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Charging Service Elements for an
Electric Vehicle Charging Service Provider

Olle Sundstr̈om and Carl Binding

Abstract—Electric vehicles are often seen as a key element
in smart grids. Potentially, electric vehicles can be used for
providing grid services, both for peak shaving and for ancillary
services. To achieve this, an aggregator or charging service
provider could control the charging of large electric vehicle fleets
or, if sufficient information is available to the vehicle, the EV
itself can control the charging and provide these services. In
the literature, little attention is devoted to the charging services
offered to the EV user. This paper outlines a set of building
blocks for such end-user charging services. These building blocks
can easily be transformed into objectives and constraints in a
charging schedule optimization problem formulation. The focus
of this paper is on describing the various potential service
elements rather than on assembling actual products from these
elements.

I. I NTRODUCTION

Traditional methods of generating and consuming electric
energy have limitations when it comes to power systems
with a large share of renewable energy sources, such as
wind and solar power. A large share of these intermittent
renewable energy sources creates uncertainty and fluctuations
in an otherwise relatively predictable and stable power system.
Integrating information and communication technologies is
one of many factors that can assist in making the grid smarter
and more flexible. In such smart grids, electric vehicles (EVs)
can play an important role. If EVs are intelligently charged,
they can become an asset to the grid rather than a mere
traditional load [1].

There are two types of studies that aim at making the
charging of EVs more intelligent [2]. The first is a decen-
tralized concept in which the invidual EVs optimize their
charging based on market information made available to them.
Such a decentralized concept has been studied in [3]. The
second approach is to have a centralized aggregator that offers
charging services to its member EVs. In the literature, such
centralized units are referred to as EV fleet operator, EV
virtual power plant, or EV aggregator. Each of the meth-
ods, whether centralized or decentralized, has advantagesand
drawbacks. The decentralized approach assumes that the EV
itself optimizes its charging behavior based on, for example,
a price signal. The drawback of this approach is that the
EV needs to collect and store trip history and that, if the
EVs need to coordinate their charging, for example to include
grid constraints, the need for communication is high. The
centralized approach, on the other hand, assumes that the
centralized unit optimizes the charging and that the resulting
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charging schedules are communicated to the EVs, transferring
the charging schedule intelligence to a central location. In this
paper, the centralized entity is referred to as charging service
provider (CSP).

Figure 1 shows the two concepts of smart charging. The
electricity retailer plays an important role because it receives
meter readings, typically from the local distribution system
operator responsible for the metering, of the meters in the EV
supply equipment (EVSE), i.e., where the EV connects to the
grid. Regardless of whether the decentralized or the centralized
approach is the prevailing way of managing the charging of
large EV fleets, the intelligence that optimizes the charging
needs to take the end user into consideration. Figure 1 also
shows where the charging planning is performed, which is also
where end-user services need to be considered.

In the literature, the emphasis is mainly on the services
that the EVs can provide to the electric energy system. If
sufficient number of EVs are available, which several studies
are projecting [4], they can potentially provide services to the
grid, such as load shifting, balancing power, and frequency
response [5], [6], [7]. A CSP can, for example, offer services
to the power system because it is flexible in allocating the
charging of the EVs. Even nontraditional stakeholders may
be interested in managing the EV charging. The distribution
system operator (DSO) can, for example, be interested in
influencing the charging of large EV fleets. One reason is that
it is benefitial for the DSO that expansions in capacity of the
grid can be avoided when integrating large EV fleets.

What is not clearly understood is the actual service the
EV user demands. This paper outlines various options to
accomodate different services and service levels for the end
user that can easily be included in an optimization problem
formulation. In this study, the view of a centralized charging
management is taken and it is assumed that the CSP can act
on the power market, either alone or in cooperation with a
retailer, and use the available electricity products and financial
instruments to, for example, minimize the cost of charging the
EVs.

The paper is structured as follows: Section II describes
the basic functions of a centralized charging service provider.
Section III outlines the various basic service elements that
can be provided to the end user. Section IV shows how these
charging service elements can be mapped to a charging op-
timization problem formulation. Finally, Section V concludes
and discusses the service elements presented in this paper.
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Figure 1. Overview of decentralized and centralized control of charging
service. The retailer buys electricity on the wholesale market based on the
demand forcast. Either the CSP or the EV computes a charging schedule based
on usage patterns and other information.

