
RZ 3801 (# Z1103-001) 03/18/2011
Computer Science 20 pages

Research Report

System Performance Issues in Flash-Based Solid-State Drives

Werner Bux

IBM Research – Zurich
8803 Rüschlikon
Switzerland

E-mail: wbu@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Brazil · Cambridge · China · Haifa · India · Tokyo · Watson · Zurich

System Performance Issues in Flash-Based Solid-State Drives

Werner Bux
IBM Research – Zurich

8803 Rüschlikon, Switzerland

Abstract

In this report, we study the performance of solid-state drives that employ flash
technology as storage medium. Our aim is to understand how the main
performance measures, throughput and latency, are affected by the system
parameters and design choices, in particular the garbage-collection mechanism
and the priority scheme used for scheduling the various functions performed by a
flash die. We observe and explain the occurrence of SSD-specific phenomena,
such as latency spikes, and suggest techniques to avoid them.

1. Introduction

Flash memory is a non-volatile solid-state memory technology that can be
electrically programmed, erased, and reprogrammed [1]. Its low power
consumption and good shock resistance have made it very popular for portable
devices, such as digital cameras, portable music players, mobile phones, and
handheld computers. Moreover, the computer industry has started to use flash
technology in so-called solid-state drives (SSDs) as hard-disk replacement in
workstations and even enterprise systems.

Solid-state drives are built around multiple flash dies, which are used to store and
retrieve user data. A certain number of dies, together with a channel controller
and a bus interconnecting the flash dies and the controller, form a subsystem
called flash channel. An SSD may contain several flash channels which function
in parallel. Further building blocks are a central processor, random-access
memory, host interface(s), DMA controllers, and a central bus or other
interconnect mechanism to provide high-speed connectivity among the various
subsystems. Fig. 1 shows an illustration of a generic SSD.

DRAM

DMA Controller

Host
Interface

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

DRAM

DMA Controller

Host
Interface

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

Flash Channel
Control

Die
Die

Fig. 1: Generic structure of a flash-based solid-state drive

In this report, we focus on the operation and performance of a single flash die
within a solid-state drive. While the die is part of a complex system, it is, under
certain conditions, feasible to cut out a single-die submodel and study its
behavior in isolation. Our aim is to understand how key performance measures,
especially throughput and latency, are affected by the system parameters and
main design choices, such as properties of the garbage-collection method or the
priority scheme used for scheduling the various functions performed by a flash
die.

 1

2. SSD Organization and Operation

A NAND flash memory is partitioned into blocks, where each block has a fixed
number of pages (typically 64), and each page is of a fixed size (typically 4
KByte). Data are written in a unit of one page, and the erase is performed in a
unit of one block. Reads are performed in units of pages. A page can be either
programmable or unprogrammable. A programmable page, also called “free
page”, becomes unprogrammable once it has been written (programmed). A
written page contains either valid or invalid data.

In flash-based systems, out-of-place write is used: When a page or a fraction
thereof needs to be rewritten, the new data does not overwrite the memory
location where the data is currently stored. Instead, the new data is written to
another page and the old page is marked invalid. Over time, the SSD
accumulates invalid pages, and the number of free pages decreases. To make
space for new or updated data, invalid pages must be reclaimed. The only way to
reclaim a page is to erase the entire block the page pertains to. Reclamation or
garbage collection happens in multiple steps: First, one of the blocks is selected
for reclamation. Second, the valid pages of this block are copied to a free block.
which thereby becomes part of the device’s actively used storage space. Third,
the reclaimed block is erased and joins the free-block pool.

3. Performance Model of a Flash Device

3.1 Scope of the Model

Although an SSD system contains a multiplicity of flash dies, the focus of this
study is on modeling the operation of a single die. We make the assumption that
the bus interconnecting the dies of a flash channel and the corresponding
channel controller represent no bottleneck, in other words, the dies are not
slowed down by their neighbor dies or the channel controller.

