
RZ 3764 (# 99774) 01/26/2010
Computer Science 21 pages

Research Report

Enabling Applications for RDMA: Distributed Compilation
Revisited

Philip W. Frey,1,2 Bernard Metzler,1 and Fredy Neeser1

1IBM Research – Zurich
8803 Rüschlikon
Switzerland
2Swiss Federal Institute of Technology, Zurich (ETHZ)
8092 Zurich
Switzerland

Email: {phf,bmt,nfd}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Enabling Applications for RDMA:

Distributed Compilation Revisited

Philip W. Frey1,2, Bernard Metzler1, and Fredy Neeser1

1 IBM Research GmbH, Rueschlikon, Switzerland

{phf,bmt,nfd}@zurich.ibm.com

2 ETH Zuerich, Switzerland

Abstract. Remote Direct Memory Access (RDMA) traditionally aimed at improving

high-performance computing applications and storage-area networks because CPU cy-

cles and memory bus load can be reduced significantly by applying the zero-copy and

direct data-placement techniques offered by RDMA. With the advent of iWARP, the

RDMA technology is now available to the ubiquitous TCP/IP infrastructure and, thus,

becomes interesting and relevant for legacy applications. In this paper, we present the

conversion of the distributed C/C++ compiler distcc from sockets to the RDMA interface,

and investigate the implications of using asynchronous and one-sided versus two-sided

communication, RDMA-style buffer management, and notification mechanisms. We have

designed a distcc extension that takes full advantage of asynchronous one-sided RDMA

operations. By introducing a connection manager, we improve the communication effi-

ciency and increase the scalability of distcc. Our tests with the RDMA-enabled distcc

use a software-only iWARP implementation called SoftRDMA, which offers RDMA com-

munication using conventional Ethernet adapters. The ideas and approach presented in

this paper can be generalized to a wide range of applications.

Key words: RDMA, iWARP, zero copy, explicit buffer management, asynchronous com-

munication, one-sided operations, SoftRDMA, tmpfs, distributed compilation, distcc

1 Introduction

Remote Direct Memory Access (RDMA) implements direct data placement which enables trans-

ferring data from the memory of one host directly into the memory of another without involving

the CPUs in the transfer — extending the well-known local DMA model with network capabili-

ties. In order to fully bypass the CPU and to avoid temporary buffering and associated memory

bus transfers (as it is done in sockets), the RDMA programming interface requires applications

to explicitly manage their communication buffers. An RDMA-enabled network interface card



2 Philip Frey et al.

(RNIC) provides a hardware accelerated RDMA-ed network stack instance in addition to the

conventional network stack in the operating system kernel. Using RDMA’s clear communica-

tion buffer ownership rules, the application temporarily passes control over its buffers to the

RNIC for direct data placement. This allows for a true zero-copy data transfer while avoiding

all in-host copy operations. Only such zero-copy architectures can deliver the entire available

network bandwidth up to the application without causing heavy local traffic on the memory

bus and CPU as the link speed of new interconnect technologies available today (e.g., 10 Gb/s

Ethernet [1], InfiniBand [2]) have caught up with the memory bandwidth available in modern

architectures. While initially based on proprietary network technologies, the advent of TCP/IP-

based RDMA, called iWARP, and the standardization of RDMA APIs (IT-API [3], RNICPI [4])

make RDMA suitable for legacy applications.

In this paper we explore how to convert legacy distributed applications to the RDMA

communication model and exemplify the process with an iWARP-based distributed compiler.

We describe the required application changes such as the adoption of asynchronous APIs and

explicit buffer management to make efficient use of the RDMA semantics. Even though we

advocate the use of hardware RDMA NICs, we did not have any available for our tests and

therefore ran the experimental evaluation in software using conventional Ethernet adapters. To

estimate the benefit of future RNICs, we used a dual core machine where one core was dedicated

to network processing while the other was running the application. Since the software based

RDMA implementation follows the standardized RDMA API, no porting effort is necessary to

run the distributed compiler on RNICs later on.

The paper is organized as follows. Section 2 gives background information on RDMA by

describing its basic semantics as well as some of the required OS infrastructure including the

software implementation used for our experiments. In Section 3, we illustrate the process of

enabling an application for RDMA by extending the distributed C/C++ compiler distcc. After

an overview of the TCP-based distcc, we describe our RDMA extension called rdistcc. We then

provide a discussion of typical RDMA connection management issues, advocate the use of a

RAM disk for memory-to-memory file transfers in combination with RDMA and discuss our

buffer management options. This is followed by the details of our rdistcc iWARP communication

protocol. Section 4 presents the experimental evaluation of rdistcc for a small cluster. Section 5

lists related work and Section 6 presents our conclusions and an outlook.



Enabling Applications for RDMA 3

2 RDMA Background

Following “Moore’s Law”, computing power per machine doubles every two years on average.

However, network technology performance has recently grown at a much faster pace (e.g., Eth-

ernet technology has evolved from 100 Mb/s to 10 Gb/s in a much shorter time frame). Because

of this trend and the unavoidable overhead in common TCP/IP stack implementations such

as application data copying, context switches and protocol processing, an increasing share of a

host’s processing power is dedicated to pure network I/O and therefore unavailable to applica-

tion processing [5]. This dilemma is aggravated by modern storage solutions, such as storage

area networks (e.g., based on FibreChannel or iSCSI [6]) and file-based network-attached stor-

age (e.g., NFS [7]). With such systems, high-bandwidth access to remote storage results in CPU-

and memory-intensive network I/O. These distributed storage applications (e.g., iSER [8]) have

been driving the development of modern interconnect technologies and the RDMA model [9].

