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Charging Service Elements for an
Electric Vehicle Charging Service Provider

Olle Sundstm and Carl Binding

Abstract—Electric vehicles are often seen as a key elementcharging schedules are communicated to the EVs, transderri
in smart grids. Potentially, electric vehicles can be used for the charging schedule intelligence to a central locatinrihis

providing grid services, both for peak shaving and for ancillary paper, the centralized entity is referred to as chargingicer
services. To achieve this, an aggregator or charging service provider (CSP)

provider could control the charging of large electric vehicle fleets

or, if sufficient information i_s available to_ the vehicle, the EV Figure 1 shows the two concepts of smart charging. The
itself can control the charging and provide these services. In

the literature, little attention is devoted to the charging services electricity retailer plays an important role because ierees

offered to the EV user. This paper outlines a set of building Meter readings, typically from the local distribution syst
blocks for such end-user charging services. These building blocks operator responsible for the metering, of the meters in e E
can easily be transformed into objectives and constraints in a supply equipment (EVSE), i.e., where the EV connects to the
charging schedule optimization problem formulation. The focus iy Regardless of whether the decentralized or the dereda
of this paper is on describing the various potential service his th il f ing the charai f
elements rather than on assembling actual products from these approach is the prevgl '”9 way o ma”ag'”g ec arglng_ 0
elements. large EV fleets, the intelligence that optimizes the chaygin
needs to take the end user into consideration. Figure 1 also
|. INTRODUCTION shows where the charging planning is performed, which i als

Traditional methods of generating and consuming electrighere end-user services need to be considered.
energy have limitations when it comes to power SYStems, e literature, the emphasis is mainly on the services

W!th a large share of renewable energy sources, Su.Cht 3t the EVs can provide to the electric energy system. If
wind and solar power. A large share of these intermitten

. sufficient number of EVs are available, which several studie
renewable energy sources creates uncertainty and flumtsati
in an otherwise relatively predictable and stable poweresys
Integrating information and communication technologies
one of many factors that can assist in making the grid smar
and more flexible. In such smart grids, electric vehiclesEV

can play an important role. If EVs are intelligently charge(i

they can become an asset to the grid rather than a mg)r/%tem operator (DSO) can, for example, be interested in

traditional load [1]. influencing the charging of large EV fleets. One reason is that

Thgre are two types of gtud|es that aim at making tnFis benefitial for the DSO that expansions in capacity of the
charging of EVs more intelligent [2]. The first is a decen- rid can be avoided when integrating large EV fleets.

tralized concept in which the invidual EVs optimize theif
charging based on market information made available to themWhat is not clearly understood is the actual service the
Such a decentralized concept has been studied in [3]. Th¥ user demands. This paper outlines various options to
second approach is to have a centralized aggregator tlems oficcomodate different services and service levels for tle en
charging services to its member EVs. In the literature, sudiser that can easily be included in an optimization problem
centralized units are referred to as EV fleet operator, Blgrmulation. In this study, the view of a centralized chagpi
virtual power plant, or EV aggregator. Each of the methmanagement is taken and it is assumed that the CSP can act
ods, whether centralized or decentralized, has advantagks on the power market, either alone or in cooperation with a
drawbacks. The decentralized approach assumes that therEMiler, and use the available electricity products anahioml

itself optimizes its charging behavior based on, for examplinstruments to, for example, minimize the cost of charghmgy t

a price signal. The drawback of this approach is that tHeVs.

EV needs to collect and store trip history and that, if the The paper is structured as follows: Section Il describes

EVs need to coordinate their charging, for example to inEBIuqhe basic functions of a centralized charging service pi@vi
grid constraints, the need for communication is high. Tfi

are projecting [4], they can potentially provide serviceshe

rid, such as load shifting, balancing power, and frequency
Fesponse [5], [6], [7]. A CSP can, for example, offer sersice
6 the power system because it is flexible in allocating the
harging of the EVs. Even nontraditional stakeholders may
e interested in managing the EV charging. The distribution

centralized approach. on the other hand. assumes that ection Ill outlines the various basic service elementg tha
. pproach, : ' i i be provided to the end user. Section IV shows how these
centralized unit optimizes the charging and that the rigpult

