes are already compliant with the new requirement. 

 

While business processes automated through BPMS can be used to implement IT processes and 

controls as defined by ITIL or COBIT and thereby address existing regulations, the impact of new 

regulatory requirements cannot be assessed using these frameworks. For large enterprises with 

thousands of business processes deployed on the BPMS and stored in specific repositories, 

however, the assessment which existing process definitions comply with a new regulatory 

requirement is of utmost importance. In this paper, we describe an approach that allows for the 

static verification of business process models against a set of formally expressed regulatory 

requirements, which include constraints on the state and execution order of process activities. We 

call these formally expressed regulatory requirements compliance rules. Our approach helps a 

company with the identification of non-compliant business processes before their execution and 

indicates the nature of the problem in case of non-compliance. 

1.1 Potential Benefits from Automatic Verification of Business Process Models 

To ensure compliance, the impact of each new regulatory requirement on the existing business 

process models needs to be identified. While BPM does not help here, our approach indicates 

which processes are compliant and which are not, hence providing a valuable tool for ensuring that 



new requirements are incorporated into the companies’ process models. Hence, the benefit of our 

method is threefold:  

1. Through automated verification of a large set of business process models, our approach 

increases the efficiency during deployment, and lowers the risk of implementing and 

activating non-compliant processes.  

2. By automating a tedious task that must otherwise be done manually, our method reduces 

the cost associated with inspecting business process models for compliance.  

3. Used as a tool during modeling of new business processes, our approach guarantees 

compliance of new models before their execution and thereby increases the reliability of 

business operations in general. 

1.2 Case Study 

We now introduce a case study, which we shall use as a running example throughout the entire 

text. We assume the existence of a Chinese bank called SimpleBank, which wants to know whether 

its business operations conform to a set of relevant compliance rules. For the sake of simplicity, we 

only focus on SimpleBank’s account opening process, whose process definition is portrayed in 

Figure 1.  

 

Figure 1. Account Opening Process 



We further assume that at some point SimpleBank is confronted with a set of new compliance rules 

corresponding to the ‘Rules for Anti-money Laundering by Financial Institutions’ 
13

 as published 

by the People’s Bank of China. The two relevant articles, Article 11 and Article 13, read as 

follows: 

 

Article 11: When opening deposit accounts or providing settlement service for individual 

customers, financial institutions shall verify the customers' IDs and record the names and ID 

numbers. […] 

 

In other words, for financial institutions, Article 11 implies the following: Whenever a financial 

institution opens a deposit account or provides settlement service for an individual customer, it 

must verify the ID of the customer and record both the ID and the name of the customer.  

 

Article 13: Financial institutions shall abide by relevant rules and report to the People's Bank of 

China and/or the State Administration of Foreign Exchange of any large-value transactions 

detected in the process of providing financial services to customers. 

Classification of large-value transactions shall be determined in line with relevant rules made by 

the People’s Bank of China and the State Administration of Foreign Exchange on reporting of 

fund transactions. 

 

Article 13 implies: Financial institutions must report to the People's Bank of China and/or the 

State Administration of Foreign Exchange any large-value transactions that are detected in the 

process of providing financial services to customers. For example, if a customer deposits a large 

amount of money into his account, the respective transaction must be reported. Compliance with 

this rule requires an adequate interpretation of large value according to the relevant rules made 

by the People’s Bank of China and the State Administration of Foreign Exchange. For the sake 

of simplicity, we shall assume that this is a parameter that can be flexibly adjusted. 

 

Given a business process in Figure 1 and a set of compliance rules, in this paper, we demonstrate 

how a set of well-defined model transformations enables the use of model checking technology to 

verify whether the definition of a business process complies with a set of relevant compliance 

rules. We call our method compliance checking. 

1.3 Overview of the Compliance Checking Method 

Overall, our compliance checking method includes six major steps as shown in Figure 2. 

 



 

Figure 2. Compliance Checking Method 

 

In step 1, we model our business processes using the Business Process Execution Language 

(BPEL) 
14

. In the second step, we use the visual Business Property Specification Language 

(BPSL) 
15

 to specify relevant compliance rules. In section 2, we provide both the BPEL process 

model and the compliance rules formalized in BPSL for the SimpleBank case study introduced 

above. We transform the BPEL process model into a representation using Pi calculus 
16

 in step 

3_1. Then, the Pi calculus is transformed into a Finite State Machine in step 3_2. In step 4, the 

BPSL compliance rules are transformed into LTL (Linear Temporal Logic)
 17

. The model 

transformations of steps 3_1, 3_2, and step 4 are described in section 3. Having thus formalized 

both business processes and compliance rules, we use model checking technology 
18

 to statically 

verify whether the business processes comply with the imposed regulation in step 5. In step 6, 

counter-examples are fed back to the business process layer to demonstrate how the compliance 

rules have been violated. Details about the model checking, counter-example tracing, and specific 

optimization approaches for compliance checking are presented in sections 4 and 5. 

2. Business Process Modeling and Compliance Rule Modeling 

Before introducing the details of our compliance checking method, we briefly explain how to 

model business processes with BPEL and how to specify compliance rules with BPSL. 

2.1 Business Process Modeling using BPEL 

In the previous section, we have introduced a conceptual account opening process for 

SimpleBank. Assuming that SimpleBank wants to take advantage of a BPMS to manage this 

process, the process should be specified using an executable business process modeling language. 

BPEL is such a language. It is an XML-based de-facto standard for business application 

integration and business-to-business processing with a specific focus on web services. It 

synthesizes essential aspects of WSFL (e.g., support for graph-oriented processes)
 19

 and 

XLANG (e.g., structural constructs for processes) 
20

 into one cohesive language to support 

implementing business processes in a natural manner. While there is no formal proof that BPEL 



is powerful enough to express all requirements related to business processes, BPEL has been 

applied in many real customer cases and enjoys broad industry acceptance. Because of this and 

its characteristic features, BPEL has been the business process modeling language of choice in 

our compliance checking method.   

 

A BPEL process, also called a BPEL program, consists of four major elements: The Variable 

section defines the data variables used by the process, providing their definitions in terms of 

WSDL (Web Service Definition Language) message types, XML Schema simple types, or XML 

Schema elements. The PartnerLinks section defines the different parties that interact with the 

business. The FaultHandler elements define the activities that must be performed in response to 

faults during process execution. The rest of the process definition contains the description of the 

normal behavior with BPEL activities, including BasicActivity, StructuredActivity, and 

ScopeActivity. The BPEL program corresponding to the introduced account opening process 

introduced earlier is given in Listing 1. It only shows the behavior definition section, whose 

essence should be intuitive to comprehend without further explanations. The precise semantics of 

BPEL activities and variables are explained in section 3. 

 

As writing BPEL code manually is relatively cumbersome, process designers often model 

business processes visually using a process modeling tool such as IBM WebSphere Business 

Integration Modeler (WBI Modeler)
 21

. In addition to providing a visual user interface, these 

tools allow for exporting graphical process models as BPEL programs. We do not focus on the 

transformation from UML to BPEL here and refer to Mantell 
22

 for more detailed information. 

(The visual process modeling language provided by WBI Modeler is partially compatible to the 

UML activity diagram notation.)  



