
RZ 3840 (# Z1302-037) 03/13/2013
Computer Science 14 pages

Research Report

Got Loss? Get zOVN!

D. Crisan, R. Birke, G. Cressier, C. Minkenberg, and M. Gusat

IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

Got Loss? Get zOVN!

Paper #221, 14 pages

ABSTRACT
Datacenter networking is currently dominated by two ma-
jor trends. One is toward lossless, flat layer-2 fabrics based
on Converged Enhanced Ethernet and InfiniBand, with ben-
efits in efficiency and performance. The second trend aims
at increasing flexibility by means of Software Defined Net-
working, which enables Overlay Virtual Networking. Al-
though clearly complementary, these trends also exhibit con-
flicting traits: In contrast to physical fabrics, which avoid
packet drops by means of flow control, almost all current
virtual networks are lossy. We quantify these losses for sev-
eral combinations of hypervisors and virtual switches, and
show their detrimental effect on application performance.
Moreover, we propose zOVN, a zero-loss Overlay Virtual
Network, designed to reduce the flow completion time of
latency-sensitive datacenter applications. We describe its ar-
chitecture and detail the design of its key component, the
zVALE lossless virtual switch. As a proof of concept, we
have implemented a zOVN prototype, which we benchmark
with Partition-Aggregate, achieving up to 19-fold reduction
of the mean completion time using three widespread TCP
versions. For larger scale validation and deeper introspec-
tion into zOVN’s operation, we developed an OMNeT++
model for accurate cross-layer simulations of a virtualized
datacenter. The results obtained through simulation confirm
the validity of the testbed findings.

Keywords
Datacenter networking, virtualization, overlay networks,
lossless, Partition-Aggregate.

1. INTRODUCTION
Recent years have marked profound changes in data-

center networking that are likely to impact the perfor-
mance of the latency-sensitive workloads, collectively
referred to as On-Line and Data-Intensive (OLDI) [37].
Particularly relevant are the rise of Overlay Virtualized
Networking (OVN) enabled by Software-Defined Net-
working (SDN) and, simultaneously, the shift to loss-
less layer 2 fabrics based on Converged Enhanced Eth-
ernet (CEE) and InfiniBand (IB). So far, the network-
ing trends in virtualization and the commodification of

high-performance-computing-like lossless1 fabrics have
been decoupled, each making independent inroads into
the datacenter.

While the research community increasingly focuses on
the performance of horizontally-distributed OLDI appli-
cations [15, 8, 9, 24, 37, 40, 41], and recently also on
the new virtualization overlays for multitenant datacen-
ters [27, 39, 16], we argue that the combination of vir-
tualization with such workloads merits closer scrutiny
[13, 18]. Our main objective is to analyze the impact
on workload performance of the absence vs. presence
of flow control in a virtualized datacenter network. As
our study specifically focuses on latency-sensitive, data-
intensive workloads, the performance metric of interest
is flow completion time (FCT) [19]. As a representative
OLDI workload model, we selected Partition-Aggregate
(PA) [8, 40].

1.1 Network Virtualization
As server and storage virtualization allow for dynamic

and automatic creation, deletion, and migration of vir-
tual machines (VMs) and virtual disks, the datacenter
network must support these functions without impos-
ing restrictions, such as IP subnet and state require-
ments. In addition to VM mobility and ease of manage-
ment, datacenter applications today benefit from com-
plete traffic isolation, which can be achieved by layer-2
and 3 virtualization. Rather than treating the virtual
network as a dumbed-down extension of the physical
network, these requirements can be effectively met by
creating SDN-based overlays such as VXLAN [25] and
DOVE [11]. An exemplary architectural exposition of
modern OVNs is NetLord [27], which covers the key
design principles of SDN-based datacenter overlays.

SDN as a concept decouples the control and data
planes, introducing programability and presenting ap-
plications with an abstraction of the underlying phys-

1In this paper we use lossless and zero-loss in the sense of
being capable to avoid dropping packets due to congestion.
Note that packets might still be discarded due to CRC errors
in the physical links. These, however, are extremely rare
events under normal conditions (typical bit error rates are
10−12 or less) and recovered by TCP.