charging service elements can be mapped to a charging op-
O. Sundstdm and C. Binding are with IBM Research—Zurich, 8803Iimiza_tion problem form_UIation' Finally, Section V co_ndles
Ruschlikon, Switzerland. (emaikosu, cbd@zurich.ibm.com) and discusses the service elements presented in this paper.
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sketch of a typical charging plan. The charging power is
given as a piecewise constant signal with a step Aize
More information on the optimization of charging plans
is presented in [9] and [10]. The charging plan is also
dependent on the available communication and charging
technologies, which is discussed in Section II-A.
Customer relationship and billing informatiofThis is a
traditional IT infrastructure for maintaining informatio

on customers, their billing information, as well as the
metering of the EV-specific power consumption and feed-
back, if possible, to the grid. A user-facing portal with

a graphical user interface needs to be provided to enable
users to manage their charging preferences and personal
data and to let the CSP interact with the customer when
needed.

This paper aims at connecting tt@ptimizationand the

Overview of decentralized and centralized cdnsfocharging Trip Forecastingmodule with theCustomer relationship and

service. The retailer buys electricity on the wholesale miablased on the billing information by outlining the various potential charging
demand forcast. Either the CSP or the EV computes a chargirgistehbased

on usage patterns and other information.

services and their mapping into constraints and objeciives

EVs and to leverage the flexibility in the time of charge
to lower the total cost of charging. The CSP has a close’
relationship with the EV users, as well as with the retailer
that sells the electric energy to the CSP. The CSP can be
structured into a set of basic modules. In this paper, the CSP
has the following basic modules:

purely for EVs the CSP needs to aggregate a sufficient numbegtotles to
meet the minimum bid sizes on the electricity markets.

an optimization problem formulation.

[I. CHARGING SERVICE PROVIDER

The role of the CSP is to manage the charging of multiple
driving
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arging power
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« CommunicationTo gather data from the various entities L l |

(EVs, users, retailer, distribution grid, and markets) an ‘At

appropriate communication infrastructure must be de-

poned and managed. A more detailed description of ﬂlf'é;ure 2. Charging power schedule to be followed by the drargthe EV.
L. . It'is computed either by a CSP or by the vehicle itself.

communication aspects can be found in [8].

Data storage Using the communication infrastructure the

CSP gathers considerable amounts of data to perform Ats Level of charging control

tasks. In particular, historical trip data is needed to jmted  The control of the charging can be done in several ways.
future EV usage. In addition, end customer informatiopepending on the technology available, in terms of both
as well as billing information need to be stored. software and hardware, the level of control can be limited.
Trip forecasting The forecasting of the anticipated enqpitially, no direct control of the charging of EVs is postib
ergy requirements for EV usage is essential to minimizg, an external service provider. This type of charging is a
driver interactions and to accurately acquire the necess@grm of direct charging and it may have a severe impact on
energy from the market/retailer. The CSP has to estimaf: distribution grid [11], [12]. Such an unasked-for quick
how much energy has to be charged into an EV while ¢harging is not a response to the user's needs but rather a
is connected to the power grid. The connection locatiqgsylt of the limited availability of control technologies

also plays a role when handling potential grid conges- wjith appropriate technologies, the charging can be con-
tions. This module evidently depends on the data-storaggled in various degrees. The simplest control is to signa
subsystems. delayed start time of the charging. The charging is continue
Optimization This module computes an optimal EVyntj| the battery is full. Using this limited control, it isnty
charging plan, taking into account energy production egpssible to meet the customer needs in the temporal domain.
timates, energy needs, the expected durations of charg|Rgother words, it is only possible to shift the time when the
periods, and potential grid constraints. Figure 2 showsattery is full and not the final internal energy level of the
battery after the charging period. The second level of cbigr

to control the charging with both an on and an off signal. gsin
this approach, it is possible to individually serve the oostrs

[
>

time

1This is only needed if the CSP itself is not a retailer. To neea retailer



both in the energy domain and in the temporal domain. Thee Add-on services: these services are not required and can
third level of charging control is to have fully variable chang be added by the user on demand. In Section IlI-D, various
power. The charging power can then vary between the start potential add-on services are described.

and the end of charging. This concept is more useful if the . .