 

 Listing 1. BPEL Program of Account Opening Process 

2.2 Compliance Rule Modeling using BPSL 

Temporal constraints in compliance rules can be formally specified with temporal logic formulae, 

such as LTL (Linear Temporal Logic) and CTL (Computation Tree Logic). However, for people 

without a background in formal logics, temporal logics are rather difficult to understand and use. 

The purpose of the BPSL is to provide a more intuitive formalism to express such properties. 

Therefore, in our compliance checking method, we use BPSL for specifying compliance rules.  

 

Four main features of BPSL simplify the specification and understanding of temporal properties: 

First of all, obscure logical operators are replaced with an intuitive visual notation. Second, 

recurring logical patterns from a business or regulatory domain are defined as dedicated 

operators. Third, domain-specific templates (e.g., the property patterns 
23

) can be predefined and 

re-used in BPSL to help increase the efficiency of property specification. Fourth, BPSL has a 



direct semantic interpretation in both LTL and CTL. In this paper, we focus more on LTL 

because we agree on the argument by Vardi et al. 
24

 that the branching-time formalism of CTL is 

unintuitive for business analysts and it does not support compositional reasoning as opposed to 

LTL. The complete syntax, semantics, and notation of BPSL have been described by Xu 
15

. To 

ease understanding, in Figure 3 we present the visual BPSL specification of Article 11 and 

Article 13 of our case study. The precise semantics of these BPSL properties are explained in 

section 3. 

 

Figure 3. BPSL Specification of Article 11 and Article 13 

In Figure 3, Article 11 is specified by the first two BPSL properties, ‘Article11_part1’ and 

‘Article11_part2’; while Article 13 is specified by the third property, ‘Article13’. The rectangles 

denote Boolean Blocks, which may represent the performing of business activities (e.g., 

AcceptCustomerReq, ObtainCustomerInfo, VerifyCustomerInfo, etc) or the processing of data 

(e.g., names and IDs in the ParaList). Annotated arrows are used as temporal operators to define 

the temporal dependency between the Boolean Blocks. For example, the temporal operator 

‘ExistWithin [inf]’ specifies that the next Boolean Block must be hold within an infinite amount 

of time after the previous Boolean Block holds. The combination of these temporal dependencies 

thus forms a visual temporal sequence in BPSL. There are simple and compound temporal 

sequences. A simple temporal sequence specifies a chain of temporal relations among different 

Boolean Blocks or any other BPSL properties (e.g., Article11_part2 and Article13 are simple 

ones). A compound temporal sequence is a logical combination of simple temporal sequences 

(e.g., Article11_part1 is a compound one which consists of two other simple temporal sequences 

that are combined by a logical And relation). 

 

The BPSL properties in Figure 3 thus possess the following semantics: Before a customer 

account may be opened, the customer information must first be obtained and verified 

(Article11_part1); Whenever a customer request for opening a deposit account is received, the 

customer information must be obtained and the information must be later verified with the 

provided customer name and ID. Finally, the customer information must be recorded 



(Article11_part2). Whenever a customer request for opening deposit account is received, it must 

be checked whether it is a large value deposit. If it is, it must be later reported. 

 

In previous work, Giblin et al. have developed REALM (Regulations Expressed as Logical 

Models) 
12

, a meta-model and method to formally specify regulations. While REALM, which 

builds on real-time temporal object logic, is more expressive than BPSL, BPSL supports visual 

and thus more intuitive property specification. As REALM properties cannot be verified by 

existing model checking algorithms, we use BPSL as specification language in our static 

compliance checking work.  

3. Model Transformations  

In this section we introduce the essential model transformations of our compliance checking 

method. To reuse existing model checking algorithms, a series of transformations are performed. 

We first explain the transformation from BPEL to Pi calculus and the transformation from Pi 

calculus to Finite State Machine (FSM) (see steps 3_1 and 3_2 in Figure 2). Then, we show how 

BPSL properties are transformed into LTL formulae (see Step 4 in Figure 2).  

3.1 BPEL to Pi calculus 

Some elementary knowledge of Pi calculus is necessary to understand the content of this section. 

Before introducing the transformation from BPEL to Pi calculus, we thus present an overview 

introduction to Pi calculus.  

3.1.1 Pi Calculus 

Pi calculus 
16

 is a model of concurrent communicating processes which allows for the modeling 

of complex communication patterns. We have chosen Pi calculus as the formal method to 

formalize BPEL programs. A detailed discussion justifying this choice can be found in section 6. 

 

The syntax of Milner’s polyadic Pi calculus is as follows.  

φφφφ

τπ

φπ

¬∧==

><=

∑= =

||][::

|)(|::

0|),,(|||!||.:: 11

yx

yxyx

yyAPPQPPxnewPP

i

nii

n

i L

 

The simplest entities of Pi calculus are names (denoted with lowercases) and processes (denoted 

with uppercases). Processes can evolve by performing actions. Syntactically, >< yx  denotes 

an output action which sends name y via x and )( yx is an input action which receives a name y  

via x. Further, τ is a silent action which expresses un-observable behavior. A sum 



nn PPP ... 2211 πππ +++ L  denotes a non-deterministic choice of process execution. In the 

restriction Pxnew , the scope of name x is bound to P . In the composition QP | , the 

processes P and Q can proceed independently and can interact via shared names. The replication 

P!  can be thought of as an infinite composition L||| PPP  of processes. Finally, Pφ  

represents a process that is guarded by a Boolean expression φ evaluated by name matching.  

3.1.2 Transforming BPEL to Pi Calculus 

The transformation from BPEL to Pi calculus requires a semantic translation of BPEL. The 

overall semantics are very complex. Having described the complete transformation from BPEL 

to Pi calculus in our previous work 
25

, in this paper, we only present the important basic activities 

and structured activities below. 

 

BPEL contains program variables to which values can be assigned. We adopt the approach 

proposed by Jacobs et al. 
26

 to formally define a programming variable as a 'storage location'. 

Accordingly, a variable holding a value of x (Variable(x)) is defined by a register (Reg) as 

follows ( def=  is used as a definition symbol): 

)(Re.)(Re).()(Re

)(Re)(

xgxgetygyputxg

xgxVariable

def

def

><+=

=
 

The above formalization means that the stored value x of the variable can be read from the 

storage location via >< xget , and a new value y can be written into the location via put(y). 

 

BPEL’s basic activities (Receive, Reply, Invoke, Assign, Empty, and Termination) define how 

message communication, service invocation and variable assignment are done in a process model. 

We present the formalization of these basic activities in the following. ‘Link name’, ‘Partner 

name’ and ‘Operation name’ are three elements in the activities of BPEL and they often 

appeared at the same time. Therefore, here the three elements are denoted as a unified name ‘ l ’. 

The partner links and data sharing in these BPEL activities are mapped to the input and output 

prefixes of ‘ l ’, ‘get’, ‘put’ in Pi calculus. In addition, two special names ‘start’ and ‘done’ are 

used to indicate common internal communications in a BPEL process. 

( , , , ) . ( ). .

( , , , ) . ( ). .

( , , , , ) . ( ). . ( ). .