2.1 RDMA Semantics

One-sided and Two-sided Operations: The transport-agnostic virtual interface architec-

ture (VIA [10]) and later InfiniBand and iWARP have specified the RDMA architecture and

communication semantics. RDMA defines a superset of the classical Send/Receive communica-

tion known from sockets. It introduces RDMA Write and RDMA Read as additional operations.

An RDMA Write places local data into a remote application buffer whereas an RDMA Read

fetches data from a remote buffer and writes it into a local one. In contrast to the two-sided

Send/Receive communication — where the applications of both peers are involved in the data

transfer — the RDMA Write and RDMA Read operations are one-sided. Only the application

layer of the host issuing a one-sided operation is actively involved in the data transfer. At

the remote host, the operation is handled by the RDMA device without application or kernel

involvement (see Figure 1).

Explicit Buffer Management: RDMA operations require an explicit communication buffer

management : application buffers that are to be used as source or target of a remote DMA

operation must be registered with the OS and the RNIC as RDMA memory regions (MR) first.

Through memory pinning, this registration ensures that the buffer pages are resident in physical

memory and that the correspondence between the buffer’s virtual address interval and the

underlying page frames stays fixed. Only now the RNIC can access the communication buffers

in physical memory without requiring any OS intervention (zero-copy and kernel bypassing).



4 Philip Frey et al.

APP

OS

DRIVER

RNIC

USER

KERNEL

HW

APP

OS

DRIVER

RNIC

send() receive()

M
E

M

M
E

M

APP

OS

DRIVER

RNIC

USER

KERNEL

HW

APP

OS

DRIVER

RNIC

rdma_write()

M
E

M

M
E

M

2 1

3 2

1

APP

OS

DRIVER

RNIC

USER

KERNEL

HW

APP

OS

DRIVER

RNIC

rdma_read()

M
E

M

M
E

M

3

HOST A HOST A

HOST A HOST B

HOST BHOST B

2

1

Fig. 1: Two-sided versus one-sided operations

During RDMA data transfers each MR is identified through a unique ID, called STag. Figure 2

depicts the difference between RDMA style data placement with explicit buffers and TCP with

the flexible but more expensive socket buffer.

RDMA HOST

PHY MEM RNIC

TCP HOST

PHY MEM TCP BUF NIC

MR1

MR2

Fig. 2: TCP socket buffer versus RDMA memory regions

Asynchronous API: All operations (Send, Receive, RDMA Read, RDMA Write) are initiated

and completed asynchronously. They are described as work requests (WR) which are posted

to local work queues. The queues are asynchronously processed by the RDMA stack (e.g., the

RNIC). Each communication endpoint has two of these work queues: a send queue (SQ) and a

receive queue (RQ). Together they are referred to as queue pair (QP). The QP is associated with

a completion queue (CQ) through which the RDMA stack reports back on the completion status

of processed work requests. In order to get the completions, the application thread may either

wait for an expected work completion event on the event channel (blocking) or poll the CQ at

a certain interval (non-blocking). The IT-API [3] is an example for a high-level programming

abstraction of this. Figure 3 illustrates the asynchronous semantic for the send and receive

operations.



Enabling Applications for RDMA 5

WQE

WQE

WQE

WQE

WQE

WQE

WQE

WQE

WQE

WR

TX

CQECQE

CQE

CQE

CQEWC

CQ

SQ RQ

QP

User RDMA Subsystem (RNIC)

post_send()

process()

done()

poll_cq()

WQE

WQE

WQE

WQE

WQE

WQE

WQE

WQEWQE

WR

RX

CQE CQE

CQE

CQE

CQE WC

CQ

SQ RQ

QP

UserRDMA Subsystem (RNIC)

post_recv()

process()

done()

poll_cq()

Fig. 3: Asynchronous send/receive operations

2.2 RDMA Transport: iWARP

The Internet Engineering Task Force (IETF) has specified a set of companion protocols for

RDMA over TCP/IP: MPA [11], DDP [12] and RDMAP [13]. The topmost protocol is RDMAP

which defines the high-level semantics. The DDP protocol then constitutes how the RDMA pay-

load is to be tagged, transferred to and placed at the communication buffers of an application.

MPA finally serves as an auxiliary layer that transports the discrete DDP packets over a TCP

stream. This so called iWARP 3 stack enables RDMA connectivity over low-cost, Ethernet-

based network infrastructures.

As 10 Gigabit/s Ethernet (10GbE) is available today, iWARP competes with highly spe-

cialized network technologies. Think of iWARP as Ethernet extended with the features of

InfiniBand. Based on the economies of scale, multi-gigabit Ethernet together with iWARP

have the potential to become the unifying interconnect in the data center, relegating propri-

etary technologies such as InfiniBand, Myrinet, and Quadrics to niche markets [1]. Another

very promising property of 10GbE is its extended operating distance of 40 km, which allows a

complete rethinking of physical data-center layout and its integration with the Internet.

While some vendors already offer complete iWARP hardware solutions, OS support for

iWARP is appearing more slowly. The interface between the OS and the RDMA subsystem

is rather complex and was originally described only semantically in terms of the RDMAC

Verbs [14]. OS vendors have jointly standardized this interface as RNICPI [4]. The industry-

driven OpenFabrics [15] effort implements its own version of a transport-independent RDMA

subsystem for Linux (both iWARP and InfiniBand are supported).