maximum charging power is high, because the battery IiietirﬁA' User-defined charging levels

can be prolonged by reducing the maximum charging power. ItThe simplest charging service concept is to let the EV user
also offers the highest flexibility in terms of potentialgees €nter the amount of energy to be charged and the time when

for the end user. the charging should be completed. Hence, the specificadion i
simply
B. Charging service units o Enin i the minimum energy needed to drive trip

The charging service that the EV user gets can be quantified t+* the time of departure of trig
in different units, such as energy, time, or distance. Therewherek is the index of the trip. This concept has the benefit
a risk that the end user does not get the energy neededhat the user has the most knowledge about the future trips
drive the intended trip. Depending on the service unit ag w@nd can, therefore, specify the energy level required in the
as the type of service, this risk varies in size and is either\Viehicle at certain times during the day. For example, some
with the CSP or with the end user. The simplest service unigers would like to have at least the minimum energy level in
is the amount of energy externally charged to the vehicle. TRattery in the morning and in the afternoon that is necessary
externally charged energy is measured at the meter levél, 4@ travel to and from the workplace. Two conceptual examples
this unit offers a low risk to the CSP because the chargi®j such energy levels are shown in Fig. 3. Note that the figure
control is likely to directly influence this quantity. Thersiee Shows the regions from where the energy-level specification
unit can also be the charged energy actually stored in t@nhnot be reached as red areas. Because the charging power
battery. With this unit the risk is slightly higher for the S is limited, either by the EVSE or by the EV itself, the battery
It has to estimate the losses during charging for each wehignergy level must be kept above these red areas.
and charging period, and therefore incurs an additional ris A benefit with this type of service is the reduced risk for
Apart from energy, the service unit can be specified in terrize CSP. The CSP is only required to charge the battery to a
of available driving distance. In this case, the CSP alsothiascertain level. The risk that this energy level is not suffitie
estimate the energy consumption per kilometer of each leehiéor intended trip is absorbed by the user. The drawback sf thi
and each trip, including the charging losses. The servide ufype of service is that the user needs to be involved reguitarl
can also be the available driving time. This unit is similar tthe charging process. This can lead to an overly conseevativ
the available driving distance in the sense that the CSP tgecification by the user and to reduced user acceptance. The
to estimate a quantity related to the driving behavior of tHéexibility of the charging process can therefore be reduced
user, here the consumption per time unit. The CSP then hegintentionally, and the CSP could have less flexibility in
to estimate the energy consumption per time unit. CSPs c@pfimizing the charging.
offer their services in one or more of these units. Howeveé,
it is likely that the higher the risk the CSP is taking in the™

estimation of the energy needed to be charged, the more thé's indicated in the preceeding section, the performance of
service will cost. a CSP is likely to be linked to the level of manual inputs

required by the user. A CSP that can accurately predict the
I1l. CHARGING SERVICES travel behavior of all its subscribers during normal operat
can manage the charging without requiring the user to specif
The majority of the customers of a CSP are the electiife energy levels. In this type of service, the CSP collects
vehicle users. This section outlines a set of service el&negaye| information from each of the EVs and uses this data
that can easily be transformed into constraints and obfectiy pyild statistical models for predicting the future trips
functions_in an _EV-charging optimizatiqn algorithm. Thists g ch a service, the energy level specificatios;, » andty,
can be divided into three types of services: are predicted values. Conceptual examples of such predicte
« Energy services: these services aim at supplying sufficiesttergy levels are shown in Fig. 4.
energy to the electric vehicle during normal operation. The concept of predicting the energy needed to be charged
There are several levels of user interaction in thesan of course be combined with user-defined levels. The
services. Sections 1lI-A and IlI-B focus on these servicpredicted energy levels can, for example, have a minimum
types. level supplied by the user that should always be charged. Thi
« Incidental services: these services specify the behaviwould guarantee that at the predicted time of departuresther
when something unexpected occurs. These unexpected@dlways a certain energy level in the battery no matter how
events can either originate from the end user or froshort the predicted trip is.
the electricity grid, for example. Section 1lI-C discusses If the user is not involved in the charging process and the
a typical incidental service. Another, grid-related aspe€SP predicts the trips, then the risk of not having charged
is described in Section IV-B. enough energy to the vehicle is absorbed by the CSP. However,