II. CHARGING SERVICE PROVIDER

The role of the CSP is to manage the charging of multiple
EVs and to leverage the flexibility in the time of charge
to lower the total cost of charging. The CSP has a close
relationship with the EV users, as well as with the retailer1

that sells the electric energy to the CSP. The CSP can be
structured into a set of basic modules. In this paper, the CSP
has the following basic modules:

• Communication: To gather data from the various entities
(EVs, users, retailer, distribution grid, and markets) an
appropriate communication infrastructure must be de-
ployed and managed. A more detailed description of the
communication aspects can be found in [8].

• Data storage: Using the communication infrastructure the
CSP gathers considerable amounts of data to perform its
tasks. In particular, historical trip data is needed to predict
future EV usage. In addition, end customer information
as well as billing information need to be stored.

• Trip forecasting: The forecasting of the anticipated en-
ergy requirements for EV usage is essential to minimize
driver interactions and to accurately acquire the necessary
energy from the market/retailer. The CSP has to estimate
how much energy has to be charged into an EV while it
is connected to the power grid. The connection location
also plays a role when handling potential grid conges-
tions. This module evidently depends on the data-storage
subsystems.

• Optimization: This module computes an optimal EV
charging plan, taking into account energy production es-
timates, energy needs, the expected durations of charging
periods, and potential grid constraints. Figure 2 shows a

1This is only needed if the CSP itself is not a retailer. To become a retailer
purely for EVs the CSP needs to aggregate a sufficient number ofvehicles to
meet the minimum bid sizes on the electricity markets.

sketch of a typical charging plan. The charging power is
given as a piecewise constant signal with a step size∆t.
More information on the optimization of charging plans
is presented in [9] and [10]. The charging plan is also
dependent on the available communication and charging
technologies, which is discussed in Section II-A.

• Customer relationship and billing information: This is a
traditional IT infrastructure for maintaining information
on customers, their billing information, as well as the
metering of the EV-specific power consumption and feed-
back, if possible, to the grid. A user-facing portal with
a graphical user interface needs to be provided to enable
users to manage their charging preferences and personal
data and to let the CSP interact with the customer when
needed.

This paper aims at connecting theOptimization and the
Trip Forecastingmodule with theCustomer relationship and
billing informationby outlining the various potential charging
services and their mapping into constraints and objectivesin
an optimization problem formulation.
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Figure 2. Charging power schedule to be followed by the charger in the EV.
It is computed either by a CSP or by the vehicle itself.

A. Level of charging control

The control of the charging can be done in several ways.
Depending on the technology available, in terms of both
software and hardware, the level of control can be limited.
Initially, no direct control of the charging of EVs is possible
by an external service provider. This type of charging is a
form of direct charging and it may have a severe impact on
the distribution grid [11], [12]. Such an unasked-for quick
charging is not a response to the user’s needs but rather a
result of the limited availability of control technologies.

With appropriate technologies, the charging can be con-
trolled in various degrees. The simplest control is to signal a
delayed start time of the charging. The charging is continued
until the battery is full. Using this limited control, it is only
possible to meet the customer needs in the temporal domain.
In other words, it is only possible to shift the time when the
battery is full and not the final internal energy level of the
battery after the charging period. The second level of control is
to control the charging with both an on and an off signal. Using
this approach, it is possible to individually serve the customers



both in the energy domain and in the temporal domain. The
third level of charging control is to have fully variable charging
power. The charging power can then vary between the start
and the end of charging. This concept is more useful if the
maximum charging power is high, because the battery lifetime
can be prolonged by reducing the maximum charging power. It
also offers the highest flexibility in terms of potential services
for the end user.

B. Charging service units

The charging service that the EV user gets can be quantified
in different units, such as energy, time, or distance. Thereis
a risk that the end user does not get the energy needed to
drive the intended trip. Depending on the service unit as well
as the type of service, this risk varies in size and is either is
with the CSP or with the end user. The simplest service unit
is the amount of energy externally charged to the vehicle. The
externally charged energy is measured at the meter level, and
this unit offers a low risk to the CSP because the charging
control is likely to directly influence this quantity. The service
unit can also be the charged energy actually stored in the
battery. With this unit the risk is slightly higher for the CSP:
It has to estimate the losses during charging for each vehicle
and charging period, and therefore incurs an additional risk.
Apart from energy, the service unit can be specified in terms
of available driving distance. In this case, the CSP also hasto
estimate the energy consumption per kilometer of each vehicle
and each trip, including the charging losses. The service unit
can also be the available driving time. This unit is similar to
the available driving distance in the sense that the CSP has
to estimate a quantity related to the driving behavior of the
user, here the consumption per time unit. The CSP then has
to estimate the energy consumption per time unit. CSPs can
offer their services in one or more of these units. However,
it is likely that the higher the risk the CSP is taking in the
estimation of the energy needed to be charged, the more the
service will cost.