1

bol
Rectangle

ical network. Scalable and flexible ’soft’ networks can
thus be designed to adapt to changing workloads and to
datacenter tenants’ and operators’ needs. In a nutshell,
SDN is used to simplify network control and manage-
ment, automate virtualization services and provide a
platform upon which to build new network functional-
ity. In doing so, it leverages both the IETF network
virtualization overlays [36, 25] and the OpenFlow [26,
28] standard.

OpenFlow presently embodies the preeminent mech-
anism to implement an SDN control plane with central-
ized intelligence. OpenFlow moves the network control
plane into software running on a server attached to an
OpenFlow-enabled switch or router. The flow of net-
work traffic can then be controlled dynamically without
the need to rewire the datacenter for each new tenant.

Based on the adoption rate of virtualization in data-
centers, the underlying assumption here is that virtual
network (VN) technologies will be deployed in practi-
cally most, if not all, multitenant datacenters, providing
by default a fully virtualized Cloud platform. For the
remainder of this paper we presume the VN overlay as
an intrinsic part of the extended datacenter network in-
frastructure; accordingly, the datacenter traffic, includ-
ing data, control, and management, is virtualized by
default. Therefore, we envision a fully virtualized data-
center where ’bare-metal’ OLDI workloads become the
exception, even for mission-critical applications.

However, today’s VN overlays throw a few unexpected
wrenches in the datacenter stack. For one, current hy-
pervisors, virtual switches (vSwitches) and virtual net-
work interface cards (vNICs) critically differ from their
modern physical counterparts, because they have a pro-
pensity to liberally drop packets even under minor con-
gestive transients. In our experiments these losses may
amount to a considerable fraction of the offered traf-
fic. As shown in Table 2, frequently a VN loss episode
may appear as non-deterministic to the casual observer.
Consequently, current non-flow-controlled virtual net-
works will to a significant extent cancel the investments
in upgrading datacenter networks with carefully flow-
controlled CEE and InfiniBand fabrics.

1.2 Lossless Fabrics
The recent standardization of 802 Data Center Bridg-

ing (DCB) for 10 Gbps CEE has unleashed the com-
modification of high-performance lossless fabrics. Whe-
reas the first generation of ’pre-draft’ DCB products
have already implemented Priority Flow Control (PFC,
[6]) in 10GE lossless switches and adapters, currently
more than a dozen vendors have announced their sec-
ond or third generations of ’full’ CEE fabrics at 40G, or
even 100G. In addition to losslessness, high through-
put, and extensive support for consolidated traffic –
server, storage, FCoE, RoCEE – and virtualization, new

vSwitch

Port A
TX

Iperf
source

VM1

vNIC
TX

1 2

Port B
TX

Port C
RX

Iperf
sink

VM3

vNIC
RX

5 6
3

4

3

Iperf
source

VM2

vNIC
TX

1 2

Figure 1: Experimental setup for virtual network loss
measurements.

CEE switches use sophisticated scheduling, forwarding,
buffering and flow control schemes to reduce the chip
traversal latency under a few 100s of ns.

Traditionally, Ethernet did not guarantee lossless com-
munication. Instead, packets were dropped whenever a
receive buffer reached its maximum capacity. Reliable
upper-layer transports such as TCP interpret such an
event as implicit congestion feedback, triggering win-
dow or injection rate corrections. This behavior, how-
ever, does not match the semantics of today’s datacen-
ter applications, including parallel computing (cluster-
ing, HPC), storage (Fibre Channel), or RDMA.

CEE substantially upgrades Ethernet’s flow control
by means of two recently adopted mechanisms: The
PFC link-level flow control mechanism, and an end-
to-end congestion management scheme referred to as
Quantized Congestion Notification (QCN).

PFC divides the controlled traffic into eight prior-
ity ’lanes’ based on the 802.1p Class of Service field.
Within each priority or traffic class, PFC acts as prior
802.3x PAUSE [6], except that a paused priority will
not affect the others. Hence, a 100G link is not fully
stopped just because a particularly aggressive flow has
exceeded its allotted downstream buffer share. Despite
the marked improvement with respect to the original
PAUSE, a side-effect of PFC remains still the poten-
tial global throughput collapse: If a sender is blocked,
its buffer may fill up and recursively block switches up-
stream, spreading the initial hotspot congestion into a
saturation tree [29]. To address the head-of-line block-
ing issues, the DCB task group has first defined its
layer-2 congestion control scheme (QCN) before releas-
ing PFC.