3 The provenance of “iWARP” is controversial. One convincing explanation is to read it as an acronym
for “Internet Wide Area RDMA Protocol”.



6 Philip Frey et al.

2.3 iWARP Software Implementation

We have based all our RDMA experiments on the IBM Research SoftRDMA iWARP stack due

to the lack of RDMA hardware (RNIC). While iWARP stack processing is typically offloaded to

dedicated hardware, a pure or partial iWARP software implementation can still be very useful

for creating low-cost, RDMA/Ethernet-based experimental compute clusters. The main advan-

tage of SoftRDMA for us is that it allows the use of RDMA and the migration of applications

to RDMA on systems without RNIC hardware — a conventional Ethernet NIC is sufficient.

When RNICs are available, a mixed setup consisting of RNICs together with SoftRDMA

is particularly attractive for asymmetric networking applications, where one side has no RNIC

but plenty of compute cycles to spend while the other side depends on the use of an RNIC for

efficient data transfers at aggregate throughputs that are high in relation to the CPU instruction

rate (e.g., 100 MB/s on a 2 GHz Pentium core).

3 Use Case: Enabling a Socket-Based Distributed Compiler for

RDMA

Given the growing size of software packages that are distributed in source code, short compila-

tion times are generally desired. One approach for speeding up the overall compilation without

changing the compiler core is to parallelize the process by using more than one CPU simulta-

neously on the local host. An extension of this concept, known as distributed compilation (e.g.,

distcc [16]), is to use idle CPUs from remote hosts.

We have chosen distcc on Linux as an example to show how socket-based legacy applications

can profit from RDMA. Distcc is designed for static local-area network (LAN) environments

where there is not a lot of churn. As we will see this is important when using RDMA since its

initial connection setup is quite costly and complex. The original distcc protocol can be very

nicely transformed from a peer-to-peer like communication model to a client-driven one which

relieves the server from some of his work. From an application point of view, our new protocol

simplifies the communication. We show with our example how even file-based applications can

profit from RDMA although RDMA has been designed for transferring chunks of memory. We

do this without changing the way in which distcc (gcc and cpp in particular) operates on the

data. Often it is claimed that the use of RDMA is only justified if the data to be transferred is

large and if 10 Gb Ethernet or faster is used. We demonstrate with software-based iWARP over

1 Gb Ethernet and the distributed compiler, which transfers not that much data, that there is

more to RDMA than raw data copy performance.



Enabling Applications for RDMA 7

3.1 DISTCC Overview

Distcc is a well established, easy-to-use gcc wrapper that enables remote compilation. It cur-

rently supports TCP and SSH connections only. For the remainder of this discussion, we refer

to the host that initiates and offloads compile jobs as master and a host offering its CPU(s) as

slave. A master is using the CPU resources of one or several slaves for each compilation process.

The distcc setup comprises a daemon running on each slave and a wrapped gcc on the

master. The ability of the master to specify a set of slaves enables an implicit failover mechanism:

if a file cannot be compiled on a slave in due time, the file is processed locally, and the next file

will be sent to a different slave. The master does the preprocessing as well as the final linking

locally and offloads the source code to object translation to the slaves. As the preprocessing

and linking steps are performed locally, no header or library dependencies exist on the slaves

nor are any changes to the Makefile necessary.

The communication protocol defined by distcc consists of four steps: first, a TCP connection

between the master and one of its slaves is established. After that the master sends the compi-

lation instructions for the preprocessed source code followed by a file containing that code. The

return path from the slave to the master is analogous, with the difference that now, first the

outcome of the gcc invocation is sent followed by the resulting object file. At the end of each

compilation cycle, the TCP connection is closed again (see Figure 4).

connect()

send()

receive()

receive()

accept()

SEND

RECEIVE

Harddisk

src.c

send()

receive()

CONNECT

distcc

Master Slave

src.i

obj.o

distcc

cpp
send()

send()

receive()

close() close()

copy

Harddisk

src.i

obj.o

gcc

copy

copy

copy

TCP

obj.o

Compile

src.i

Result

DISCONNECT

Fig. 4: Distcc network protocol



8 Philip Frey et al.

3.2 How Can a Distributed Compiler Profit From RDMA?

Naturally, remote compilation induces the overhead of distributing source code among the nodes

offering their CPUs and of them returning the resulting object files back to the initiator. To

leverage the total available CPU power and reach a high level of scalability, it is important to

keep this communication overhead small.

The CPU cycles available for the actual compilation can be increased both by moving com-

pile jobs to remote hosts across the network as well as by taking unnecessary network processing

load off the CPU(s). As described in Section 2, RDMA relieves the host’s CPUs of executing

network-related code and permits overlapping computation with communication through its

asynchronous interfaces. In addition to that, RDMA offers one-sided operations which enable

client-driven protocols and eliminates the in-host copy overhead depicted in Figure 4 thanks to

its zero-copy technique.

binary

NETWORK NETWORK

Slave 1 Slave 2Master

source1.c sample.h source2.c

source2.isource1.i

source1.i

NETWORK

object1.o
object1.o object2.o

source2.i

NETWORK

object2.o

util.lib

Compiler Compiler

Linker

Preprocessor

Fig. 5: Example for a distributed compilation

Figure 5 depicts a simplified example of a distributed compilation where the master node is

offloading the translation of two source files into object files to some slaves. In the case of distcc,

NETWORK stands for a legacy TCP/IP network. This is what we are going to replace with an

iWARP connection in our rdistcc example. As we will see, this replacement is not trivial due

to the semantic discrepancies between sockets and RDMA.