A further important feature of our model is that in the course of garbage
collection, the valid pages that need to be copied from the selected block will all
be written into a free block on the same die. Note that this is a prerequisite of
using the copy-back function available in many flash technologies. Copy-back
represents an efficient way of moving data between flash cells on the same die
without burdening the bus.

If, for whatever reason, copy-back is not used for page relocation, the relocated
data could be moved over the bus to a die on the same flash channel.
Alternatively, it could be copied to a die on a different channel, which would
involve multiple bus transfers. The extent to which data is moved affects delay
and throughput, and impacts the system’s energy consumption.

 2

When new user data is written to flash, it is good practice for the SSD controller
to select the target flash die such that over time all dies are equally utilized.
Moreover, it generally makes sense to exploit the parallelism among multiple
flash channels. However, when it comes to selecting the target die for relocating
valid pages, it is an open question whether the benefits of load balancing and
parallelism warrant the price of data movement paid in terms of performance loss
and added energy consumption.

3.2 Model Structure and Parameters

As shown in Fig. 2, our model consists of a single server, which represents the
flash die. There are four different queues in front of the server to temporarily hold
the read, write, copy, and erase requests.

br bw bc be

every (c-v)-th
request

wr v requests

br bw bc be

every (c-v)-th
request

wr v requests

Fig. 2: Queueing model of single flash die

The stream of write arrivals represents the portion of the total SSD user write
workload which the system controller decides to direct to the particular flash die
considered. The stream of read arrivals are the user read requests for data
stored on the die. The user read and write request arrivals are modeled as
independent Poisson processes with rates r and w , respectively. Of course,

our simulation model also supports arrival processes other than Poisson. In the
context of this report, however, we will limit the discussion to this simple model.

In our model, user read and write operations occupy the die for a certain time to
either read the data from the flash cells or program the cells. In addition, time is
needed to transfer the data over the bus interconnecting the flash dies and the
flash channel controller. During that time, also the die is busy. We assume that
the total time for which the flash die is needed to process a user read request is
constant and equal to ; similarly a user write request keeps the flash die busy

for a constant time .
rb

wb

 3

As mentioned above, flash-based SSDs need to regularly perform garbage
collection to free up storage space. When all c pages of a block have been
written, the controller selects a new block from a free-block pool and initiates
garbage collection to free up a hitherto used block. Using a specific selection
mechanism, such as the “greedy” garbage-collection algorithm [2], the garbage-
collection process selects one of the blocks for relocation. As the block selected
usually contains a certain number V of pages with valid data, these valid pages
first have to be copied into a free block, the new “write block”. The remaining
c – V pages in the write block are available for storing user data. When all of
these pages have been written, a new garbage-collection cycle is started, and
the process repeats itself.

The garbage-collection process is modeled in the following way. In [2], it was
shown that for large SSDs using greedy garbage collection, the number of valid
pages copied per garbage collection typically varies very little. Although our
simulation model supports more complex schemes, we assume for this report
that the number of copied pages is constant and equal to v. This means that after
c – v user write requests have been processed, a total of v copy requests are
generated and placed into the copy queue. Each of these requests represents
the copying of a valid page, which is assumed to take a constant time . Once

all v copy operations have been performed, the server is busy for a time to

perform the erase function. In our model, we assume that the garbage-collection
process keeps pace with the arrival of user write requests. In other words, we do
not consider scenarios jn which the operation is slowed down by a momentary
shortage of free blocks. We will come back to this issue in Section 6.

cb

eb

One of the critical SSD design issues is the assignment of priorities to the
different types of requests competing for the flash die. A possible priority
scheme, labeled RWP for “read/write priority”, serves user reads and writes with
higher non-preemptive priority over copy requests. At the other end of the
spectrum is the “copy/erase priority” (CEP) scheme, in which the copy and
ensuing erase operations take non-preemptive priority over user reads and
writes. The impact of these two schemes on the performance of the system will
be discussed in detail below. For the analysis described in this report, we
assume that user read and write requests are served in strict first-come, first-
served order, irrespective of their (read or write) nature.