( , , , )

def

def

def

def

Receive start put done start v put v done

Reply start get done start get v v done

Invoke start get put done start get v v w put w done

Assign start get put done new c

= < >

= < >

= < > < >

=

l l

l l

l l l

( . ( ). | ( ). . )

( , ) .def

start get v c v c x put x done

Empty start done start done

< > < >

=

 

There are some challenges in the transformation, such as the handling of timeout, synchronizing 



with links, message correlation, global termination of activity, and fault handling and 

compensation. We have discussed how to solve these problems in another paper 
25

. Because they 

are not very critical to understand our compliance checking method, we will not cover them in 

this paper. We take ( , , , )Receive start put donel  as an example to explain the semantics of the Pi 

calculus formalization. The process of Receive contains some free names (e.g. put, done, etc), 

which are defined as the communication channels of this process. The two names start and done 

are used to start and terminate the activity. The communication among different activities 

through these two channels thus forms the control flow of the BPEL process. When the Receive 

process is triggered by its start channel, an input action of ( )vl  is enacted to receive a message 

through a specific partner link. The output action of >< vput  is then enacted to put the received 

message (i.e., v) into the corresponding variable. Finally the action of done  is enacted to 

indicate the termination of the Receive activity and to trigger another activity in the BPEL 

process. 

 

Structured activities imply different control relations between the executions of activities in 

BPEL. We let function fn define a mapping from a Pi calculus process to a set of free names, 

where fn(P) indicates the set of all free names contained in process P. Consequently, the 

semantics of the structured activities Sequence, Switch, While, Pick, and Flow are defined below.  

1 2 1 1 2 1 2

1 2

( ( ), ( )) ({ / } | )

( , ( ), , ( )) [ ] [ ] [ ]

( , ( )) [ ]( ( ( ), ( )) [ ]

( , ( ), ', ( ), ) (

def

def

def

def

Sequence fn P fn Q new start start done P Q

Switch b fn P b fn Q b P b b Q b b Empty

While b fn P b Sequence fn P fn While b Empty

Pick fn P fn P put n

=

= + ¬ ∧ + ¬ ∧ ¬

= + ¬

=l l
1 2

( ( ). . | . )) ( '( '). ' . | . ))

( ( ), ( ), ) (( '({ '/ } | '. )) |

( '' ({ ''/ } | ''. )) | . . )

def

ew c v put v c c P new c v put v c c P

Flow fn P fn Q done new ack new done done done P done ack

new done done done Q done ack ack ack done

< > + < >

=

l l

 

In the formalization, }/{ donestart  is a basic name substitution operation, which means that the 

name done  is replaced by start  so that an internal interaction can occur between processes P 

and Q. The formalization of Switch above implies that in the case when several branching 

conditions hold at the same time, the branches are taken in the order in which they appear, which 

reflects exactly the semantics of BPEL in its specification. Pick is a non-deterministic choice 

between process P and Q. Switch, While, Sequence, and Flow are self-explanatory.  

 

Scope is an important concept in BPEL for defining an effective scope of the definition and 

usage of variables, compensation handlers, fault handlers, and other activities. As these BPEL 

elements can all be associated with a scope, we collect all the free names in a scope with a 

predefined function, GetNames(s), where s is the scope. Therefore, the restriction operator ‘new’ 

can be used to restrict the access to these elements according to their effective scope. The 

following is the formalization of Scope: 

)|||()(( 21 ndef PPPsGetNamesnewrestnamesScope L=  



),,1( niPi L=  can be a Pi calculus process of basic activities, structured activities, variables, 

fault handlers, or compensation handlers. Furthermore, restnames  is defined as a free name set: 

)(/))()()(( 21 sGetNamesPfnPfnPfn n∪∪∪ L  

Since everything is a process in Pi calculus, the semantics of a BPEL process can be formalized 

as the composition of the above Pi processes for all considered BPEL activities.  

1 1| | | | |m nProcess Variable Variable Activity Activity= L L  

3.2 Pi Calculus to FSM 

The application of model checking to verify business process models against compliance rules 

requires the transformation of business process models into a formalism that can be accepted by 

a model checking algorithm. Most current model checking tools require FSMs as an input format. 

We thus first translate from BPEL to Pi calculus and then from Pi calculus to FSM. Having the 

processes formalized in Pi calculus as an intermediary formalism leaves us the opportunity to 

apply other verification techniques like structural verification including (e.g., deadlock detection), 

and bisimulation. Furthermore, it also helps the future integration of more practical and efficient 

model checking algorithms and tools into our compliance checking approach. Despite the detour 

through Pi calculus, the static verification result will be the same as if the process models had 

been transformed into FSM directly. 

 

The transformation from Pi calculus to FSM yields the total behavior of the BPEL process by 

reducing the Pi processes into their corresponding state spaces. Previous works by Ferrari
 27

 and 

Pistore 
28

 have already shown the approach and feasibility of how to correctly transform finitary 

Pi calculus processes into the corresponding ordinary automaton such that a wide range of 

powerful formal verification techniques can be smoothly reused in the case of mobile processes. 

In our compliance checking method, we exploit the results obtained by Ferrari 
27

 to transform a 

Pi process into a corresponding FSM based on the early operational semantics of Pi calculus. The 

mapping between the early operational semantics 
29

 of Pi calculus to the state transitions in FSM 

is presented as a set of transformation rules. For better understanding, each transformation rule is 

illustrated with an example (cf. Figure 4). 
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Figure 4. Transformation Rules from Pi Calculus to FSMs 

For each transition fired by an action π in Pi calculus, three attributes are used to record the 

necessary information of π. The action attribute records its port name port(π); the paralist 

attribute records the set of parameters para(π) passed through the port; and the type attribute is 

one of the values of input, output, or tau, which indicates that π is an input, output, or an 

invisible action in Pi calculus. 

 

The choice of Pi calculus as the mediation between high-level business process models and very 

formal models yields several benefits. Specifically, state space generation from Pi processes and 

not directly from the business process model provides us the following two advantages: 

 

(1) While transforming from Pi process to FSM, two properties can be directly checked, 

deadlock and redundant activities of BPEL process. A deadlock exists if there is a Pi process 

that cannot generate its state space any more before it transits to an empty process (“0”). If 

there is a Pi process that can never communicate with any other Pi processes, it means there 

is a redundant activity in the corresponding BPEL process. 

(2) Using Pi calculus and FSM as the formals models of business processes renders the business 

process verification method independent of a specific model checker. Thus, more practical 

and efficient model checkers can be integrated into our compliance checking method. 

 

3.3 BPSL to LTL 

Though BPSL supports both the semantic mapping to LTL and CTL, in this section we mainly 



explain the mapping from BPSL specifications to LTL formulae based on the three compliance 

rules in section 2.2 as examples. Before diving into the mapping from BPSL to LTL, an 

overview on LTL is given as preliminary information. 

3.3.1 Linear Temporal Logic (LTL) 

LTL
 17,18

 is a widely used specification language for specifying temporal properties of software 

or hardware designs. In LTL, time is treated as if each moment in time has just one possible 

future. Accordingly, linear temporal formulae are interpreted over linear state sequences, and we 

regard them as describing the behavior of a single computation of a system. 

 

Linear Temporal Logic uses formulae of the form A f, where: 1) A is the universal path 

quantifier, which means that f has to be true on all possible paths in the future; and 2) f is a path 

formula (which is true along a specific path) in which the only state sub-formulae permitted are 

atomic propositions. More precisely: 

� If p∈AP (AP is a non-empty set of atomic propositions), then p is a path formula. 

� If f and g are path formulae, then ¬f, f∨g, f∧g, X f, F f, G f, and f U g are path formulae. 

The four basic operators of X, F, G and U are explained informally below. 