1.3 Contributions
Our main contributions are as follows: (i) We identify

and make a first attempt to characterize the problem of
packet drops in virtual networks. (ii) As a solution, we
introduce and implement zOVN, the first lossless virtual
network overlay that preserves the zero-loss abstraction
required by the converged multitenant datacenter. (iii)
Regarding its impact on latency, we quantitatively sub-
stantiate how zOVN improves standard TCPs’ perfor-
mance for OLDI applications. Thence we perform the
first FCT-based experimental study of a PA workload
running on top of such a virtualization layer, reducing

2

 0

 0.5

 1

 1.5

 2

Linux
Bridge

Open
vSwitch

VALE VMware VMware Linux
Bridge

Open
vSwitch

In
g

re
s
s
 T

ra
ff

ic
 [

G
B

y
te

s
] virtio vmxnet e1000

Received vSw loss Stack loss

Figure 2: Causes of packet losses.

by up to 19x the FCT of three standard TCPs over
commodity Ethernet. Finally, (iv) we investigate the
scalability of zOVN by means of accurate full system
simulations.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the main issues of the current virtual
networks. In Section 3 we explore the design space of
overlay virtual networks. We provide the details of our
zOVN prototype in Section 4 and present its evaluation
in Section 5. We discuss the results in Section 6 and the
related work in Section 7. We conclude in Section 8.

2. VIRTUAL NETWORKS CHALLENGES
In this section, we summarize and illustrate the two

main deficiencies of current virtual network implemen-
tations, namely latency penalties and excessive packet
dropping.

2.1 Latency
A virtual link does not pose a well-defined channel ca-

pacity in bits per second. Neither arrival nor departure
processes can be strictly bounded. Instead, the distribu-
tion of the virtual link service time remains a stochastic
process with temporal dependencies on processor design
and kernel interrupt and process scheduling. This neg-
atively affects jitter, burstiness and quality-of-service
(QoS). Virtual networks without real time CPU sup-
port remain a hard networking problem.

In addition, virtual networks intrinsically introduce
new protocols spanning layer-2 to 4, and touching ev-
ery flow, or in extreme cases, every packet [27, 16]. The
result is a heavier stack, with encapsulation-induced de-
lays and OVN tunnel overheads of additional layer-2 to
4 headers. This may lead to fragmentation and ineffi-
cient offload processing, or preclude CPU onloading of
network functions.

However, the more critical performance aspect relates
to VN’s impact on the latency-sensitive datacenter ap-
plications, particularly on horizontally-distributed work-
loads such as PA. Latency and its tenant/user-level FCT
metric have been recently established as crucial for the
performance of this type of applications, typically clas-

Hypervisor vNIC vSwitch

LBr Qemu/KVM Virtio Linux bridge

OVS Qemu/KVM Virtio Open vSwitch

VALE Qemu/KVM Virtio VALE

VMw-1 VMware e1000 Vmnet

VMw-2 VMware Vmxnet Vmnet

Table 1: Configurations.

sified as soft real-time. Their 200ms end-user deadlines
[8, 40, 23] translate into constraints of few 10s of ms
for the lower level PA workers. While the additional
delay introduced by a VN may be negligible in a ba-
sic ping test [27], its impact on a more realistic PA
workload can lead to an increase in mean FCT by up
to 82% [13]. This raises justified concerns about po-
tentially unacceptable OVN performance degradations
for critical latency-sensitive applications such as Parti-
tion/Aggregate, analytics, databases, web servers, etc.