For rdistcc, the networking share of the overall CPU load strongly depends on the host’s

role. The master is typically very busy distributing compile jobs and collecting the results.



Enabling Applications for RDMA 9

The slaves on the other hand, just wait for new input from the master whenever they are not

compiling. The overall performance of the system is limited by the number of slaves the master

is able to delegate jobs to. In order to reduce the master’s CPU load, as much of the application

logic as possible should therefore be moved to the slaves. We address this problem by the use

of one-sided RDMA operations (RDMA Read and RDMA Write). They enable a slave-driven

communication protocol which minimizes network I/O processing at the master’s CPU and

results in improved scalability relative to distcc.

The master can reduce its CPU load using one-sided operations only if an RNIC (hardware

acceleration) handles all that RDMA traffic. On the less-loaded slave side, an easily deployable,

software-based iWARP solution (such as SoftRDMA) with a conventional Ethernet NIC is

sufficient. With SoftRDMA-enabled slaves, and a hardware accelerated master, the compute

cluster can easily be extended by many slaves while still remaining highly dynamic and flexible.

Using this approach, idle CPUs (e.g., workstations of a company) can be utilized for compilation.

3.3 Applying RDMA Without Changing the Current Application Semantics

Although compilation involves files that usually reside on disk, rdistcc can still benefit from

direct memory access because we store the files on a RAM disk mounted as tmpfs [17]. By

doing this, slow and therefore expensive transfers between disk and memory are eliminated.

Moreover, local copies within main memory can be avoided when using a mapping which is

shared. With that we get two views on each file: for the compiler it looks like an ordinary file

residing on the file system but for the RDMA subsystem it is just a block of main memory.

We can now associate a memory region (MR) with the user address interval that corresponds

to that block of memory to make it accessible for the iWARP transport. This solution has the

advantage that no gcc modification is needed and that the remote hosts have remote random

access to the files.

Before we can map a file as described above, we have to get it from the persistent storage

onto the tmpfs mount. On the master side of the distributed compiler, the source files are

typically stored on a hard disk. Remember that distcc needs to preprocess the source files

locally before shipping them for remote compilation: We exploit this step to get files into main

memory without creating any overhead. To preprocess a source file and prepare the result for

later RDMA transfer to a slave, the cpp preprocessor invoked by rdistcc reads the source file

from the disk but writes the result (*.i file) to our tmpfs mount (memory) instead of back

to disk. Next, we use mmap() to map the preprocessed source file into the application address



10 Philip Frey et al.

space and register it as an RDMA memory region, denoted as SRC TX MR 4 in Figure 6. The

preprocessed source file is now ready for RDMA transport.

[ proc addr space ]

[ tmpfs ]

[ proc addr space ]

Harddisk

source.c

Memory

source.i

[ tmpfs ]

Memory

[ tmpfs ]

source.i

SRC RX MR

OBJ TX MR

SRC TX MR

object.o

OBJ RX MR

mmap()

mmap()

mmap()

mmap()

object.o

RDMA

RDMA

Master Slave

gcc

cpp

Fig. 6: Data path for remote compilation

On the slaves, we keep both the source and object files in main memory to reduce file access

times for the compiler. By using the same mmap-approach as on the master, we eliminate

the copy overhead for passing files between the rdistcc process (has MR view on data) and

the compiler (gcc operates on ordinary files). The object files resulting from compilation are

written back to local memory. Figure 6 depicts the entire data flow of rdistcc from source code

to target object files.

We argue that keeping everything in main memory on the slaves does not impose any

restrictions because preprocessed source files are small in most cases (< 1 MB). As it does not

make sense for a slave to offer more compile jobs to the master as it is able to process in parallel

(bound by the number of available CPUs), we do not consume a lot of memory altogether. Let

us assume that our average slave is a 4-way CPU machine with 1GB of RAM, offering 4 compile

jobs and that our average preprocessed file is 2 MB large. Even with the memory consumed

by the compiled object file, say another 2 MB, we need no more than 16 MB under full load

on average which is a mere 1.5% of the total available memory. When using two more compile

jobs than there are CPUs (which is suggested by the distcc author) we are consuming 2.3%.

Compared with the memory used by gcc for the compilation, the data stored in memory by

rdistcc is negligible.

For projects with much larger source files or on machines with many more CPUs and very

little memory, it makes sense for the slaves to put the data on harddisk drives. Our implemen-

4 source transmit memory region



Enabling Applications for RDMA 11

tation also supports RDMA transfers to and from harddisk instead of main memory. In that

case, the mapping is file-backed and the tmpfs mount is not used. This comes of course with the

drawback that the compiler can no longer directly operate on main memory but has to fetch

the data from the disk.

3.4 RDISTCC Buffer Management

As Figure 6 shows, we need two separate memory regions on each host: one for the preprocessed

source and another for the object file. The creation of these memory regions induces a delay

because the memory has to be pinned and registered with the RDMA subsystem as explained

before. Table 1 shows the delays measured on our SoftRDMA test machines for various sizes.

The machines are equipped with an Intel R©Pentium 4 CPU with 1.80 GHz, 2 MB Cache and

3 GB of RAM.

MR SIZE open mmap [µs] create mmap [µs] memcpy [µs]

16 KB 33 72 31

64 KB 56 151 132

256 KB 151 412 574

512 KB 292 752 1159

1024 KB 537 1453 2353

2048 KB 1039 2782 4786

Table 1: MR registration delays

The first column (open mmap) indicates the time needed for opening an existing file,

mapping it into the process address space and registering it as a new memory region. For

the second column (create mmap) we first created a new empty file and stretched it to the

desired size before mapping it and registering it as a MR. We have added the memcpy column

as reference (no mapping or MR registering was done there).