� X (“next time”): a formula (f) is true in the second state of the path; 

� F (“eventually”): a formula (f) will be true at some future state on the path; 

� G (“always”): a formula (f) is true at every state on the path; 

� U (“until”): there is a state on the path where the second formula (g) is true, and at every 

proceeding state on the path the first formula (f) is true; 

Take formula of “G (AcceptCustomerReq → F VerifyCustomerId)” as an example. This formula 

is true in a computation precisely if every state in the computation in which 

‘AcceptCustomerReq’ holds is followed by some state in the future in which ‘VerifyCustomerId’ 

holds. Here, ‘AcceptCustomerReq’ and ‘VerifyCustomerId’ represent atomic propositions. 



3.3.2 Mapping from BPSL to LTL 

 (   (( & { ,  })

   &  (  &  { , }) &   ( )))

G action AcceptCustomerReq F action ObtainCustomerInfo Paralist name ID

F action VerifyCustomerIdentity paralist name ID F action ReordCustomerInfo

= → = =

= = =

( (

( )))

G action AcceptCustomerReq F action LargeDeposit

F action ReportLargeDeposit

= → = →

=

(!( ) | ((!(   )  (   ))) &

(!( ) | ((!(   )  (   ))))

G action OpenAccount action OpenAccount U action ObtainCustomerInfo

action OpenAccount action OpenAccount U action VerifyCustomerInfo

= = =

= = =

 

Figure 5. Mapping BPSL to LTL 

We start with Article11_part2. As explained, Article11_part2 (and Article13) is a Simple 

Temporal Sequence that specifies the temporal relation among a sequence of Boolean Blocks or 

other BPSL properties along paths where time advances monotonically. The name of each 

Boolean Block in Article11_part2 represents a business activity being performed and the data 

associated with it. For example, the Boolean Block AcceptCustomerReq is interpreted as 

‘action= AcceptCustomerReq’ while the Boolean Block of ObtainCustomerInfo with the 

parameter list (ParaList) of name and ID is interpreted as ‘action= ObtainCustomerInfo & 

ParaList={name, ID}’. Note the diamond symbol under the Boolean Block of 

AcceptCustomerReq. This is a special feature of BPSL named ‘Compensation Property’. A 

Compensation Property (cp) specifies that when the Boolean Block associated with the cp does 

not hold, the whole BPSL property is still deemed to be correct if cp holds. For this example, the 

diamond stands for a short cut to the Compensation Property being ‘True’. It specifies that 

Article11_part2 will only be evaluated when a customer request is accepted (because it is always 

ok for AcceptCustomerReq not to hold). The key word, ‘Always’ in the formula of 



Article11_part2 is a Global Temporal Operator, which has a direct interpretation in LTL as the G 

operator. Four types of global temporal operators are supported by BPSL: ‘(Possible) Always’, 

‘(Possible) Eventually’, ‘Repeat’, and ‘Never’. ‘(Possible) Always’ is equal to G or AG(EG); 

‘(Possible) Eventually’ is equal to F or AF(EF). ‘Repeat’ and ‘Never’ mean that the temporal 

sequence must hold at least n times or that it must never hold at all. Different Boolean Blocks are 

associated with the Temporal Operators in BPSL. For example, in Figure 5(a) ExistWithin [inf] 

specifies that after a customer request is accepted (AcceptCustomerReq), the customer 

information must be obtained including the customer name and ID. Here inf is the scope 

parameter for the operator ExistWithin with the value of infinity. 17 stereotypes of temporal 

operators with different semantics are supported in BPSL to specify temporal relations in 

different situations. While some of the Temporal Operators have a direct mapping to LTL 

temporal operators (e.g., Next [3] for X X X, AllWithin [inf] for G, etc), others can be used to 

express rather complex temporal relations in a simple and compact manner (e.g., the 

MultiWithinOnEvt [scope] [n] operator specifies the scenario that a Boolean Block must hold for 

n times when a certain event occurs within the scope). Consequently, the final LTL formula 

corresponding to Article11_part2 is: 

 (   (( & { ,  })

   &  (  &  { , }) &   ( )))

G action AcceptCustomerReq F action ObtainCustomerInfo Paralist name ID

F action VerifyCustomerIdentity paralist name ID F action ReordCustomerInfo

= → = =

= = =  

The mapping of this formula to the BPSL notations is also illustrated in Figure 5(a). 

 

As to Article13, two new elements need to be introduced. The rectangle TRUE indicates a 

Boolean Block which will always hold. The notation of LargeDeposit, on the other hand, is a 

post-condition associated with this Boolean Block. In BPSL, a post-condition specifies whether 

it is necessary to further evaluate the rest of the temporal sequence after a Boolean Block. For 

example, in Article13, the post-condition of LargeDeposit specifies that ReportLargeDeposit will 

(only) be performed after a LargeDeposit is detected (i.e., action= LargeDeposit � F (action= 

AcceptCustomerReq)). Consequently, the final LTL formula corresponding to Article13 is: 

( (

( )))

G action AcceptCustomerReq F action LargeDeposit

F action ReportLargeDeposit

= → = →

=  
The mapping of this formula to the BPSL notations is also illustrated in Figure 5(b). 

 

Finally, Article11_part1 is captured using a Compound Temporal Operator which specifies the 

logical relation (And) between two Simple Temporal Sequences. Here a new Temporal Operator 

Precede appears. The Precede relation (a Precede b) specifies that either b never occurs or there 

is no occurrence of b before a holds, i.e., 

 ))()(((!|)(! omerInfoObtainCustactiontOpenAccounactiontOpenAccounaction =∪== . 

Consequently, the final LTL formula corresponding to Article11_part1 is: 

))))()(((!|)((!

&)))()(((!|)((!

omerInfoVerifyCustactiontOpenAccounactiontOpenAccounaction

omerInfoObtainCustactiontOpenAccounactiontOpenAccounactionG

=∪==

=∪==
 

The mapping of this formula to the BPSL notations is also illustrated in Figure 5(c). The above 

mapping follows exactly the semantics of BPSL 
15

 and thus ensures its correctness. 

 



4. Compliance Checking Framework and Case Study Results  

Having the above introduced FSM and LTL, model checking technology can be used to verify 

whether the business process complies with the compliance rules. We firstly briefly explain the 

basic concepts of model checking. We then introduce our compliance checking framework. 

Finally, we present a case study result to illustrate the practical feasibility of this framework.  

 

4.1 Model Checking  

Model checking 
18

 is an automatic technique for verifying finite state systems, which has been 

successfully applied to the verification of hardware designs, communication protocols, etc. The 

main idea of model checking is to search the state space of a system model and to verify whether 

it satisfies some user-defined properties (e.g., temporal constraints such as liveness or safety 

properties). The advantage of model checking over traditional simulation and testing is that it can 

exhaustively search the whole state space of a system and can prove the system is indeed 

error-free. The advantage of model checking over deductive verification is that it requires less 

expertise and experience in logical reasoning from users. In fact, the procedure of model 

checking needs little user intervention, can be performed automatically, and results in a final 

‘yes’ or ‘no’ answer. 

 

Model checking generally includes three steps: 

1. Transforming the target system that is to be checked into a formal system model. In our case, 

our target is the business process model expressed in BPEL and the formal model we chose 

is Pi calculus
 16,29

. The total behavior of the business process can thus be obtained in a Finite 

State Machine (FSM) expressing the operational semantics of Pi calculus. BPEL and Pi 

calculus have already been introduced in the previous sections. 