Prediction-based charging levels



5 A this, a labeling framework has to be in place for green energy
S - ordames Buw (23]
- Erior The CSP can also provide services to guide a driver to
o an available charging spot. This service could also difeet t
< \ver defined driver depending on the energy needed because drivers with a
’ high energy need will need a charging spot with high charging
power, and ideally no competing users should be connected to
Yy B the same area in_the eIectricity gr_id. ngever, this type' of
! ! o service requires direct communication with the driver dgri
user-defined user-defined . ” a trip.
instantk instantk + 1 time

IV. MAPPING SERVICES TO ANOPTIMIZATION PROBLEM
Figure 3. User-defined charging specification of the requitearging energy . . . .
Evmin.i beforet,, for the specificationd and k + 1. The preceeding section described the various types of ser-

vices a CSP can offer an EV user. In this section, the focus
A E. is on how to map the various charging services to constraints
| %’edicred and objectives in an optimization problem aimed at deriving
i charging schedules, as shown in Fig. 2. This section firstsho
how a service margin can be added to the service specification
and then how to differentiate between customers in case of a
critical event.

predicted
Emin k

battery energy

. By A. Service margins
min
‘ > The minimum energy-level specification, especially the lev

L L L >»
predicted predicted time els predicted by the CSP, can be lower than the actual energy
_ o WPk _ Wpk+l o ~ needed for certain trips on some days.
Figure 4. Predlctlon—bas_ed charging specification _qf th_mlred charging There are several sources of such errors, and they can
energyFnmin . before the time of departurg, for specificationk andk + 1. . e . .
’ occur both in the energy specification and in the temporal

specification. One reason can be that the trip destination,

the CSP needs to be conservative in the charging, i.e. glg/nergredid?d by either the user or the CSP is wrong. Moreover,
charge a higher amount, because if the vehicle is repeatefé‘?n with a correct destination prediction the energy leaal

charged insufficiently before an intended trip, the user m wrong, because of errors in predicting the consumptlpn
change the service provider. and the time of departure. To accomodate for these predictio

errors, a concept of shifting the energy-level specificatian
C. Quick charge be added to the specification of the charging services. It is

For all types of charging services, the user must be able3o°'M Of charging service margin. Assume that the usable
override the initial charging plan and indicate that thetdogt energy capacity of the battery is
should be charged as quickly as possible. This service is an AE =E%® — E® | 1)
incidental service and is only invoked if something unexeéc ) _ ) )
occurs. If quick charge is invoked, the EV is charged withhere gL, is the maximum operational energy level in the
full power until the battery is fully charged or the vehicldPattery andEgh is the minimum operational energy level.
is disconnected. To switch on emergency charging, the u§given an energy-margin coefficientenergy € [0, 1], the
could use any mobile device connected to the CSP port@hergy shiftAE,., , for the k-th specification is
This option is likely to have a negative effect on the §chedu| AEmar i = Oenergy (AE — Enin k), )
commitments of the CSP to the market or the retailer. Thus, ' '
only a reduced number of such possibilities may be availmbleand, given a time-margin coefficient;. € [0, 1], the shift
the end user. Also, an additional fee for using this optiomdo in time At » for the same specification is
compensate the negative effects on the schedule comm#gment _
and reduce the number of such events. Atmark = Ctime (fmin (ABmar, Eming) =), ()

-~ ] where ¢,y (+) is the earliest time the specified energy level
D. Additional services AFEmar + Eminx €an be reached. However, in genetal, ()

In addition to the charging level services and the quidk also a function of the time of connection, which has to
charge service, the CSP can offer a variety of other services predicted by the CSP or specified by the user. Thus, in
For example, the CSP can ensure that the power used to chadlhgecase of predicted charging levels,,(-) depends on the
the vehicle has a certain percentage of green energy. The Qs&icted time of arrival after the previous trip— 1. In the
buys the green electricity from its retailer or enters kitat case of user-defined charging levels;, () can be estimated
agreements with other entities in the electricity marketdd by the average consumption together with the energy level of
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Figure 5. Service margin for the energy-level specificati@,in,x, txy Figure 8. Critical grid situation in which the total requestenergy of all
using the energy-margin coefficieatnergy and the time-margin coefficient EVs exceeds the capacity in the grid. Using the slack vaiaolefficient
Qslack,i» the EVs are differentiated and a priority is establishedistribute

Qtime- : !
the available capacity.