4. Maximum Throughput

The traffic load on the flash die consists of four components:

(i) die utilization due to user writes

www b (1)

 4

(ii) die utilization due to user reads

rwrrr bsb with
w

rs

 (2)

(iii) die utilization due to valid-page copies

cwccc b
vc
vb

 (3)

(iv) die utilization due to block erases

eweee b
vc

b

1

 . (4)

The total die utilization is the sum of the above four components:

 ecrwwecrw b

vc
b
vc
vsbb 1 . (5)

The write throughput approaches its maximum as the total utilization approaches
100%. This limit is reached for a maximum write arrival rate of

1
max 1

 ecrww b

vc
b
vc
vsbb . (6)

The maximum total throughput is given by

maxmaxmaxmax)1(wrw s . (7)

Inserting (6) into (7) yields

ecrw b
vc

b
vc
vbsb

s

 1

)1(max . (8)

For storage systems, such as flash-based SSDs or log-structured arrays or file
systems [5, 6], that use out-of-place write and garbage collection, the efficiency
of the garbage-collection mechanism can be characterized by the so-called “write
amplification” A, i.e., the ratio of the total write requests on the system and the
user write requests [3]. For a system with c pages per block and a number of v
valid pages that need to be copied per garbage collection, the write amplification
is given by

 5

vc
cA

 . (9)

Inserting (9) into (8) yields

ecrw b
c
AbAbsb

s

)1(

)1(max . (10)

Inspection of Eqs. (8) and (10) leads to the following basic insights: The
maximum throughput of a flash die decreases for longer write/read/copy/erase
times. It also decreases as the write amplification increases. The throughput is
not totally independent of, but quite insensitive to, the number of pages per block.

5. User Read and Write Latencies

In this section, we study the latencies of user read and write requests occurring
in the flash die for a variety of design options and workloads. For the results
included in this report, we used the model parameters listed in Table 1, which are
based on the characteristics of a typical MLC flash die.

Table 1: Flash characteristics underlying the performance results

page size B 4320
data transfer rate MB/s 166
pages per block 256
page read μs 76.3
page write μs 926.4
page copy us 950.7
block erase μs 3000.3

We first discuss the basic latency characteristics with the help of plots showing
simulated waiting times and queue lengths as a function of time. Then we
address the issue of mean waiting times under different priority schemes.

5.1 Basic Latency Characteristics

For the examples discussed in this section, we assume a workload consisting of
a mixture of 67% reads and 33% writes, i.e., s = 2. The mean inter-arrival time of
reads is 1 ms and that of writes is 2 ms. This results in a die utilization of 0.54 by
user reads and writes, and a total die utilization of 0.71 (including the garbage-
collection overhead). We assume a moderate write amplification A of 1.33, which

 6

at 256 pages per block translates into v = 64 valid pages to be copied per
garbage-collection cycle.

Figure 3 shows the outcome of a simulation run in which the valid-page copy and
the ensuing block-erase operations were processed with higher non-preemptive
priority over the user reads and writes, i.e., with the so-called CEP scheme
introduced above. Shown in the chart are the individual delays of reads and
writes waiting to access the die. The figure exhibits a distinctly cyclical behavior.
There are phases of “normal” operation, during which the delays randomly
oscillate around an average in the milliseconds range. However, when garbage
collection is performed, the first user read or write request affected may have to
wait until all v (64) valid pages in the relocated block have been copied and the
block has been erased. Consequently, that first read or write request may suffer
a delay of v times the duration of a copy operation plus one block erase time.
Subsequent reads or writes will see gradually decreasing delays, unless the
arrival of additional user reads or writes leads to an increase of the individual
delays. As the figure shows, after garbage collection, it takes a considerable
amount of time until the delays are back to their normal level. As additional
simulations have shown, latency spikes of the kind shown in Fig. 3 occur also at
much lower die utilizations, e.g., of 0.2 or less.