2. Specifying the properties that the formal system model is expected to satisfy. Often, Linear 

Time Logic (LTL) is used to capture such specifications. As writing correct statements in 

temporal logic is relatively difficult, for our compliance checking method, we have 

developed the Business Property Specification Language (BPSL), a visual property 

specification language, to formally express such properties. BPSL properties are then 

automatically translated into LTL formulae.  

3. Performing the verification of the formal system model against desired properties with 

model checking algorithms. The generated result indicates whether the system satisfies the 

properties. Our compliance checking framework, Open Process AnaLyzer (OPAL), 

integrates the BDD-based symbolic model checking algorithm implemented in NuSMV2
 30

. 

The validity and effectiveness of the algorithm has already been proved from both academic 

and industrial sides. In addition, OPAL also provides a counter-example tracing capability 

for business process models and offers its own optimization approach for compliance 

checking. 

 



4.2 Compliance Checking Framework 

Figure 6 provides an overview of the Open AnaLyzer (OPAL) toolkit, our implementation of the 

compliance checking framework. While OPAL supports compliance checking of different 

business process models against compliance rules, the OPAL framework is independent of a 

specific business process modeling approach and a model checking method. OPAL offers an 

open framework to integrate different business process modeling tools (e.g., WBI Modeler) and 

model checking engines (e.g., NuSMV2
 30

 and Rule Base
 31

) via the Process Model-to-Pi 

Transformer and the Model Checker Adapter respectively. The component Process Model-to-Pi 

Transformer is responsible for generating the Pi processes for different business process models. 

Compliance rules are specified in the BPSL editor. Because the elements in a compliance rule are 

closely related to the business process model, there is a GUI Adapter between the BPSL Editor 

and the Process Modeling Tool. For example, some activity elements can be directly dragged 

into the BPSL editor from the process modeling tool through the respective adapter. 

      

Figure 6. Compliance Checking Framework 

As introduced previously, we use Pi calculus as the formal method to formalize business process 

models, and LTL is used to specify temporal properties. The details of the BPSL-to-LTL 

Transformer, the Process Model-to-Pi Transformer, and Pi-to-FSM Transformer have already 

been introduced in the previous sections. The Model Checker Adapter is used to integrate 

existing model checking engines such as NuSMV2 and Rule Base with OPAL. The framework 

provides an additional capability to trace counter-examples in the business process model, called 

Counter-example Tracer. Further, compliance checking results can be generated as compliance 

reports using the Compliance Checking Reporting module.  

 

Since this framework is intended to be used by business people for business process model 

checking, two points must be addressed. The first one is the understandability of the checking 



results. For example, if a business process model does not comply with a compliance rule, 

business people require help to position error points in the process model. Counter-example 

Tracer can help solve this problem. The other aspect is how to guarantee an acceptable 

performance of the compliance checking method. If a business process model is very complex, 

optimization helps improve the performance of compliance checking. These important features 

of OPAL are discussed further below. 

4.3 Running Example with Results 

Let’s now recall the case study about SimpleBank’s account opening process that was described 

in section 1. It has been used as a running example throughout the entire paper to illustrate our 

compliance checking method. We have applied OPAL to check the compliance of the account 

opening process in Listing 1 against the compliance rules defined in Figure 3. As explained in 

section 3, the account opening process was automatically transformed to Pi calculus, and further 

into a FSM with the help of OPAL. Likewise, the regulatory requirements of Article 11 and 

Article 13 were formalized as compliance rules using OPAL’s BPSL modeler, which were then 

automatically transformed into LTL. 

 

OPAL has been developed as a plug-in for the Eclipse platform, which allows for the integration 

with different business process modelers like WBI Modeler and other Eclipse-based BPEL 

editors
 32

. We tested our case study using OPAL on a Windows platform with an Intel P4 

processor, 3.0MHz, and 2.5GB RAM and obtained the following results: OPAL took 0.056 

seconds to transform the account opening process expressed in BPEL into Pi expressions as 

introduced in section 3. The time consumed for transforming the Pi calculus formalization into 

its corresponding FSM was 49.959 seconds. The final FSM contained 11832 (i.e., 2^13.5304) 

reachable states out of 535840 (i.e., 2^19.0314) states after OPAL applied its sequentialization of 

interleaving actions optimization to compact the FSM, which is introduced further below. The 

checking of the three compliance rules in Figure 3 consumed 121.0 seconds of CPU time. This 

also included an additional 21.0 seconds for generating the needed counter-examples for the 

violated compliance rules. The peak memory cost was 71.960 MB. 

 

As the final compliance checking results showed, the account opening process complies with the 

two compliance rules Article11_part1 and Article13. However, it does not comply with the 

compliance rule, Article11_part2. The counter-example for Article11_part2 contains the state 

trace of 54 states, which shows there is a possible execution path in the account opening business 

process in Figure 1 where the customer information was already recorded in the banking system 

before it has been verified for correctness. 

 

As we have explained so far, OPAL is capable of automatically checking the compliance of our 

account opening process model against the three compliance rules introduced in the introduction. 

Thus, OPAL users realize that the current account opening process is non-compliant before 

deployment, which helps increase the deployment efficiency and lowers the risk of installing 

non-compliant processes. 

 



Our experience with OPAL has shown that our current implementation can handle a state space 

with 10^6 reachable states out of 10^8 total states within 15 minutes.  

5. Advanced Features of the Compliance Checking Framework 

Two important features of the framework, counter-example tracing and performance 

optimization, are addressed in this separate section. 

5.1 Counter-example tracing  

If a regulation rule is not satisfied by a business process model, normally, a counter-example 

would only be generated in the corresponding FSM of the process model as the model checking 

algorithm is executed based on FSM. For business people, a counter-example based on a FSM is 

meaningless. Hence, we must provide a mechanism to trace the counter-example back to the 

business process model. We have developed such a mechanism for OPAL. 

 

Since the previous counter-example in our running example is too large (a state trace of 54 

states), we now present a simpler example to explain how OPAL’s counter-example tracing 

mechanism works. The BPEL program of the account opening process in Listing 1 is simplified 

to the BPEL program SimpleAC given in Listing 2: 

 

Listing 2. BPEL Program of SimpleAC 

 

This simple BPEL process can be transformed to the following Pi process using the BPEL-to-Pi 

transformation rules introduced in section 3 (For simplification, some channel names have been 

shortened, for example, ‘AcceptCustomerReq’ is abbreviated as ‘ACR’): 



. ( ). .

. ( ). . ( ). .

. ( ). . ( ).

acqacq acq

ocioci acq oci

vci oci vci

Receive AcceptCustomerReq Start ACR v put v done

Invoke ObtainCustomerInfo Start Get v OCI v OCI w put w done

Invoke VerifyCustomerInfo Start Get v VCI v VCI w put w

= < >

= < > < >

= < > < > .

( , )

(( | |

( | . ) | . . )
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vci
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flowvci

done

Flow Invoke ObtainCustomerInfo Invoke VerifyCustomerInfo

new ack Invoke ObtainCustomerInfo done ack

Invoke VerifyCustomerInfo done ack ack ack done

Sequence Receive AcceptCustomerReq Fl

=

( , ))

  ( | ( | ) |

 ( , )

oci vciacq

ow Invoke ObtainCustomerInfo Invoke VerifyCustomerInfo

Receive AcceptCustomerReq Done Start Start

Flow Invoke ObtainCustomerInfo Invoke VerifyCustomerInfo

Partner AcceptCustomerReq ACR req

P

=

= < >

.