2.2 Losslessness
Ideally, a VN should preserve the lossless abstrac-

tion provided by CEE/IB as it is assumed by the ’con-
verged’ datacenter applications, e.g., FCoE, RoCEE,
MPI, etc. Yet we notice a paradox: Whereas CEE,
IB, Fibre Channel, and most clustering and HPC net-
works provide a lossless data link layer (layer-2), cur-
rently all commercial and open-source virtual networks
that we have tested during our work are lossy. Critical
for the future of datacenter networking, CEE spared
no effort to ensure zero-loss operation, by using two
complementary flow and congestion control protocols,
namely PFC and QCN. The same holds for IB, which
predates CEE by a decade since its introduction of link
level credit-based flow control, and in 2006, the FECN
/ BECN-based end-to-end Congestion Control Annex.
In comparison, despite relatively simpler and lower-cost
flow control implementations, current hypervisors, vir-
tual switches and virtual network adapters are lagging
behind the physical networks, resorting to drop pack-
ets at any potential congestion, not only do they de-
grade the datacenter performance, but they also fail to
correctly terminate the CEE fabrics, to a large extent
canceling the investments in a lossless physical network.
As an alternative, we demonstrate how a zero-loss OVN
(zOVN) can meet both the correctness and the FCT
performance requirements of the virtualized datacenter.

2.3 Loss measurements
To support the above claims, we assess the extent

of the packet dropping problem, using commonly avail-
able virtualization solutions. We will evaluate (i) where
and how frequently losses occur, and (ii) the maximum
bandwidth that a virtual switch can sustain without
dropping packets. To answer these questions, we per-

3

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600

R
X

 T
ra

ff
ic

 [
M

b
p

s
]

TX Traffic [Mbps]

LBr
OVS

VALE
VMw-1

VMw-2

(a) vSwitch forwarding performance.

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

L
o

s
s
 R

a
te

 [
%

]

TX Traffic [Mbps]

LBr
OVS

NMap
VMw-1

VMw-2

(b) Packet loss rate.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0 200 400 600 800 1000 1200 1400 1600

L
o

s
s
 R

a
te

 [
%

]

TX Traffic [Mbps]

LBr
OVS

VALE
VMw-1

VMw-2

(c) Packet loss rate (log scale).

Figure 3: Experimental loss results.

formed the experiment shown in Figure 1, in which VM1
and VM2 act as sources and send their traffic towards
VM3 acting as sink, creating a common congestion sce-
nario.

We measured different combinations of hypervisors,
vNICs, and virtual switches. As hypervisors we consid-
ered Qemu-KVM [4] and VMware2 Player [5]. These
were used with two types of vNICs: an emulated In-
tel e1000 NIC and a virtualization optimized virtio [33]
/ vmxnet NIC, for Qemu and VMware, respectively.
With VMware, we used the internal bridged virtual net-
work configuration to interconnect the three VMs. In
combination with Qemu we used a Linux Bridge [2], an
Open vSwitch [3] and VALE [32]. The entire setup is
hosted on a Lenovo T60p laptop equipped with an In-
tel Core2 T7600 @ 2.33GHz CPU and 3GB of memory.
Both the physical host and the VMs run Ubuntu 11.10
with a 3.0 64-bit kernel. Across all experiments iperf [1]
injects 1514B MTU frames as UDP traffic. We deter-
mine the losses and bandwidths using the six measure-
ment points shown in Figure 1: (1) and (6) are inside
the application itself, (2) and (5) are on the TX and
RX side of each vNIC, whereas (3) and (4) are at the
virtual switch ports.

Experiment 1: The two generators injected traffic
at full speed for 10s with the last packet being marked.
Between each measurement point we computed the num-
ber of lost packets as the difference between the trans-
mitted and the received packets at the other end. We
investigate: (i) vSwitch losses, i.e., packets received by
the vSwitch input ports (3) and never forwarded to the
vSwitch output port (4); (ii) receive stack losses, i.e.,
packets received by the destination vNIC (5) and never
forwarded to the sink (6). Since the TX path is back-
pressured up to the vSwitch, no losses were observed
between other measurement points. A more accurate
analysis of the possible loss points is presented in Sec-
tion 4. With VMware and VALE, we could not access

2All other marks and names mentioned herein may be trade-
marks of their respective companies.

measurement points 3 and 4. Hereby the difference be-
tween the measurements done at the sender vNICs and
at the receiver vNIC (points 2 and 5, respectively) was
accounted for as vSwitch losses. The results are plotted
in Figure 2. Since VALE combined with e1000 vNICs
was affected by an implementation bug which allows the
internal queues to grow indefinitely, resulting in sub-
stantially diverging results between runs, we omit these
configurations.