We have the options of either create a memory region once at the beginning and reuse it

for each file or we can deregister it when a transmission is done and register a new one for the

next file. We are facing a tradeoff between minimizing the overall delay (reuse) and minimizing

the memory footprint (reregister). If we are reusing the memory region, we need to make sure

that it is large enough to hold the largest file we need to transmit. This is a great waste of

memory in projects where we have a few really large files and a lot of small files: keep in mind

that the memory of the MR is pinned as long as it is registered. This is especially critical for



12 Philip Frey et al.

the master since it needs two MRs per slave. Furthermore, MR reuse makes only sense when

the data does not have to be copied from some intermediate buffer into the target MR within

the host. In our case this means that we would have to make sure that the cpp and gcc always

write their output to the same physical memory address. With several simultaneous cpp and

gcc processes, this is not feasible.

Considering this, we have decided to manage the MRs as follows: for the SRC TX MR 5

and the OBJ TX MR 6 (see Figure 6), we reregister the MRs for each file. The delay induced

results from opening an existing file followed by mapping it into the application address space

and registering it as a MR with the RDMA subsystem (open mmap column in Table 1). With

TCP, the data would have to be copied from the user space memory into kernel socket buffers

which is even for small files up to four times slower than our zero-copy approach (see memcpy

column). The OBJ RX MR 7 is also reregistered in each iteration with the additional cost of

allocating an empty target file (create mmap column). If the master would reuse its MRs,

the total amount of locally available memory would soon become its bottleneck and prevent it

from being able to deal with a large number of slaves. For the SRC RX MR 8 we can register

the MR once and reuse it - the most efficient way in terms of latency. As argued in the last

section, this does not impose much memory dissipation on the slaves.

Since all the data are in memory and the necessary RDMA buffers (MRs) are in place, we can

now transfer the payload between master and slave using RDMA. For each remote compilation

we have two slave-driven RDMA operations: the transfer of the preprocessed source file to the

slave and of the compiled object file back to the master.

Listing 1.1 demonstrates in simplified pseudo code how a buffer can be transferred using the

IT-API for RDMA. It consists of the following steps:

– register a buffer with the RDMA subsystem [lines 1-3]

– post a work request to the QP [lines 5-9]

– fetch the work completion from the CQ [10-11]

The third step is omitted if the work request is configured not to generate a work completion.

Listing 1.1: RDMA data exchange

1 char *buf = mmap(LEN); // create buffer

2 it_lmr_handle_t lmr_tx ;

3 it_lmr_create(buf, LEN , &lmr_tx ); // register buffer

4 /* fill the buffer ... */

5 source transmit memory region
6 object transmit memory region
7 object receive memory region
8 source receive memory region



Enabling Applications for RDMA 13

5 it_lmr_triplet_t segment ; // create segment on buffer

6 segment .addr.abs = buf;

7 segment .length = LEN;

8 segment .lmr = lmr_tx;

9 it_post_rdma_write(segment , LEN , dst_addr , dst_stag ); // post work request

10 it_event_t event_sq ; // wait for work completion

11 it_evd_wait(evd_sq_hdl , TIMEOUT , &event_sq );

3.5 RDISTCC Connection Management

Establishing an iWARP connection is more expensive than establishing a TCP connection. As

explained in Section 2.2, iWARP adds three more protocols on top of the TCP stack. We start

with a TCP connection which is then upgraded to an iWARP connection by performing an

MPA handshake which consists of a 2-way message exchange where the connection parameters

are negotiated. The setup also requires more programming objects at each end which have to be

instantiated first. We experienced an average TCP connection setup delay (including allocation

of the socket and 3-way handshake) of 136 µs on a connection with a network delay of 41 µs.

Establishing an RDMA connection induces an average delay which is almost ten times as big

(1152 µs including object creation as well as TCP and MPA handshakes).

A conventional distcc master establishes, for each source file which is to be compiled re-

motely, a new TCP connection to one of its slaves and closes it again after having received the

result. That does not scale very well for iWARP, as it is unnecessary and rather expensive. We

have thus introduced a connection manager (CM) that keeps RDMA connections open while

the rdistcc master is submitting compile jobs. Our CM minimizes connection management over-

head and improves overall scalability. Furthermore, it takes care of RDMA-specific transport

mechanisms (posting work requests, managing remote buffer information etc.) which simplifies

the rdistcc application logic.

The CM is implemented as a thread pool with a fixed number of threads per slave (Figure 7).

The number of slaves involved as well as the maximum number of remote compile jobs (slave

threads) is set before starting rdistcc. This fixed thread allocation is very efficient and light

weight at run time and matches the static setup for which distcc is designed. One thread cycle

encompasses exactly one complete protocol cycle. This simplifies connection handling and leads

to a reliable and early error detection.