III. C HARGING SERVICES

The majority of the customers of a CSP are the electric
vehicle users. This section outlines a set of service elements
that can easily be transformed into constraints and objective
functions in an EV-charging optimization algorithm. This set
can be divided into three types of services:

• Energy services: these services aim at supplying sufficient
energy to the electric vehicle during normal operation.
There are several levels of user interaction in these
services. Sections III-A and III-B focus on these service
types.

• Incidental services: these services specify the behavior
when something unexpected occurs. These unexpected
events can either originate from the end user or from
the electricity grid, for example. Section III-C discusses
a typical incidental service. Another, grid-related aspect
is described in Section IV-B.

• Add-on services: these services are not required and can
be added by the user on demand. In Section III-D, various
potential add-on services are described.

A. User-defined charging levels

The simplest charging service concept is to let the EV user
enter the amount of energy to be charged and the time when
the charging should be completed. Hence, the specification is
simply

• Emin,k: the minimum energy needed to drive tripk
• tk: the time of departure of tripk

wherek is the index of the trip. This concept has the benefit
that the user has the most knowledge about the future trips
and can, therefore, specify the energy level required in the
vehicle at certain times during the day. For example, some
users would like to have at least the minimum energy level in
battery in the morning and in the afternoon that is necessary
to travel to and from the workplace. Two conceptual examples
of such energy levels are shown in Fig. 3. Note that the figure
shows the regions from where the energy-level specifications
cannot be reached as red areas. Because the charging power
is limited, either by the EVSE or by the EV itself, the battery
energy level must be kept above these red areas.

A benefit with this type of service is the reduced risk for
the CSP. The CSP is only required to charge the battery to a
certain level. The risk that this energy level is not sufficient
for intended trip is absorbed by the user. The drawback of this
type of service is that the user needs to be involved regularly in
the charging process. This can lead to an overly conservative
specification by the user and to reduced user acceptance. The
flexibility of the charging process can therefore be reduced
unintentionally, and the CSP could have less flexibility in
optimizing the charging.

B. Prediction-based charging levels

As indicated in the preceeding section, the performance of
a CSP is likely to be linked to the level of manual inputs
required by the user. A CSP that can accurately predict the
travel behavior of all its subscribers during normal operation
can manage the charging without requiring the user to specify
the energy levels. In this type of service, the CSP collects
travel information from each of the EVs and uses this data
to build statistical models for predicting the future trips. In
such a service, the energy level specifications,Emin,k andtk,
are predicted values. Conceptual examples of such predicted
energy levels are shown in Fig. 4.

The concept of predicting the energy needed to be charged
can of course be combined with user-defined levels. The
predicted energy levels can, for example, have a minimum
level supplied by the user that should always be charged. This
would guarantee that at the predicted time of departure there
is always a certain energy level in the battery no matter how
short the predicted trip is.

If the user is not involved in the charging process and the
CSP predicts the trips, then the risk of not having charged
enough energy to the vehicle is absorbed by the CSP. However,



ba
tte

ry
en

er
gy

Emax

time

Emin

user-defined
instantk + 1

user-defined
instantk

user-defined
Emin,k+1

user-defined
Emin,k

Figure 3. User-defined charging specification of the required charging energy
Emin,k beforetk for the specificationsk andk + 1.
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Figure 4. Prediction-based charging specification of the required charging
energyEmin,k before the time of departuretk for specificationk andk +1.

the CSP needs to be conservative in the charging, i.e. generally
charge a higher amount, because if the vehicle is repeatedly
charged insufficiently before an intended trip, the user may
change the service provider.

C. Quick charge

For all types of charging services, the user must be able to
override the initial charging plan and indicate that the battery
should be charged as quickly as possible. This service is an
incidental service and is only invoked if something unexpected
occurs. If quick charge is invoked, the EV is charged with
full power until the battery is fully charged or the vehicle
is disconnected. To switch on emergency charging, the user
could use any mobile device connected to the CSP portal.
This option is likely to have a negative effect on the scheduled
commitments of the CSP to the market or the retailer. Thus,
only a reduced number of such possibilities may be availableto
the end user. Also, an additional fee for using this option could
compensate the negative effects on the schedule commitments
and reduce the number of such events.