At mar,k
A o Eoax where ty, 1 IS the time of arrival of tripk — 1 and P, ;
%Sn‘i:‘:eﬂ”EdAt,,,a,,,k.+1 is the charging power at time This shift in the charging
’ specification is shown in Fig. 6 for user-defined energy kvel
user-defined and in Fig. 7 for energy levels predicted by the CSP.

Fin Using the coefficientStencrgy aNd ayime, it is possible to
specify several levels of service margins. For example, if
B b_oth coefficients are set to_l the vehi_cle will be c_ha_1rged,
| | o similarly to nonmanaged vehicles, as quickly as possibté un
~ the maximum energy level is reached. Hence, there is no

user-defined user-defined time
instantk instantk + 1 : flexibility for the CSP to influence the charging. This seevic

Figure 6. Shifting of the user-defined service level speatifim based on the 1S likely to be the most expensive option. The service cost
energy-marging coefficientenergy and the time-margin coefficiemtyime. decreases with decreasing coefficients.
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battery energy

AEmar,k

Atmar kt1

predicted
Brmin k1 B. Customer differentiation

Atmar e

battery energy

Even though the minimum energy level, either the predicted
level or the level set by the user, has to be met, there might be
times when this energy level cannot be reached. For example,
~1— — — Enin when several EVs are parked and connected in close proximity

) P > of each other, the electricity grid might not be strong erfoug
predicted predicted time to deliver the required energy to all vehicles. In this case,
trip rip k1 users can have the possibility of getting priority over ashe

P T Shiig of e et s s st ased b baing 3 premium o the CSP. To refec this in the
Qtime optimization of the fleet charging, a slack variable can be
introduced in the minimum energy level constraint. Thelslac
variable is included in the objective function with diffate
the previous specification @& — 1. By using the energy and coefficients that reflects the priority of the users.
time marging coefficients, it is possible to shift from a dire A, jjjystrative example of a critical event is shown in Fig. 8
charging aenergy = 1 and atime = 1 to the user-defined or ¢ shows three EVs each demanding 7 kWh to be charged
predicted levelsienergy = 0 and avime = 0. Figure 5 shows i, he same hour. If the charging could be shifted outside
how a charging specificatioffinin k., 1}, is shifted using the s hour it would no longer be critical. Hence, because all
margin coefficients. _ three EVs require 7 kW for the entire hour and the maximum
The charging service margins actually change the energynsformer power is 20 kW, in this example, the CSP will have
requirements for the EVs in the optimization module of thg, prioritize between the EVs. This is done by introducing a
CSP. The charging constraint for a single EV becomes  gjack variable and a slack variable coefficient,q ; in the
th—Atmar, 1 objective function. The overall optimization of the chagi
Z AtPyt > Emink + AEmar ks (4) schedules?,;; V t for all vehiclesi is concatenated with the
slack variable and coefficient.

t=tarr,k—1



travel information and therefore better predict the futinies.
With a better prediction, the CSP can have a tighter marging i

Posrr s e + Z Oslack,i5i,k (5a) s optimization module and therefore leverage this to iothe
) bk charging costs. The pay-per-charge scheme, on the othdy han
subject to inevitably introduces uncertanty because new EVs can appea

that have not been predicted. Another option for the CSP
is to differentiate the service specification for weekdagd a

bk~ Obmar,i.k weekends. Also, daytime and nighttime can be used to separat

Z AtPyii 2 Eminik + ABmarik — sik (5b)  different specifications. The coefficients for the energiele
t=tarr,i k-1 and the slack variables then have different values depgndin
sikg > 0V (5¢) on the time of day and the day of the week.
Py > 0Vt (5d) Charging schedule optimization can potentially also idelu

stochastic elements in the prediction of the future travel
Note that the slack variable; ;. for vehiclei is the amount pehavior. Stochastic and robust optimization techniquessin
of energy that is needed to reach the predetermined chargigge further investigated, in particular the scalabilifysach
level, including the energy margia Eyar,i k- approaches. Also, an operational CSP is likely to combihe al
The coefficients for the slack variables actually orderf@l t or some of the service elements into various products. This

EVs and, in case of a critical event, prioritizes the chagm tqpic is left to future CSPs because it is a key business #spec
EVs with a high coefficient. It is not practical to have as manyf the service provider.

service levels as EVs, so a grouping of levels is necessary.
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