Figure 4 shows the behavior of the read/write queue length, which exhibits the
same cyclical characteristic as the waiting times in Fig. 3.

In Fig. 5, we show the number of copy operations waiting to be processed by the
die for the same experiment and observation window. As the copy operations are
served with higher priority than the other requests, the length of the copy queue
exhibits an almost completely deterministic behavior. Comparison of Figs. 3 and
4 with Fig. 5 reveals that read/write waiting times and queue lengths peak at that
point in time when the last copy operation of a garbage-collection cycle and the
ensuing block erase have terminated.

Clearly, the occurrence of pronounced latency spikes like the ones in Fig. 3 are
highly undesirable and should be avoided. One possible way to avoid the spikes
is to reverse the priorities and give user reads and writes higher non-preemptive
priority than valid-page copies and block erases, i.e., to use the so-called RWP
(read/write priority) scheme.

 7

Time [s]

R
ea

d/
w

rit
e

w
ai

tin
g

tim
e

[s
]

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

R
ea

d/
w

rit
e

w
ai

tin
g

tim
e

[s
]

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 3: User read and write waiting times for the CEP scheme

Time [s]

R
e

ad
/w

rit
e

 q
u

eu
e

le
ng

th

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

R
e

ad
/w

rit
e

 q
u

eu
e

le
ng

th

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 4: User read and write queue lengths for the CEP scheme

Time [s]

V
a

lid
-p

a
ge

 c
op

y
q

ue
ue

 le
ng

th

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

V
a

lid
-p

a
ge

 c
op

y
q

ue
ue

 le
ng

th

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 5: Valid-page copy queue length for the CEP scheme

 8

Figure 6 shows how the change of priorities affects the waiting times of the read
and write requests. We observe a dramatic reduction of the delays together with
a complete elimination of the latency spikes and cyclical behavior observed for
the CEP scheme. (Please note the different scales on the vertical axes of Figs. 3
and 6.) This behavior is also reflected in the dynamics of the read/write queue
length depicted in Fig. 7.

Figure 8 shows the behavior of the valid-copy queue for the RWP scheme. In
contrast to the CEP scheme (Fig. 5), the decrease of the copy queue length
under RWP may get randomly delayed by newly arriving user reads or writes.
Consequently, it may take considerably longer until the last copy operation of a
garbage collection cycle has been performed.

Time [s]

R
ea

d/
w

rit
e

w
ai

tin
g

tim
e

[s
]

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

R
ea

d/
w

rit
e

w
ai

tin
g

tim
e

[s
]

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 6: User read and write waiting times for the RWP scheme

Time [s]

R
ea

d/
w

rit
e

q
ue

u
e

le
ng

th

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

R
ea

d/
w

rit
e

q
ue

u
e

le
ng

th

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 7: User read and write queue lengths for the RWP scheme

 9

Time [s]

V
al

id
-p

a
g

e
co

p
y

q
ue

u
e

 le
ng

th

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

V
al

id
-p

a
g

e
co

p
y

q
ue

u
e

 le
ng

th

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 8: Valid-page copy queue length for the RWP scheme

5.2 Mean Read and Write Waiting Times

For a better understanding of the system performance, it would be helpful to
have a closed-form expression for the expected read and write waiting times for
the two priority schemes RWP and CEP. To this end, we will simplify the model
by cutting the coupling of the copy requests with the user writes. While in reality v
copy requests are generated after the service completion of every (c – v)-th user
write, we assume that there is no such coupling, but an independent arrival
stream of batches of copy requests with batch size v. The arrival rate of the copy
batches is

vc
w

cb

 , (11)

and the total arrival rate of copy requests is

wc vc
v

 . (12)

5.2.1 Priority Scheme RWP

Under RWP, an arriving user read or write request can either start service
immediately when the server is idle or has to wait for the residual service time of
a read or a write request. It then has to wait until all reads and writes queued in
front of it have been served. Yet another possibility is that it has to wait until a
copy request or an erase request that is currently being served has been
completed.