Depending on configuration, the total traffic forwarded
during the 10s window was highly variable. In the virtu-
alized network, performance is always bounded by the
computational resources assigned to each block by the
host operating system (OS), same for all runs. On one
hand, compute intensive configurations, such as Qemu
with e1000 vNICs which need to emulate fake hardware
to deceive the driver, reach lower throughputs - which
induce less losses in the vSwitch. On the other hand, the
virtualization-optimized vNICs, i.e., virtio and vmxnet,
achieved higher rates, causing overflows in the vSwitch.
The performance-optimized VALE vSwitch shifted the
bottleneck further along the path, into destination VM
stack. These results bear witness to the lack of flow con-
trol between the virtual network devices, and confirm
our initial conjecture.

Experiment 2: With the five configurations from
Table 1, we analyze the maximum bandwidth a virtual
switch can sustain. We varied the target injection rate
at each generator starting from 5 Mb/s, in increments of
5 Mb/s; thus the aggregated vSwitch input traffic is 2x
larger. Figure 3a plots the RX rate as a function of the
total injection rate, whereas Figure 3b plots the packet
loss ratio. Both were computed at the application level
(measurement points 1 and 6). For all configurations,
we observed saturation behaviors as shown in Figure 3a.
The RX rate first increased linearly with the TX rate
until the saturation peak. Beyond this, with the excep-
tion of VMw-2, instead of a desired steady saturation
plateau, we observe a drop indicative of congestive col-
lapse. The overloaded system was wasting resources
to generate more packets, instead of dedicating suffi-

4

Min. BW w/ losses Max. BW w/o losses

LBr 60 Mbps 294 Mbps

OVS 139 Mbps 333 Mbps

VALE 100 Mbps 256 Mbps

VMw-1 136 Mbps 147 Mbps

VMw-2 20 Mbps 270 Mbps

Table 2: vSwitch performance variability.

cient resources to the vSwitch and the destination VM3
to actually forward, respectively consume, the packets
already injected and backlogged in the virtual queues.
Although the saturation load varied considerably across
configurations, loss rates well in excess of 50% were ob-
served for all configurations (Figure 3b). Even far be-
low the saturation offered load, marked by vertical lines,
we measured losses in the virtual network significantly
above the loss rates expected from its physical counter-
part (Figure 3c): up to 10−2 instead of 10−8 for MTU-
sized frames with a typical Ethernet bit error rate value
of 10−12.

Table 2 reports the minimum bandwidth with mea-
sured losses and the maximum bandwidth without any
loss. The wide dynamic ranges confirm our intuitive hy-
pothesis about large non-causal performance variability
in virtual networks, as the service rate of each virtual
link depends critically on CPU, load, OS scheduling
and the computational intensity of the virtual network
code. Suboptimal and VN-load oblivious OS schedul-
ing causes frequent losses: E.g. scheduling a sender
before a backlogged receiver. Lossless virtual switches
would be of great interest, not only for efficiency pur-
poses, but also in terms of introducing a minimal level
of predictability - if not deterministic behavior. The
next sections will present how a basic flow control can
be implemented in virtualized datacenter networks.

3. ZOVN DESIGN
In this section we outline the core principles that

guided the design of our lossless virtual network.

3.1 Objectives
A converged network infrastructure must simultane-

ously satisfy the union of the requirement sets from the
domains being converged. For example, losslessness is a
functional requirement of converged HPC, storage and
IO –e.g., FCoE, PCIe over Ethernet, RoCEE– appli-
cations, whereas OLDI workloads impose a key perfor-
mance requirement of 200 ms user-level response times.

We base our lossless virtual datacenter stack on CEE-
compatible flow control. Transport-wise, we anchor
zOVN’s design on the established TCP stack combined
with lossless overlays as proposed here. Our main ob-
jectives are:

1) Reconcile the FCT-measured application perfor-
mance with datacenter efficiency and ease of man-
agement, by proving that network virtualization and
horizontally-distributed latency-sensitive applications
are not necessarily mutually exclusive. This reconcil-
iation removes the main obstacle hindering virtual net-
work adoption in performance-oriented datacenters.