.

  ( | ( ,

( ,

acq

artner ObtainCustomerInfo OCI w OCI Info

Partner VerifyCustomerInfo VCI w VCI Info

AccountOpeningProcess new all names Start Sequence Receive AcceptCustomerReq

Flow Invoke ObtainCustomerInfo Invoke Ve

= < > < >

= < > < >

=

)) |

| |

| ( ) | ( ) | ( ))acq oci vci

rifyCustomerInfo

Partner AcceptCustomerReq Partner ObtainCustomerInfo

Partner VerifyCustomerInfo Variable acq Variable oci Variable vci

In the above formalism, allnames represents all free names in AccountOpeningProcess, thus 

making AccountOpeningProcess a closed system with all its names restricted to itself. The 

formalization of Variableacq , Variableoci and Variablevci is done as explained in section 3. In the 

same section, we have also introduced how to transform a Pi process to a FSM. Accordingly, the 

above Pi process can be transformed into the FSM shown in Figure 7 with the help of OPAL. 

  

Figure 7. FSM Example 

The above diagram only shows part of the FSM of the entire SimpleAC Process model, which 

contains totally 69 states as the transformation result of OPAL. Using OPAL, we may now check 



the following property, and we are thus informed that the result is wrong.  

))()((!|))((! omerInfoObtainCustactionomerInfoVerifyCustactionomerInfoVerifyCustactionG =∪==

OPAL visualizes the transformed FSM and the counter example generated by NuSMV2. The 

counter-example is indicated by the state transitions in red lines in the above diagram, showing a 

possible execution path in SimpleAC Process, where the customer information may be verified 

before it is obtained in the first place. 

 

Since the counter-example in the above diagram is given at a state machine level and contains 

many redundant action information (e.g., startacq, ack, etc), it is hard for business people to 

comprehend what the counter-example stands for from a business perspective. Therefore, OPAL 

provides a counter-example mapping from the FSM to the BPEL process model. Such mapping 

is implemented by preserving only the actions that have a directly connection with the 

corresponding BPEL activities (e.g., AcceptCustomerReq, ObtainCustomerInfo, 

VerifyCustomerInfo) and remove any other redundant information in the counter-example. Then 

the mapped counter example in BPEL is shown as given below: 

Invoke AcceptCustomerReq -> Invoke VerifyCustomerInfo -> Invoke ObtainCustomerInfo 

5.2 Performance optimization 

The basic idea of model checking is to exhaustively search the state space of formal system 

models to discover potential violations of specific logical constraints that a user specifies. To 

make model checking more applicable to realistic large-scale models, performance tuning and 

improvement of model checking is a critical research area. OPAL reuses optimized, 

state-of-the-art model checking algorithms, and focuses mainly on the business process level 

with its own optimizations. Specifically, it improves the performance of compliance checking by 

concentrating on the following two aspects: 

 

1.) State space reduction of the business process when transforming it to a FSM. States that do 

not influence the checking result in the FSM are identified and removed so that the state 

space of the business process can be decomposed or radically reduced. In OPAL, 

sequentialization of interleaving actions is one of the methods implemented to remove 

redundant states from the state space; 

2.) Controlled state space searching using business bug patterns. Compliance checking can be 

rendered more efficient by a guided search for bugs in the business process.  

5.2.1 Sequentialization of interleaving actions 

As we know, concurrency is a major cause of state space explosion. Accordingly, unnecessary 

concurrencies in business process models may be eliminated to avoid redundant states. Inspired 

by the idea of partial order reduction
 18

, OPAL tries to remove unnecessary concurrencies in the 

Pi calculus specification, which will not affect the semantics of the corresponding business 

process. We call this approach sequentialization of interleaving actions. When a business process 

is formalized in Pi calculus and transformed to a FSM, the state space can thus be made as 



compact as possible. 

 

To explain the rationale of our approach, we take the formalization of SimpleAC as an example. In 

our SimpleAC example, there are two parallel activities, ObtainCustomerInfo and 

VerifyCustomerInfo. It seems reasonable to model the triggering of the two activities in a 

concurrent form, i.e., start oci| start vci in the formalism of Sequence, since these two activities are 

executed independently and in an arbitrary order. However, it is easy to note that start oci and 

start vci only play the role of triggering the execution of two Pi processes but do not affect the 

execution order of the two activities ObtainCustomerInfo and VerifyCustomerInfo at all. 

Consequently, even if start oci| start vci are sequentialized as start oci. start vci, the internal 

behavior of the two activities (i.e., the retrieval and assignment of variables via Get and Put, the 

invocation of PartnerLinks l , etc.) is still interpreted in an interleaving form. To be intuitive, the 

execution of start oci and start vci in either order can result in a same global state in the FSM of 

SimpleAC. Therefore, we can safely replace this concurrency with a sequence and reduce the 

redundant states caused by the concurrency. The same situation also holds for the formalism of 

Flow, where ocidone  and vcidone  are modeled as vcioci donedone | . 

 

Thus, OPAL avoids unnecessary concurrencies in the formalization of a business process model 

when transforming it into a FSM. Typical sequentializations are implemented in OPAL including 

the formalism of the Fork nodes, Join nodes, multiple inputs/outputs for an activity in the UML 

activity diagrams and compatible models, the Flow structure, multiple incoming/outgoing links 

for an activity in BPEL models, etc. Note that the sequentialization in the Pi calculus processes 

does not mean that the corresponding activities in the BPEL process are sequentialized. 

 

As an example, the state-transition diagram of SimpleAC can be simplified. The states (ID 62-65) 

and their transitions in brown color and dashed lines in figure 7 show the part of the FSM that can 

be reduced due to the optimization. The optimized FSM is reduced to 43 states. Internal 

experiments have demonstrated the practical value of state space reduction using sequentialization 

of interleaving actions, especially for complex process models with many unnecessary 

parallelisms. 

5.2.2 Business bug patterns guided state searching 

Despite great improvements regarding the performance of model checking, the exploitation of 

domain knowledge is crucial to further improve the efficiency of compliance checking. Since 

model checking is more useful to probe hidden bugs in a system than to prove its correctness, we 

have developed business bug patterns, i.e., a set of anti-patterns corresponding to the 

well-known Workflow Patterns
 33

 to represent common behavioral violations in a business 



process. A guided search mechanism is then implemented to more efficiently search for these 

business bugs in a business process model. 

 

To explain the main idea of business bug patterns
 34

, let’s take the simple sequential pattern 

between two activities A and B as an example. To falsify the semantics that activity A and B are 

executed in a sequential order, a business bug pattern SequentialBug(A, B) is shown below:  

 SequentialBug(A, B)=SimultaneousExecution(A, B)∨∨∨∨NoResponse(A, B) 

 SimultaneousExecution(A, B)= {[*];!A.Exit & B.Start} 

/*After certain number of steps, a state is reached in the process where B is started 

while the execution of A does not yet take place. 