 10

If we denote by wRWP the expected waiting time under the RWP scheme, the
expectations of the above times can be captured by the following relationship:

2222

2222

RWP
eecc

wwrr
wwrr bbbbbbw

 (13)

In Eq. (13), and stand for the mean queue lengths of read and write

requests, respectively. Using Little’s law, we obtain
r w

wPwrr wandw RWRWP . (

14)

serting (14) into (13) and solving for wRWP finally yields In

 2222 1

)1(2
1

ewcwwwrr
wwrr

RWP b
vc

b
vc
vbb

bb
w

 . (15)

igure 9 shows both simulation and analytic results for the mean waiting time

ds
F
under the RWP scheme. As can be seen, our closed-form expression (15) yiel
amazingly accurate results up to rather high utilizations.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.2 0.4 0.6 0.8 1

rho_tot

M
e

a
n

 w
a

it
in

g
 t

im
e

 [
u

s
]

w_RWP analysis

w_RWP sim

tot

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.2 0.4 0.6 0.8 1

rho_tot

M
e

a
n

 w
a

it
in

g
 t

im
e

 [
u

s
]

w_RWP analysis

w_RWP sim

tot

Fig. 9: Mean waiting time as a function of the total system utilization for the RWP
scheme

 11

5.2.2 Priority Scheme CEP

In Fig. 10, we show simulation results for the mean waiting time under the CEP
scheme. Comparison with Fig. 9 reveals that, as expected, the CEP scheme
leads to dramatically higher user delays than RWP.

To come up with a closed-form expression for the mean waiting time under CEP,
we have used the same approach as above, namely, to cut the coupling of the
copy and write requests and to look at the model as an M/G/1 queue with two
(non-preemptive) priority classes, where the arrival rate of the higher-priority
class would be set equal to the arrival rate of the copy batches and the service
time of the higher-priority class to the sum of the copy service times and the
erase time. In this approximate model, the mean waiting time of the read and
write requests would be equal to the mean waiting time of the lower-priority class,
which is well known [7]. However, comparison with simulation shows that this
approach systematically overestimates the mean waiting times of the read/write
requests under the CEP scheme. The primary reason for the mismatch is the
assumption of exponentially distributed interarrival times of the copy request
batches. In reality, this time corresponds roughly to the sum of v independent
write interarrival times, i.e., an Erlangian distribution with parameter v. To the
best of our knowledge, there is no theoretical result or analytical approach
available in the literature that could be straightforwardly applied to this kind of
queuing model.

0

10,000

20,000

30,000

40,000

50,000

60,000

0 0.2 0.4 0.6 0.8 1

rho_tot

M
ea

n
 w

ai
ti

n
g

 t
im

e
[u

s]

simulation

tot

0

10,000

20,000

30,000

40,000

50,000

60,000

0 0.2 0.4 0.6 0.8 1

rho_tot

M
ea

n
 w

ai
ti

n
g

 t
im

e
[u

s]

simulation

tot

Fig. 10: Mean waiting time as a function of the total system utilization for the CEP
scheme

 12

6. The Duration of Garbage Collection

6.1 Basic Observations

As explained above, it is essential for the functioning of the SSD device that free
blocks are available for storing user data in a timely fashion. In this section, we
therefore study the question how long it takes an SSD system to perform
garbage collection depending on its characteristics and the priority scheme
employed.

We denote by “garbage-collection duration” the time from the initialization of
garbage collection until all valid pages of the selected block have been relocated
and the block has been erased.

Under the CEP scheme, garbage collection takes the minimum amount of time
possible, viz. the aggregate of v copy operations and one erase operation:

ecCEP bvb , (16)

Figure 11 shows a typical example of simulated garbage collection durations
under the CEP scheme. The majority of the measured durations correspond to
(16); a few are prolonged by either one read or one write processing time. These
small variations are an artifact of our specific simulation implementation, which at
the start of a garbage-collection action serves a previously scheduled read or
write request despite its lower priority, before starting the (high-priority) page-
copy operations. Modulo this small anomaly, the simulation reconfirms the ideal
behavior of the CEP scheme relative to the garbage-collection duration.