D. Additional services

In addition to the charging level services and the quick
charge service, the CSP can offer a variety of other services.
For example, the CSP can ensure that the power used to charge
the vehicle has a certain percentage of green energy. The CSP
buys the green electricity from its retailer or enters bilateral
agreements with other entities in the electricity market. To do

this, a labeling framework has to be in place for green energy
[13].

The CSP can also provide services to guide a driver to
an available charging spot. This service could also direct the
driver depending on the energy needed because drivers with a
high energy need will need a charging spot with high charging
power, and ideally no competing users should be connected to
the same area in the electricity grid. However, this type of
service requires direct communication with the driver during
a trip.

IV. M APPING SERVICES TO ANOPTIMIZATION PROBLEM

The preceeding section described the various types of ser-
vices a CSP can offer an EV user. In this section, the focus
is on how to map the various charging services to constraints
and objectives in an optimization problem aimed at deriving
charging schedules, as shown in Fig. 2. This section first shows
how a service margin can be added to the service specification,
and then how to differentiate between customers in case of a
critical event.

A. Service margins

The minimum energy-level specification, especially the lev-
els predicted by the CSP, can be lower than the actual energy
needed for certain trips on some days.

There are several sources of such errors, and they can
occur both in the energy specification and in the temporal
specification. One reason can be that the trip destination,
predicted by either the user or the CSP, is wrong. Moreover,
even with a correct destination prediction the energy levelcan
be wrong, because of errors in predicting the consumption
and the time of departure. To accomodate for these prediction
errors, a concept of shifting the energy-level specification can
be added to the specification of the charging services. It is
a form of charging service margin. Assume that the usable
energy capacity of the battery is

∆E = Eop
max − E

op
min, (1)

whereEop
max is the maximum operational energy level in the

battery andE
op
min is the minimum operational energy level.

Given an energy-margin coefficientαenergy ∈ [0, 1], the
energy shift∆Emar,k for the k-th specification is

∆Emar,k = αenergy(∆E − Emin,k), (2)

and, given a time-margin coefficientαtime ∈ [0, 1], the shift
in time ∆tmar,k for the same specification is

∆tmar,k = αtime (tmin(∆Emar, Emin,k) − tk) , (3)

where tmin(·) is the earliest time the specified energy level
∆Emar +Emin,k can be reached. However, in general,tmin(·)
is also a function of the time of connection, which has to
be predicted by the CSP or specified by the user. Thus, in
the case of predicted charging levels,tmin(·) depends on the
predicted time of arrival after the previous trip,k − 1. In the
case of user-defined charging levels,tmin(·) can be estimated
by the average consumption together with the energy level of
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the previous specification atk − 1. By using the energy and
time marging coefficients, it is possible to shift from a direct
chargingαenergy = 1 and αtime = 1 to the user-defined or
predicted levelsαenergy = 0 and αtime = 0. Figure 5 shows
how a charging specification{Emin,k, tk}, is shifted using the
margin coefficients.

The charging service margins actually change the energy
requirements for the EVs in the optimization module of the
CSP. The charging constraint for a single EV becomes

tk−∆tmar,k∑

t=tarr,k−1

∆tPb,t ≥ Emin,k + ∆Emar,k, (4)

Transformer:Pmax = 20 kW

EV-1
12:00-13:00

Ereq = 7 kWh
αslack,1 = 1

EV-2
12:00-13:00

Ereq = 7 kWh
αslack,2 = 2

EV-3
12:00-13:00

Ereq = 7 kWh
αslack,3 = 3

Figure 8. Critical grid situation in which the total requested energy of all
EVs exceeds the capacity in the grid. Using the slack variable coefficient
αslack,i, the EVs are differentiated and a priority is established todistribute
the available capacity.

where tarr,k−1 is the time of arrival of tripk − 1 and Pb,t

is the charging power at timet. This shift in the charging
specification is shown in Fig. 6 for user-defined energy levels
and in Fig. 7 for energy levels predicted by the CSP.

Using the coefficientsαenergy and αtime, it is possible to
specify several levels of service margins. For example, if
both coefficients are set to 1 the vehicle will be charged,
similarly to nonmanaged vehicles, as quickly as possible until
the maximum energy level is reached. Hence, there is no
flexibility for the CSP to influence the charging. This service
is likely to be the most expensive option. The service cost
decreases with decreasing coefficients.