 NoResponse(A, B)= {[*];A.InExecution; A.Exit} |->{B.InExecution[=0]} 

/*If A is finished in the process, no B will be executed afterwards 

The semantics of the SequentialBug pattern are formally captured with the IEEE Property 

Specification Language (PSL)
 35

. Contrary to Sequential(A, B), the sequential bug pattern tries to 

find that either both A and B start their execution simultaneously, or that B is never executed 

after A is done. The above two aspects can be defined with two more atomic bug patterns 

SimultaneousStart(A, B) and NoResponse(A, B) respectively. The symbol ‘∨’ indicates that the 

SequentialBug holds when either SimultaneousStart or NoResponse is satisfied. Here, the 

SequentialBug does not necessarily check whether A is possibly executed after B since this is 

acceptable (e.g., when B loops back to A). 

In the above definition, the form of “A.Exit” indicates that the execution of activity A is 

terminated. The execution status (e.g. Start, InExecution, Exit, etc.) can be encoded in the FSM 

model of the business process according to the actions in the Pi calculus process that has been 

enacted. Figure 8 shows an example of such mapping for the Receive activity. 

l

 

Figure 8. Mapping Example from Pi calculus to FSM 

A full reference of all the business bug patterns can be found in our previous work
 34

. 

 

In order to more efficiently probe the potential existence of such bugs in a business process 

model, our idea is to always follow a subset of interesting states while traversing the state space. 

The interesting states should be the states that can lead to the detection of a targeted business 

bug pattern within the least number of transitions. 

 

More specifically, we define: 

M(m): the complete state space (universe) of a business process m, with its initial state on which 

all of the activities are NotStarted; 

S(m)={s(act1),s(act2),…}: A state in M(m) which is encoded as the states of all activities in m, 



where acti∈ m & s(acti)∈{acti.NotStarted, acti.Start, acti.InExecution, acti.Cancel, acti.Failed, 

acti.Exit};  

The distance between two activity states D(s(act)1, s(act)2) is thus defined as the least number of 

transitions from one state s(act)1 to another state s(act)2. For example, if D(act.Start, act.Exit)=2, 

it means that at least two steps are need from state Start to state Exist for action act. Therefore, 

the distance between two states in the process is defined as the weighted average of D: 

D_S(S(m)1, S(m)2)= Σi D(s(act)1i, s(act)2i) / | S(m)| The interesting states for a given 

commitment state CS in state set SS are thus:  

 S(m)_CS={S(m)|S(m)∈SS, ∀S’(m)∈SS D_S(S(m), CS)< D_S(S’(m), CS)} 

A more detailed reference of our guided searching mechanism and its algorithms can be found in 

our previous work 
34

. Our experiments have shown that the guided reasoning of business bug 

patterns can help improve the performance of compliance checking in OPAL. Table 1 shows a 

set of experiment results on the compliance checking of the account opening process in Figure 1, 

which has a total state space of 8361 (2^13.0295) reachable states. The guided business bug 

searching algorithm has been implemented in OPAL. The test environment was again a 

Windows platform, with an Intel P4 processor, 3.0MHz, and 2.5GB RAM. 

Table 1: Experiment Result on Checking Account Opening Process 

OA 
Target Bug 

From Pi to FSM Model Checking 
GBH Result 

B1 118.200 s 2.031 s Found 

B2 112.700 s 41.703 s Not Found 

B3 177.600 s 26.438 s Found 

B4 129.300 s 60.469 s Found 

B5 

57.218 s 

221.900 s 72.266 s Found 

 

B1 SequentialBug(VerifyCustomerIdentity, RecordCustomerInfo) 

B2 MilestoneBug(ProposeAccountOpening.Exit, ActivateAccount.PreStart, ValidateAccountInfo) 

B3 InterleavedParallelRoutingBug(OpenAccount, DoDeposit, RecordAccountInfo) 

B4 ExclusiveChoiceBug(AcceptCustomerReq,{VerifyCustomerIdentity, ValidateAccountInfo }) 

B5 SequentialBug(AcceptCustomerReq, PrepareProposalDoc) && 

PallelSplitBug(PrepareProposalDoc, {VerifyCustomerIdentity, ProposeAccountOpening}) && 

SequentialBug(ProposeAccountOpening, ActivateAccount) && 

SynchronizingMergeBug({ActivateAccount, VerifyCustomerIdentity }, DoDeposit) 

(OA: Original Approach; GBH: GuidedBugHunting) 

(Mlv = 1 and Gate = 10) 

The experiment results show that our guided business bug searching approach can improve the 

performance of finding potential violations in a business process compared to the original 

approach. Intuitively speaking, the reason for the improvement is that our approach takes 

advantage of the pre-identified activity status and always following the shortest path that may 

lead to the detection of a targeted bug. Uninteresting state traces are neglected to narrow down the 

state space that needs to be traversed. Therefore, the guided business bug searching approach is 

useful for checking the compliance of complex large-scale business processes. However, the 

approach is not perfect: its merits come at some cost too: 

 



1. It can only be used to falsify a business process because it does not guarantee the full 

traversal of state space of the business process. Since model checking is more useful for 

finding system bugs than to prove them correct 
36

, the approach is still valuable for checking 

compliance of real industrial business designs which are too large for classical model 

checking to run to completion.  

2. It is not suitable for the application in small scale business processes. On the one hand, it will 

be totally affordable to have a thorough and precise checking of simple business processes 

with model checking. On the other hand, the computation of the interesting states in the 

approach is not negligible for the compliance checking of a simple business process, thereby 

giving away the performance advantage of the approach. 

6. Related Work 

With the rapid growth of complexity in existing business applications and their supporting IT 

infrastructures, ensuring highly secure and reliable business process development is becoming a 

critical task. In the past few years, there have been a lot of works with respect to the modeling of 

business processes and developing verification techniques and tools for them. A recent survey is 

done by Breugel et al 
37

. In this section, we identify three aspects pertaining to the compliance 

checking of business process models. We will report on the literature in each area and clarify the 

difference of our work. 

6.1 Pi Calculus as the Formal Foundation for Business Process Models 

Many researchers generally agree that formal models should be used as a basis for complex 

business process modeling languages like BPEL 
38

. “It will allow us to not only reason about the 

current specification and related issues, but also uncover issues that would otherwise go 

unnoticed”
 39

. In this context, tremendous focus has been concentrated on Petri-net and Pi 

calculus. However, this has also lead to a long debate on what is the most suitable formal 

foundation for business process models. Smith et al support the Pi calculus and argued that 

“workflow is just a Pi calculus”
 40

. The design of web service composition languages like 

XLANG and BPEL is also claimed to be based on Pi calculus. Van der Aalst, on the other hand, 

appealed that more solid works should be done in order to prove the effectiveness of Pi calculus 

in modeling business process 
38

. As a matter of fact, there have been some previous works on 

formalizing various business process models with Pi calculus including UML statechart diagram
 

41,42
, UML(2.0) activity diagram

 43,44
, workflow patterns 

45
, etc. Previous work has also shown 

that Pi calculus is a suitable formal composition language for software composition and web 

service composition
 46,47,48

. In our work, we have formalized BPEL process models with Pi 

calculus, instead of using Petri-nets or Automata (and their extensions). We rely on Pi calculus 

for the following reasons:  

(1) Automata and Petri-nets are often used to model closed systems, whose behavior is 

completely determined and controlled by the state of the system. However, the Pi calculus, aside 

from its mobility feature, is designed to model open communicating systems, whose behavior is 



determined by the state of the system and the interaction with the behavior of the environment 
29,49

. For example, FSM model is under complete control over its transitions, while in Pi calculus, 

all observable actions are under the joint control of the process and its environment. Therefore 

one may regard FSM as the processes in Pi calculus with only internal actions. 