In our rdistcc extension, the CM acts as a persistent RDMA proxy for the rdistcc processes

(Figure 8). Every master process scheduled for remote compilation first connects to its host-

local CM using standard inter-process communication (IPC). To reduce intra-host data copying

between an rdistcc process and its local CM to an absolute minimum, an rdistcc process merely



14 Philip Frey et al.

CM

IPC 1

T1

T2

T3

T4

T5

T6

IPC 2

EP

EP

EP

EP

EP

EP

CM

T1

T2

T3

EP

EP

EP

CM

T1

T2

T3

EP

EP

EP

CM

T1

T2

T3

EP

EP

EP

rdistcc

Build on

Slave2
IPC 2

rdistcc

Build on

Slave1
IPC 1

Master

Slave 1

Slave 2

Slave 3

gcc

gcc

gcc

gcc

gcc

gcc

gcc

gcc

gcc

IPC 3

T7

T8

T9

EP

EP

EP

T3EP gcc

T10 EP

rdistcc

Build on

Slave3
IPC 3

Fig. 7: Processes, threads and their associations

provides the CM with path information for locating the preprocessed files rather than sending

the whole files through the IPC channel. The CM then takes care of the actual RDMA data

transfer.

Master Slave

CM CM

RDMA

rdistcc
rdistcc

rdistcc
IPC

gcc
gcc

gcc

Fig. 8: Connection manager

3.6 RDISTCC Protocol for iWARP

When designing an iWARP-based application, the buffer management is key to its success.

Sometimes it is not possible to manage the buffers in a way in which the application can profit

from the RDMA semantics. This is the case for applications with short-lived connections where

the buffers exist only for a short time and have to be advertised very often (e.g., for each new

connection). If these buffers are also small, the management overhead will soon outweigh the

zero-copy benefit.

Another important design point is the decision of how to utilize the one-side and two-sided

operations. This can make a difference in protocol complexity as well as in load distribution

between communicating peers. The advantage of one-sided communications is that only the

application layer of one side has to actively participate in the data transfer. The drawbacks

are that a buffer specification exchange is necessary beforehand and that the other side will



Enabling Applications for RDMA 15

not know when the data transfer is complete. Two-sided send/receive operations are typically

used for exchanging small control messages whereas the one-sided operations are preferred for

transferring large data sets.

We will now look at how it all fits together by transforming the TCP-based distcc pro-

tocol into an RDMA-based one. The protocol proposed in Figure 9 involves both two-sided

(Send/Receive) and one-sided (RDMA Write/RDMA Read) operations and is partitioned into

the following three phases.

[ proc addr ]

CM CM

connect()

send()

write()

receive()

accept()

SEND

RECEIVE

[ tmpfs ]

[ proc addr ]

Harddisk

src.c

Memory

[ tmpfs ]

Memory

[ tmpfs ]

SRC RX MR

OBJ TX MR

send()

receive()

SRC TX MR

CONNECT

OBJ RX MR

rdistcc

open_connection()

compile_remote()

IPC

Master Slave

src.i

obj.o obj.o

src.i

cpp

gcc

done()

Compile

RDMA

Result

read()

Fig. 9: iWARP based master-slave protocol

In Phase 1, the RDMA connection between the local and the remote CM is established if

necessary. We do this only once for each slave and keep the connections open as long as they

are needed (see Section 3.5).

Phase 2 is then executed for each remotely compiled file: the master starts by sending the

compilation instructions and information about the preprocessed source file to the slave, along

with the SRC STag and OBJ STag, which give the slave remote access to the SRC TX MR and

OBJ RX MR respectively. Upon receiving such a request, the slave fetches the source file into

its SRC RX MR using an RDMA Read and initiates local compilation. The master can perform

other tasks in the meantime until notification from the slave.

After completing compilation according to the instructions received, the slave places the

resulting object file in the master’s memory using an RDMA Write and issues a Send to notify

him of the completion. We denote this as phase 3. At the time the master CM receives this Send

message, the object file is present in his buffer. The number of context switches involving the

application and the CPU load on the master are kept to a minimum because the data transfer



16 Philip Frey et al.

is slave driven and the master CM is only notified once the entire object file is locally available

and ready for further processing.

As can be seen from Figure 9, the master involvement is very small — it merely needs

to map the source file into a memory region and inform the slave about it through the local

CM. The slave then takes care of the data transfer and compilation. Meanwhile, the master can

schedule other compile jobs. This enables even slow masters to use many slaves in parallel. Such

a slave-driven protocol cannot be designed with two-sided operations like the ones that TCP

offers. We argue that, despite the increased complexity due to the explicit buffer management,

our protocol does not impose any overhead compared to the original one. First, the memory

mapping and MR registration overhead is not bigger than copying the gcc or cpp input/output

between the socket buffers and the application address space and second, the size of the buffer

information we add to the existing control messages is negligible.

4 Experimental Evaluation

We conducted a small cluster experiment for performance measurements on our RDMA-enhanced

rdistcc, compiling the Linux kernel 2.6.22 as reference. The cluster setup consisted of one mas-

ter and 14 slaves connected via 1 Gb/s Ethernet. All machines were equipped with a 1.8 GHz

Pentium 4 processor and 3 GB of RAM. To get a fair comparison between the TCP and RDMA

solution, the compiler input- and output data were on tmpfs mounts in all cases. Like this we

assure that our performance gain is not just because rdistcc keeps everything in main memory

as opposed to standard distcc.

While future experiments might use an RNIC on the master and a software-based RDMA

solution on the slaves for the reasons stated below, our current rdistcc tests are based entirely

on SoftRDMA, because of the lack of RNIC availability at the time the tests were conducted.

SoftRDMA gives us considerable flexibility in creating low-cost, RDMA/Ethernet-based com-

pute clusters which is ideal for conducting RDMA experiments that focus more on the semantics

than on pure performance. It is not always necessary to equip a host with expensive RDMA

hardware — in cases where a server faces a high aggregate throughput which is distributed to

a large number of clients, the clients just need the RDMA semantics but not necessarily the

hardware acceleration that the server needs.