In comparison, the dynamics of garbage collection under the RWP scheme are
much more complicated, because waiting user read and write requests may
delay the start of the valid-page relocations and, in addition, read or write
requests arriving during the garbage-collection activity may delay its completion
in a random fashion. Figure 12 shows the corresponding results for the RWP
scheme. The comparison of the two figures illustrates that garbage collection
under RWP takes distinctly longer than under CEP. (Note the different scales on
the vertical axes.)

In Fig. 13, we show how the mean garbage-collection duration varies as a
function of the total die utilization. (The latter is the total utilization caused by user
reads and writes, valid-page copies, and erases.) While the garbage collection
duration under CEP stays at its minimum value, the RWP duration remains
reasonably small up to relatively high loads, but increases sharply as the total
load approaches the system capacity. This is a distinct shortcoming of the RWP
scheme, which suggests that pure, unmodified RWP is no viable priority scheme
for SSDs. It has to be complemented by a scheme that enforces finite garbage-
collection periods under any workload.

 13

 14

Time [s]

G
C

 d
u

ra
tio

n
 [s

]

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

G
C

 d
u

ra
tio

n
 [s

]

CEP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 11: Garbage-collection duration for the CEP scheme

Time [s]

G
C

 d
u

ra
tio

n
[s

]

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

G
C

 d
u

ra
tio

n
[s

]

RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 12: Garbage-collection duration for the RWP scheme

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 0.2 0.4 0.6 0.8 1

Total utilization

M
e

a
n

 g
a

rb
a

g
e

 c
o

ll
e

c
ti

o
n

 d
u

ra
ti

o
n

 [
u

s
]

RWP sim

CEP

Fig. 13: Mean garbage-collection duration as a function of the total system utilization
for the RWP and CEP schemes (simulation results)

6.2 Analysis of the RWP Garbage-Collection Duration

The aim of this section is to derive a closed-form expression for the mean
garbage-collection duration under the RWP scheme. For simplicity, we limit the
analysis to the traffic load region for which garbage collection periods do not
overlap. More precisely, we assume that, at the arrival instance of the last write
request before garbage collection is triggered, the preceding garbage collection
has been completed. For this to be true, the offered user traffic must be well
below the maximum throughput value derived in Section 4. In other words, we
should not expect the analytic result to be applicable to high loads.

First we determine the expected time from the arrival of the last user write before
garbage collection is triggered until the end of the garbage collection.

As user-write arrivals follow a Poisson process, the “last” user write will observe
unfinished work in the system whose expectation corresponds to the mean
waiting time of an M/G/1 queue with FIFO service discipline and two types of
customers: reads arriving with rate r and constant service time , and writes

arriving with rate
rb

w and constant service time . Therefore the initial unfinished

work amounts to
wb

)1(2

22

0
wwrr

wwrr

bb
bb

 . (17)

The expected time from the arrival of the “last” user write until the completion
of the valid-page relocation consists of the following components:

 The initial unfinished work 0 ,
 the service time of the “last” user write wb ,

 the service times of the v valid-page copies cvb ,

 the expected service times of the user reads arriving during this period
(rrb), and

 the expected service times of the user writes arriving during this period
(wwb).

Setting the sum of these components equal to , inserting (17) and solving for
yields:

)1(21
1 22

wwrr

wwrr
cw

wwrr bb
bbvbb

bb

 . (18)

To determine the mean garbage collection duration, two more steps are required:

 15

1. We need to subtract from in (18) the time from the arrival of the “last”
write request until its service completion. Because according to our
assumption the prior garbage-collection backlog has ended before the
arrival of the “last” write request, the only requests waiting in the system, if
any, are read or write requests. Hence the time until the “last” write
request has been served corresponds to the waiting time of a request in a
FIFO M/G/1 queue with two Poisson arrival streams of rate r and w and

service times rb and wb , respectively, plus the service time wb of the last

write request. The expectation of that time is equal to 0 in (17) plus wb .