In the case of BPEL, although it can be regarded as a fully controllable orchestration of various 

services, there are also cases when the behavior of a BPEL process (e.g. a service invocation 

according to the WSDL specification) needs an interactive feedback from the environment of the 

process (e.g. a dynamically changing service portfolio). For example, when BPEL is used as an 

abstract service composition language with the automatic discovery / mapping of the target 

services for invocation, it becomes critical to consider the communications with the environment 

information like the available service candidates in the service portfolio, service selections 

(which can be best modeled by the mobility feature of Pi calculus), etc. 

(2) Another advantage of Pi calculus is its mobility and compositionality. Here compositionality 

means that there is a natural “composition” operator in Pi calculus to model a system from its 

sub-components. This operator does not exist in Petri-nets. Therefore, for composing various 

web services by BPEL to form a process, it is more natural and beneficial to use a compositional 

language like Pi calculus instead of FSM or Petri-net, which will involve additional operations 

and computations for the composition. 

(3) Pi calculus is theoretically sound and supports bisimulation analysis and model checking. It 

enjoys increasing acceptance and tool support in the industry. It has also been used as the formal 

foundation for business process modeling languages like BPEL and XLANG. However, as 

pointed out by van der Aalst
 38

, more work needs to be done to provide formal models, 

verification approaches and automatic tools for business processes based on Pi calculus. Our 

work can be regarded as a response to this appeal. 

6.2 Formal Verification of BPEL Process Models 

Based on the formal semantics, there have been some previous works on the formal verification 

of BPEL process models. Fu et al. 
50

 first translates BPEL processes into (Guarded) Automata 

and LTL model checking can thus be performed with SPIN 
51

 with an additional transformation 

from (Guarded) Automata to Promela 
51

. Besides, Fu et al. 
50

 studied the so-called 

synchronizability and realizability analysis for the composition of web services. Kovács et al. 
52

 

also exploit the model checker of SPIN, although the intermediate model between BPEL and 

Promela is a model of dataflow network. Foster et al. 
53

, on the other hand, take the BPEL 

process and translates it into the form of Finite State Process (FSP) calculus and then compile it 

into a Labeled Transition System (LTS). The formal verification is then performed by the 

existing Labeled Transition System Analyzer (LTSA) tool suite. Ouyang et al. 
54

 and Lohmann et 

al. 
55

 both provide a semantic transformation from BPEL to Petri-net. However, while Ouyang et 

al. 
54

 focuses on the analysis of specific process properties like reachability analysis, competing 

message-consuming activities and garbage collection of queued messages, Lohmann et al. 
55

 

focuses on the controllability of the process, i.e., whether a strategy can be constructed to impose 

the weak termination property on the corresponding workflow net. Finally, instead of dealing 

with the BPEL model, Koehler et al. 
56

 proposed a pattern-based mapping approach to model a 

general business process. Two typical properties in a process model (i.e., reachability and 



termination) are formulated with the temporal logic of CTL, which can be later verified by 

existing model checkers. 

Our compliance checking approach differs from these works in two ways.  

(1) The theoretical foundation is different. We have used a Pi calculus based approach instead of 

an Automata-, or Petri-net-based approach. The benefits of our selection have already been 

addressed in the previous sub-section. 

(2) The completeness of the approach is different. We not only focused on the verification of our 

formalized BPEL models against specific structural errors. More importantly, our work involves 

a more detailed proposal of subjects including counter-example guiding, performance 

enhancement and visualization of temporal logics, which are critical issues to make the formal 

verification of business processes really practical and usable. 

6.3 Specifying Regulatory Rules with Temporal Logics 

Specifying user-desired properties with logical formulae is an important step in the formal 

verification of business process models. The intuitiveness and convenience in the property 

specification thus becomes key issue in making the formal verification approach more applicable 

to business analysts who may not be logical experts. The LTL model checker plug-in in ProM 
57

 

exploits a textual form of LTL formula directly. The work in Giblin et al. 
12

 extends a Timed 

Propositional Temporal Logic and is devoted to the specification of regulatory rules in a textual 

form. REALM 
12

 provides several easy-to-use features like a predefined set of business entity 

types (e.g., Artifact, Resource, Principle, etc.) and relations (e.g. Do, Input, Output, etc.) whose 

syntax conforms to a UML profile. Unfortunately, there is still no tool support for the 

verification of REALM specifications. 

On the other hand, visual extension to existing logical languages is an important research 

direction to help business analysts understand and specify logical formula intuitively. Related 

visualization works can be found for commonly used temporal logics including CTL 
58

, LTL 
59

, 

Interval temporal logics 
60

, etc. Especially in DecSerFlow 
61

 a graphical representation of the 

so-called Declarative Service Flow Language is proposed which can be mapped onto LTL and 

enables the LTL verification of web service flow models. 

As explained above, our Open Process AnaLyzer (OPAL) toolkit contains an editor for the 

Business Property Specification Language (BPSL) to visually specify various regulatory rules. 

BPSL is different from the above works in the following aspects. 

(1) It is a visual specification language which supports both the temporal logics of LTL and CTL. 

It is also compatible with the IEEE standard of the Property Specification Language 
35

. 

(2) It enables the intuitive and convenient specification of regulatory rules by customizing 

predefined Property Templates in BPSL. The source of these templates comes from the existing 

works on Business Property Specification Patterns 
23

, Business Bug Patterns 
34

, etc. 



7. Conclusion 

We have introduced OPAL, a compliance checking framework and related tools, including a 

static method to check business process models against compliance rules. Compliance checking 

tools enable to quickly assess the compliance of business process models in batch-mode. The use 

of high-level specification languages such as BPEL (as opposed to Pi calculus or FSMs directly) 

and BPSL (as opposed to LTL specifications) and the definition of automatable transformations 

into low-level formalisms yields easier, more intuitive, and less error-prone process modeling, 

thus reducing the risk of implementation errors and non-compliant operations. If non-compliant 

business process models are discovered, counter-examples can be generated on the level of the 

business process model. This capability provides a better understanding of the nature of the 

problem and enables a quicker reaction to address and rectify the non-compliant processes. 

Because of these capabilities, also business people can potentially use the compliance checking 

tool.  

 

Our compliance checking method builds on classical model checking technology. After a 

business process model has been formalized with Pi calculus, it can be transformed into a FSM 

representation. The intermediate models of Pi calculus and FSM enable our compliance checking 

framework to be scalable to both the future emergence of new business process modeling 

techniques and the reuse of more powerful model checking tools. As a matter of fact, although 

this paper mainly address the application of the framework in BPEL processes, our current 

implementation of the compliance checking framework (i.e., the OPAL toolkit) has also been 

applied in the verification of WebSphere Business Integrator process models. Since performance 

is always a critical problem in the area of model checking, we have also proposed the 

sequentialization of interleaving actions method to reduce the overall state space. The business 

bug patterns guided state searching approach can further help improve the efficiency of 

compliance checking. As conducted experiments illustrated, these two optimization approaches 

can greatly help improve the performance of compliance checking.  

 

As to future work, we intend to extend the existing compliance checking method to also support 

the verification of resource and data constraints that are related to the business process models. 

Additionally, we will focus on performance optimization. Finally, we intend to apply our 

compliance checking method to more real cases to further validate the capabilities and usability 

of our compliance checking framework.  
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