B. Customer differentiation

Even though the minimum energy level, either the predicted
level or the level set by the user, has to be met, there might be
times when this energy level cannot be reached. For example,
when several EVs are parked and connected in close proximity
of each other, the electricity grid might not be strong enough
to deliver the required energy to all vehicles. In this case,
users can have the possibility of getting priority over others
by paying a premium to the CSP. To reflect this in the
optimization of the fleet charging, a slack variable can be
introduced in the minimum energy level constraint. The slack
variable is included in the objective function with different
coefficients that reflects the priority of the users.

An illustrative example of a critical event is shown in Fig. 8.
It shows three EVs each demanding 7 kWh to be charged
in the same hour. If the charging could be shifted outside
this hour it would no longer be critical. Hence, because all
three EVs require 7 kW for the entire hour and the maximum
transformer power is 20 kW, in this example, the CSP will have
to prioritize between the EVs. This is done by introducing a
slack variable and a slack variable coefficientαslack,i in the
objective function. The overall optimization of the charging
schedulesPb,i,t ∀ t for all vehiclesi is concatenated with the
slack variable and coefficient.



minimize
Pb,i,t,...,si,k ∀ i,k,t

. . . +
∑

i,k

αslack,isi,k (5a)

subject to

...
ti,k−∆tmar,i,k∑

t=tarr,i,k−1

∆tPb,i,t ≥ Emin,i,k + ∆Emar,i,k − si,k (5b)

si,k ≥ 0 ∀ i (5c)

Pb,i,t ≥ 0 ∀ i, t. (5d)

Note that the slack variablesi,k for vehicle i is the amount
of energy that is needed to reach the predetermined charging
level, including the energy margin∆Emar,i,k.

The coefficients for the slack variables actually order all the
EVs and, in case of a critical event, prioritizes the charging to
EVs with a high coefficient. It is not practical to have as many
service levels as EVs, so a grouping of levels is necessary.
To solve the ordering of the EVs within a group, a randomly
assigned coefficient can be used. For example, if there are three
service level groups, i.e., low, mid, and high, the coefficients
for the EVs only need to guarantee that

αlow
slack,i < αmid

slack,i < α
high
slack,i. (6)

The individual coefficients within a group can be ordered using
a uniform random distribution that is updated periodically. The
grouping is therefore kept, and the prioritization within agroup
will be fair in the long run.

V. D ISCUSSION

This paper presented charging service elements that can be
easily mapped to an optimization problem in which charging
schedules are computed. The EVs are assumed to only allow
control of the charging power, but not of the discharging.
However, the services described in this paper are likely to be
similar even if discharging is allowed. The service framework
is applicable to both the centralized and the decentralized
approach of EV charging control.

Even though there will be different services offered by
different CSPs, it is likely that they will include at least some
of the elements described in this paper. Different subsets of
the elements will be used depending on whether the provider
offers a high-end service, green-energy service, or a low-price
service.

The cost of subscribing to any of the services described in
this paper must be lower than the cost of charging at full power
whenever the vehicle is connected to the charging infrastruc-
ture, i.e., of the direct charging described in Section II-A.
Several types of contractual setups can be envisioned. For
example, a monthly fixed contract can provide certainty for
the end user, whereas a pay-per-charge type of contract can
offer freedom of choice in each charging period. A pay-per-
charge concept is similar to the traditional gas stations. In a
longer-term contractual setup, however, the CSP can collect

travel information and therefore better predict the futuretrips.
With a better prediction, the CSP can have a tighter marging in
its optimization module and therefore leverage this to lower the
charging costs. The pay-per-charge scheme, on the other hand,
inevitably introduces uncertanty because new EVs can appear
that have not been predicted. Another option for the CSP
is to differentiate the service specification for weekdays and
weekends. Also, daytime and nighttime can be used to separate
different specifications. The coefficients for the energy levels
and the slack variables then have different values depending
on the time of day and the day of the week.

Charging schedule optimization can potentially also include
stochastic elements in the prediction of the future travel
behavior. Stochastic and robust optimization techniques need
to be further investigated, in particular the scalability of such
approaches. Also, an operational CSP is likely to combine all
or some of the service elements into various products. This
topic is left to future CSPs because it is a key business aspects
of the service provider.
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