2. We need to add the mean service time for the block erase operation be.

Subtracting and wb 0 from and adding be yields the following result for the

mean garbage-collection duration:

e
wwrr

wwrrwwrr
cwwwrr

wwrr

ew
wwrr

wwrr

wwrr

wwrr
cw

wwrr
RWP

b
bb

bbbbvbbbb
bb

bb
bb

bb
bb

bbvbb
bb

)1(2
))(()(

1
1

)1(2
)(

)1(2
)(

1
1

22

2222

 ,(19)

In Fig. 14, we present analytic and simulation results for the mean garbage-
collection duration for the same parameter values as before. The analytic results
computed with Eq. (19) perfectly match the simulation results up to a total die
utilization of 0.9. At higher loads, the analysis yields too small durations, which is,
of course, a consequence of the underlying assumption that garbage-collection
periods do not overlap.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 0.2 0.4 0.6 0.8 1

Total utilization

M
e

a
n

 g
a

rb
a

g
e

 c
o

ll
e

c
ti

o
n

 d
u

ra
ti

o
n

 [
u

s
]

RWP calc

RWP sim

CEP

Fig. 14: Mean garbage-collection duration as a function of the total system utilization

for the RWP and CEP schemes (comparison of analytic and simulation results)

 16

7. The Garbage Collection Backlog Duration

In this section, we look at the behavior of the SSD system from a different angle.
The issue we want to address is how long it takes until the impact of a garbage-
collection action is no longer felt. Specifically, we will ask ourselves the question:
What is the duration of the “Garbage Collection Backlog”? We define the latter as
the time from the start of garbage collection until the next instance the die
becomes idle. The die is idle when all valid-page copies, erases, user reads and
writes – present at the start of garbage collection or arriving thereafter while the
die is still busy – have been processed.

For the same set of parameters as in the earlier examples, Fig. 15 shows the
backlog durations measured during the first 50 sec of a simulation experiment.
Driving the system with identical samples of the read/write request arrival
process, the experiment was performed for both priority schemes. The measured
backlog durations turned out to be exactly identical for both schemes.

Time [s]

B
ac

kl
og

 d
ur

at
io

n
 [s

]

CEP or RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Time [s]

B
ac

kl
og

 d
ur

at
io

n
 [s

]

CEP or RWP
ar = 1000 μs, aw = 2000 μs
u = 0.54; tot = 0.71

Fig. 15: Garbage-collection backlog duration for the CEP or RWP schemes

(0.71 total utilization)

Before interpreting these results, we present an additional example in which the
same experiment as before was conducted, but under a 33% higher workload.
For the CEP scheme, Fig. 16 shows that a considerable fraction of the backlogs
last longer than the time between two successive garbage-collection instances.
As the total die utilization is 0.94, this does not come as a surprise. What is more
interesting, though, is that if we repeat the same experiment under the RWP
scheme, we obtain almost exactly the same results, see Fig. 17.

 17

CEP
ar = 750 μs, aw = 1500 μs
u = 0.72; tot = 0.94

CEP
ar = 750 μs, aw = 1500 μs
u = 0.72; tot = 0.94

Fig. 16: Garbage-collection backlog duration for the CEP scheme
(0.94 total utilization)

RWP
ar = 750 μs, aw = 1500 μs
u = 0.72; tot = 0.94

RWP
ar = 750 μs, aw = 1500 μs
u = 0.72; tot = 0.94

Fig. 17: Garbage-collection backlog duration for the RWP scheme
(0.94 total utilization)

The only small differences, which are hardly visible when comparing the two
figures, are in the durations of backlogs that started at points in time when the
backlog from the preceding garbage collection had not completely finished. For
these cases, the backlog is slightly shorter under the CEP scheme. This effect
can be explained as follows: For both schemes, the last write request before