2) Prove that commodity solutions can be adapted
for sizable performance gains. As shown in Section 5,
an 19-fold FCT reduction is attainable also without a
clean-slate deconstruction of the existing fabrics and
network stacks. Instead, one can achieve comparable
performance gains by just reconfiguring the CEE fab-
ric using the standard TCP stack. When total cost of
ownership and management costs are considered, this
evolutionary reconstruction approach is likely to outper-
form other, possibly technically superior, alternatives in
terms of cost/performance ratios.

3) Expose packet loss as a costly and avertable singu-
larity for modern datacenters. And conversely, lossless-
ness as a key enabler for both the (a) FCT performance
of horizontally-distributed latency-sensitive workloads,
and (b) loss-sensitive converged storage and HPC ap-
plications in multitenant datacenters. This basic HPC
tenet has already been proven by decades of experiences
in large-scale deployments. Since IB and CEE fabrics
are widely available with line rates between 10 and 56
Gbps, the datacenter can now also benefit from prior
HPC investments in lossless interconnection networks.

4) Design and implement a proof-of-concept zero-loss
virtual network prototype to experimentally validate
the above design principles in a controllable hardware
and software environment.

5) Finally, extend and validate at-scale the experi-
mental prototype with a detailed cross-layer simulation
model.

3.2 End-to-end Argument
The wide availability of lossless fabrics, whether CEE

or IB, and the thrust of SDN/OpenFlow have prompted
us to reconsider the end-to-end and “dumb network” ar-
guments in the context of datacenters. First explicitly
stated in [34], the end-to-end principle can be traced
back to the inception of packet networks [12]. Briefly
stated, application-specific functions are better imple-
mented in the end nodes than in the intermediate nodes:
E.g., error detection and correction (EDC) should reside
in NICs and OS protocol stacks, instead of in switches
and routers. While one of the most enduring network
design principles, it can be harmful to end-to-end delay,
FCT and throughput [14].

In datacenters, the delay of latency-sensitive flows is
impacted not only by network congestion, but also by
sender’s and receiver’s protocol stacks [31]. Historically,
for low-latency communications, both Arpanet and In-

5

ternet adopted “raw” transports—unreliable, yet light
and fast—instead of TCP-like stacks. Similarly, IB em-
ploys an Unreliable Datagram protocol for faster and
more scalable“light”communications, whereas HPC pro-
tocols have traditionally used low-latency endnode stacks
based on the assumption of a lossless network with very
low bit error rates.

Given the high relevance of latency-sensitive datacen-
ter applications, current solutions [8, 9, 40, 37] took an
intriguing option: Decouple flow control (correctness,
reliability) from the fabric. In this paper we show that
coupling flow control with the fabric positively impacts
applications performance.

3.3 OVN Design Space
The simplest virtual networking solution would start

with a large flat layer-2 network for each tenant. How-
ever, this approach does not scale within the practical
constraints of current datacenter networking. The in-
creasing number of VMs has led to a MAC address ex-
plosion, whereby switches need increasingly larger for-
warding tables. Moreover, dynamic VM management
stresses the broadcast domains [27]. Furthermore, to-
day’s 4K VLAN limit is insufficient for multitenant dat-
acenters unless the complex Q-in-Q / MAC-in-MAC en-
capsulation is used. Finally, the datacenter network
must support dynamic and automatic provisioning and
migration of VMs and virtual disks without layer-2 or 3
addressing constraints. The emerging solution to achieve
full network virtualization are the OVNs. Although a
number of overlays have been recently proposed [20, 36,
25, 27, 11, 16], their key architectural abstraction lies
in the separation of the virtual networking from the un-
derlying physical infrastructure. Overlays enable the
arbitrary deployment of VMs within a datacenter, in-
dependent of the underlying layout and configuration of
the physical network without changing or reconfiguring
the existing hardware.

Current overlays are predominantly built using layer-
2 to 4 encapsulation in UDP, whereby the virtual switches,
typically located within the physical hosts, intercept
VM traffic, perform en-/de-capsulation and tunnel it
over the physical network. Each VM has an associated
network state residing in the adjacent switch. Upon VM
migration, the virtual switches update their forwarding
tables to reflect the new location. Using encapsulation
over IP [27, 25, 11, 16], the VM locations are neither
limited by the layer-2 broadcast domains, nor by VLAN
exhaustion. Instead, full IP functionality is preserved,
including QoS and load balancing, independent of loca-
tion, domains and the physical networking capabilities.
Thus, virtual switches are similar to the traditional hy-
pervisor switches, but with additional functions as over-
lay nodes.