Given that the current SoftRDMA implementation is based on TCP kernel sockets and

thus can not achieve zero-copy, comparing distcc over TCP and rdistcc over SoftRDMA with

fewer than 11 slaves shows that our protocol in combination with SoftRDMA induces very little

overhead. Regarding scalability with the number of slaves, distcc over TCP scales only up to



Enabling Applications for RDMA 17

7 slaves and rdistcc over SoftRDMA does not do much better which is what we expected due

to the missing hardware acceleration.

RDMA distcc VS. TCP distcc (cluster of 1.8GHz P4)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of remote hosts

T
im

e
 [

s
]

TCP (HDD)
TCP (tmpfs)
SoftRDMA only
RNIC at Master

Fig. 10: Test results

Figure 10 shows the measured compilation time for TCP distcc with the data on a harddisk

drive as well as on a tmpfs mount, rdistcc with SoftRDMA on all nodes and the (estimated)

compilation time for rdistcc with an RNIC at the master and SoftRDMA at the slaves (from

left to right on the chart).

To assess the need for an RNIC on the slaves and on the master, we measured the CPU

usage distribution with distcc over TCP (Tables 3 and 2). We have found that the master

spends a large amount of CPU cycles on local data copying and network processing, since it

communicates with all the slaves in parallel and establishes new TCP connections for each file

it transmits. We therefore argue that it makes sense to equip the master with an RNIC so that

the hardware can handle the data transfer and eliminate the copy overhead. The CPU cycles

saved from network processing can now be assigned to management tasks such as selecting the

slaves, checking the results etc. which are also quite CPU intensive and cannot be hardware

accelerated.

At the slaves on the other hand, we found that 80% of the CPU load was caused by gcc

processes. The bottleneck here is clearly not the communication stack and expensive RNICs are

therefore not required when transforming the application to RDMA. The high idle value further

indicates that the slaves have enough processing power to do RDMA in software. It also shows

that the TCP distcc master is not able to keep them all busy which is what sets the limits

in terms of scalability. The situation is even worse when SSH is used due to the encryption

overhead and the more expensive connection setup.



18 Philip Frey et al.

operation CPU time [%]
cpp and ld 12.35
management tasks 28.00
idle 0.50
data transfer 59.15

Table 2: Load distribution on master

operation CPU time [%]
compiler (gcc) 79.75
idle 18.85
data transfer 2.10

Table 3: Load distribution on slaves

With today’s trend towards multicore and manycore machines, one (or several) cores can

be spared for RDMA processing [18]: to estimate the compilation time for rdistcc with an

RNIC at the master, we replaced the master machine with an off the shelf dual-core machine

of similar power. One core was dedicated to RDMA processing in software while the other was

running the rdistcc master application. The slaves remained unchanged. While this setup is

similar to running rdistcc on a single-core machine that is equipped with an RNIC, running

the application and SoftRDMA on different cores in fact leads to a pessimistic estimate due

to poor data locality resulting in frequent cache misses. Nevertheless, the use of 14 slaves now

gives a two-fold reduction of the total compilation time compared to TCP, and the system can

be expected to scale further when more slaves are added. We also observe that the speedup

achieved with RDMA is not due to fact that the data is residing on memory instead of on disk.

5 Related Work

Offloading network processing and enabling socket based applications for RDMA has been

demonstrated in a different application domain by extending the Apache webserver with RDMA

capabilities [19] — the extension has been implemented as an Apache module using the Ohio

software iWARP stack. The idea is similar to that of rdistcc: one server deals with a lot of clients

and needs all its CPU cycles to manage some content. Enabling the HTTP protocol for RDMA

requires a small addition to the header. The performance evaluation indicates that Apache can

only benefit from the extension under high load and when the clients are requesting large files

(> 1MB). This is because a new RDMA connection has to be established for each visiting

client and possibly for each request in case the connection cannot be kept alive. As we have

shown, RDMA connection management is quite expensive. A typical communication scenario

of a webserver is that of many different clients requesting some (typically small) files and

leaving afterwards which means that the RDMA connections are short lived and a considerable

effort is put into connection setup and tear down compared to the data transfer. The buffer

management challenges they face are that reusing a per-client buffer results in expensive memory

copy operations and does not scale on the server side. Dynamic registration on the other hand



Enabling Applications for RDMA 19

adds the cost for the registration and later deregistration for each data transfer. The Apache

webserver example is designed to be used over the Internet and therefore strongly depends on

TCP/IP based RDMA. It presents a use case of RDMA over wide area networks.

The Ohio Supercomputer Center has presented an alternative software implementation of

the iWARP protocol stack [20]. They provide a kernel-space and a user-space version together

with a set of wrapper functions that follows the OpenFabrics Verbs. The Ohio stack suggests its

own, non-standardized API which makes applications that are built on it less portable. They

claim that their implementation is wire compatible with RDMA hardware (Ammasso RNIC)

and that they do not require kernel modifications. Concerning the performance, CRC calculation

in software results in a latency increase by a factor of two. The maximum throughput on 1Gb

Ethernet of about 920 Mb/s can only be reached with packets of size 16 KB or larger and with

CRC disabled. SoftRDMA on the other hand achieves the same throughput already with 2 KB

packets (or 4 KB if CRC is enabled). The CPU load induced by the Ohio stack is considerably

higher than with SoftRDMA as well, especially at the receiver side.