 18

garbage collection sees exactly the same total backlog upon its arrival, but the
mixture of the unfinished work will differ for the two priority schemes. Specifically,
under CEP, there will likely be more pending reads and writes in the system than
under RWP. Moreover, as the remaining waiting times for the queued-up reads
or writes tend to be longer, if they are served with lower priority, the waiting time
of the “last” write will be longer. Hence it will take longer until the “last” write
request has been served, and garbage collection commences. We have already
seen that the backlog durations end at exactly the same points in time under both
schemes. Consequently, the garbage-collection backlogs under CEP, which tend
to start later but end at the same point in time as those under RWP, will tend to
be shorter.

The invariance of the garbage-collection backlog with respect to the priority
scheme employed should not come as surprise because of its close relationship
with the unfinished work in a work-conserving single-server queueing system. It
is well known that the unfinished work, also called work backlog, is independent
of the order of service [4].

8. Summary and Conclusions

The main findings of the work described in this report can be summarized as
follows:

 The maximum throughput of a flash die decreases for longer write, read,
copy, and erase times. It also decreases as the write amplification
increases. The throughput is not totally independent of, but quite
insensitive to, the number of pages per block.

 Relative to user read and write latencies, we found that (i) RWP results in

distinctly shorter mean waiting times than CEP, and (ii) garbage collection
under CEP may cause massive latency spikes, even under light load.

 Our findings for the garbage-collection duration can be summarized as

follows: (i) Under CEP, garbage collection takes the minimum amount of
time possible, independent of the workload. (ii) Under RWP, the garbage-
collection duration remains small up to high utilizations. However, it
increases sharply (and theoretically without limits), as the load approaches
the system capacity.

 The garbage collection backlog durations are invariant with respect to the

priority assignment to reads/writes, valid-page copies, and erases, with
the exception of garbage-collection periods commencing when previous
backlogs are still present. This holds for all work-conserving service
disciplines

 19

 20

Based on these observations, we reach the following basic conclusions:

• Because of its consistently short garbage-collection duration, CEP is a
robust priority strategy. However, it is deficient relative to user read and
write latencies.

• RWP yields the best user read/write latencies and, in particular, avoids
latency spikes.

• Pure RWP is no viable priority strategy for SSDs, because under overload,
garbage collection could last arbitrarily long. It needs to be complemented
by a mechanism which ensures that, under any workload, garbage
collection is performed (i.e., initiated and completed) in sync with the
consumption of free blocks.

• The effect of garbage collection on the total unfinished work in the system
(“garbage-collection backlog”) cannot be influenced by the priority
strategy. Therefore the need for overload protection/backpressure is the
same for any (work-conserving) priority scheme

References

[1] J. Brewer, M. Gill (ed.), Nonvolatile Memory Technologies with Emphasis on Flash: A
Comprehensive Guide to Understanding and Using Flash Memory Devices, Wiley-IEEE
Press, 2008.

[2] W. Bux and I. Iliadis, Performance of Greedy Garbage Collection in Flash-Based
Solid-State Drives, Performance Evaluation 67(2010), pp. 1172-1186.

[3] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, Write Amplification Analysis
in Flash-based Solid State Drives, in: Proceedings of the Israeli Experimental Systems
Conference (SYSTOR) (Haifa, Israel), 2009, pp. 1–9.

[4] L. Kleinrock, Queueing Systems, Vol. I: Theory. John Wiley & Sons, New York, 1975.

[5] J. Menon, A Performance Comparison of RAID-5 and Log-structured Arrays, in:
Proceedings of the 4th International Symposium on High Performance Distributed
Computing (HPDC) (Charlottesville, VA), 1995, pp. 167–178.

[6] M. Rosenblum and J. K. Ousterhout, The Design and Implementation of a Log-
structured File System, ACM Trans. Comput. Syst. 10(1) (1992) 26–52.

[7] H. Takagi, Queueing Analysis, Vol. 1: Vacation and Priority Systems, Part 1. North-
Holland, Amsterdam, 1991.