What about performance? There are a few key as-

pects in which OVNs influence datacenter performance
and scalability. First, on the data plane: OVNs use en-
capsulation to build tunnels between the virtual switches
that host a connection’s source and destination. Cur-
rent encapsulation solutions such as VXLAN [25] and
NVGRE [36] solve the original VLAN limitation while
reducing the configuration and management overhead.
Second, on the management plane: Network configura-
tion, distribution and learning protocols are necessary
for tunnel creation at each virtual switch. To create
a tunnel, the overlay switch needs to map the desti-
nation address to its physical location. The overlay
configuration management can be performed either by
learning or in a centralized fashion. The learning ap-
proach, adopted by VXLAN [25], floods packets with
unknown destinations. In the centralized approach, the
virtual switches are responsible for retrieving the infor-
mation required for encapsulation. In NetLord [27], this
information is learnt by switches through communica-
tion with each other, and from a central configuration
repository. In DOVE [11, 16], this configuration infor-
mation is retrieved from a centralized database. Both
the central configuration repository in NetLord and the
centralized database in DOVE must be highly available
and persistent, which poses a challenge for multi-million
node datacenters, thus raising the future third option of
a distributed repository approach, presuming the entail-
ing coherency issues can be solved efficiently. For now,
the former two approaches, learning and centralized, are
simpler to design and manage. Notably, the central-
ized method also inherently prevents flooding, the main
drawback of the learning approach. For zOVN we have
adopted and extended DOVE’s centralized approach.

4. ZOVN IMPLEMENTATION
In this section we describe the details of the imple-

mentation of our proposed lossless overlay network (zOVN).
We assume a collection of virtualized servers each run-
ning a set of virtual machines. The servers are inter-
connected through a flat layer-2 fabric as shown in Fig-
ure 10. The physical network has per-priority flow con-
trol allowing the network administrator to configure one
or more priorities as lossless. The physical per-priority
flow control is extended into the virtual domain by our
proposed zOVN hypervisor software.

Without loss of generality, and aiming to simplify the
description, we assume a single lossless priority is used.
In a real setup, different priority classes can be config-
ured to segregate delay / loss tolerant traffic, not requir-
ing losslessness, from mission critical latency-sensitive
traffic, that benefits from losslessness, as shown in the
next sections.

4.1 Path of a packet in zOVN
The data packets travel between processes (applica-

6

Application

socket TX
buffer

send

Qdisc

return
value

enqueue

vNIC TX
queue

start_xmitstart/stop

queue

Guest kernel

Hypervisor

free

skb

Port B
TX queue

receivereturn
value

vSwitch

Port A
RX queue

forwardwake-up

bridge
poll & encapwake-up

TX queuephysical

NIC
send

frame

physical

link

receive
PAUSE

Application

socket RX
buffer

receive

vNIC RX
queue

netif_receive

skb

Guest kernel

Hypervisor

Port C
RX queue

sendsend
completed

vSwitch

Port A
TX queue

forward

bridge
poll & decapwake-up

RX queuephysical

NIC
receive

frame

physical

link

send
PAUSE

pause/resume

reception

wake-up

Figure 4: Life of a packet in a virtualized network.

tions) running inside VMs. Along the way, packets are
moved from queue to queue within different software
and hardware components. Here we describe the details
of this queuing system with emphasis on the flow con-
trol mechanism between each queue pair. The packet
path trace is shown in Figure 4.

After processing within the VM’s guest kernel the
packets are transferred to the hypervisor through a vNIC.
The hypervisor sends the packets to the virtual switch.
The virtual switch assures the communication between
VMs and the physical adapter. The packets destined to
remote VMs are taken over by a bridge that encapsu-
lates and moves them to the physical adapter queues.
Packets travel through the physical network and are
delivered to the destination server. Here they are re-
ceived by the remote bridge, which decapsulates them
and moves them into the destination’s virtual switch.
The virtual switch forwards the packets to the hyper-
visor, which in turn forwards them to the guest OS.
After processing in the guest kernel, packets are finally
delivered to the destination application. Based on care-
ful analysis of the entire end-to-end path, we identified
and fixed the points of loss marked in white on black
in Figure 4, i.e., the vSwitch and the reception path in
the guest kernel.