6 Conclusions and Outlook

When carefully designed, RDMA-based protocols can relieve the CPU from the heavy network

I/O processing needed to saturate today’s high-speed interconnects and save the cycles for other

tasks such as data processing.

The technique we proposed of creating a shared file mapping into the application address

space and thereafter associating it with a memory region for remote DMA is by no means

limited to the compiler extension. It could for example also be applied for accelerating the file

transfer protocol (FTP) or similar applications. The distributed compiler does not make use of

the fact that the remote file is accessible in a true random fashion. This could be interesting in

applications like distributed, file-based databases where a random access to some small parts of

a large remote database file is desired without having to copy the whole file over the (possibly

slow) interconnect. With this solution we have demonstrated that iWARP also qualifies for low

throughput environments (e.g. the Internet). The main advantages of using mmap in combination

with a MR instead of some upper layer protocol (e.g. sendfile extension) for enabling true

random access are its simplicity and direct hardware support. In the case of the database

mentioned before, this is needed when a lot of clients access the database file concurrently.

Some further research on update propagation and synchronization will be necessary if write

access to the database file is granted to the clients for example. Figure 11 illustrates the idea.



20 Philip Frey et al.

[ tmpfs ]

Database Server

Memory

RNIC

C1

C2

C3

C4

Cn

C6

C5

Memory

Region

Fig. 11: Database mapping

Taking distributed compilation provided by distcc as an example, we have illuminated the

various aspects that need to be considered when enabling a legacy application for iWARP

RDMA: buffer and memory region management, the asynchronous interface, one-sided versus

two-sided operations and connection management. Based on that, we have shown in detail

how distributed compilation can be accelerated with RDMA. Through the use of the one-sided

RDMA operations, we have demonstrated that iWARP can be attractive for enhancing legacy

applications that are currently based on the synchronous socket interface even if they do not

transfer that much data.

We have argued that clusters using an RNIC at the busy nodes and SoftRDMA together

with conventional Ethernet NICs at the other nodes are performance- and cost-effective for

applications with different CPU load distributions — depending on the role of the node — for

network- and application processing. Compared with plain TCP, the use of iWARP therefore

allows busy core nodes with an RNIC to serve more edge nodes in parallel.

While, in our example, iWARP already provides a two-fold performance improvement over

plain TCP using 1 Gb/s Ethernet, more dramatic improvements are expected from upcoming

applications using 10 Gb/s Ethernet, particularly from applications requiring a high average

data rate with comparatively limited processing needs per byte of data.

References

1. Intel Corporation. 2003. 10 Gigabit Ethernet Technology Overview.

http://www.intel.com/network/connectivity/resources/doc library/white papers/pro10gbe lr sa wp.pdf.

2. InfiniBand Trade Association. 2004. InfiniBand Architecture Specification Volume 1, Release 1.2.

3. Interconnect Software Consortium, The Open Group. 2005. Interconnect Transport API (IT-API),

Version 2.1.

4. Interconnect Software Consortium, The Open Group. 2005. RNIC Programming Interface

(RNICPI), Version 1.0.

5. Clark D., Jacobson V., Romkey J., Salwen H. 1989. An Analysis of TCP Processing Overhead. IEEE

Communications Magazine, June 1989 - Volume 27, Number 6.



Enabling Applications for RDMA 21

6. Satran J., Meth K., Sapuntzakis C., Chadalapaka M., Zeidner E. 2007. Internet Small Computer

Systems Interface (iSCSI). IETF RFC 3720.

7. Callaghan B.,Pawlowski B., Staubach P. 1995. NFS Version 3 Protocol Specification. IETF RFC

1813.

8. Ko M., Chadalapaka M., Hufferd J., Elzur U., Shah H., Thaler P. 2007. Internet Small Computer

System Interface (iSCSI) Extensions for Remote Direct Memory Access (RDMA). IETF RFC 5046.

9. Romanow A., Mogul J., Talpey T., Bailey S. 2005. Remote Direct Memory Access (RDMA) over IP

Problem Statement. IETF RFC 4297.

10. Compaq Computer Corp., Intel Corp., Microsoft Corp. 1997. Virtual Interface Architecture (VIA)

Specification.

11. Culley P., Elzur U., Recio R., Bailey S., Carrier J. 2007. Marker PDU Aligned Framing for TCP

Specification. IETF RFC 5044.

12. Shah H., Pinkerton J., Recio R., Culley P. 2007. Direct Data Placement over Reliable Transports.

IETF RFC 5041.

13. Recio R., Metzler B., Culley P., Hilland J., Garcia D. 2007. A Remote Direct Memory Access

Protocol Specification. IETF RFC 5040.

14. Hilland J., Culley P., Pinkerton J., Recio R. 2003. RDMA Protocol Verbs Specification, Version

1.0.

15. OpenFabrics Alliance. http://www.openfabrics.org/.

16. Pool M. 2003. distcc, a fast free distributed compiler. Whitepaper.

17. Snyder P. 1990. tmpfs: A Virtual Memory File System.

18. Mogul, J.C. 2003. TCP offload is a dumb idea whose time has come. Hewlett-Packard Laboratories,

Palo Alto, CA.

19. Dalessandro, D., Wyckoff, P. 2007. Accelerating Web Protocols Using RDMA. Proceedings of Net-

work Computing and Applications (IEEE NCA’07).

20. Dalessandro, D., Devulapalli, A., Wyckoff, P. 2005. Design and Implementation of the iWARP

Protocol in Software. Proceedings of Parallel and Distributed Computing Systems (PDCS’05).