4.1.1 Transmission Path
On the transmit side the packets are generated by the

user-space processes. As shown in Figure 4 the process
issues a send system call that copies the packet from
user space to the guest kernel space. After the copy,
the packets are stored in an sk_buff data structure that
is enqueued in the transmit (TX) buffer of the socket
opened by the application. The application is aware
whether the TX queue is full through the return value

of the system call, making this operation lossless.
The packets from the socket TX buffer are enqueued

in the Qdisc associated with the virtual interface. The
Qdisc stores a list of pointers to the packets belonging
to each socket. The pointers are sorted according to the
selected discipline, which is FIFO by default. To avoid
packet losses at this step, we increase the length of the
Qdisc to match the sum of all socket TX queues. This
change requires negligible extra memory. The Qdisc
tries to send the packets by enqueueing them into the
adapter TX queue. If the TX queue reaches a thresh-
old—typically one MTU below maximum—the Qdisc is
stopped and the transmission is paused, thus avoiding
losses on the TX path of the kernel. When the TX
queue drops below the threshold, the Qdisc is restarted
and new packets can be enqueued in the TX queue of
the virtual adapter. Hence, the entire transmission path
in the guest OS is lossless as long as the Qdisc length is
properly sized.

Our architecture is based on virtio technology [33],
hence the virtual adapter queues are shared between
the guest kernel and the underlying hypervisor software
running in the user space of the host. The virtio network
adapter informs the hypervisor when new packets are
enqueued in the TX queue. The hypervisor software
is based on Qemu [4] and is responsible for dequeueing
packets from the TX queue of the virtual adapter and
copying them to the TX queue of the zOVN virtual
switch.

The Qemu networking code contains two components:
virtual network devices and network backends. We use
the virtio network device coupled to a Netmap [31] back-
end. We took the Netmap backend code delivered with
the VALE [32] virtual switch and we ported it to the
latest version of Qemu with the necessary bug fixes re-
lated to concurrent access to the Netmap rings. Atten-
tion is required to implement a lossless coupling between
the device and the backend, avoiding via configuration
flags, the use of the lossy Qemu VLANs. Packets ar-
rive at the vSwitch TX queue of the port where the
VM is attached. The vSwitch moves the packets using
a forwarding (FIB) table, from the TX queues of the
input ports to the RX queues of the output ports. The
forwarding table contains only the MAC addresses of
the locally connected VMs. If the destination is found
to be locally connected, the packets are moved to the
corresponding RX queue, else they are enqueued in the
RX port corresponding to the physical interface. From
the physical interface port the packets are consumed by
a bridge that encapsulates and enqueues the packet in
the TX queue of the physical adapter. Then the lossless
physical network takes over the packet and delivers it
to the destination server physical RX queue.

As shown in Section 2.3, none of the current virtual
switches implement flow control, fact also confirmed

7

Algorithm 1 Lossless Switch Operation.

• Sender (Ij)

while true do
Produce packet P
if Input queue Ij full then
Sleep

else
Ij .enqueue(P)
start Forwarder(Ij)

end if
end while

• Receiver (Ok)

while true do
if Output queue Ok empty then

for all Input queue Ij do
start Forwarder(Ij)

end for
end if
if Output queue Ok empty then

Sleep
else
P ← Ok.dequeue()
consume packet P

end if
end while

• Forwarder (Ij)

for all packet P in input queue Ij do
outputportk ← fwdtablelookup(P.dstMAC)
if not Output queue Ok full then
Ij .remove(P)
Ok.enqueue(P)
wake-up receiver (Ok) and sender (Ij)

end if
end for

by our discussions with some of the leading vendors.
Therefore we have redesigned the VALE switch to add
internal flow control and make the TX path fully loss-
less, as described in Section 4.2.

4.1.2 Reception Path
The packets are consumed by the bridge from the RX

queue of the physical NIC and decapsulated. Next, they
are enqueued in the TX queue of the virtual switch that
forwards them to the RX queue corresponding to the
destination VM. The forwarding is again lossless; see
Section 4.2 for the details. The packets are consumed
by Qemu hypervisor that copies them into the virtio
virtual device. The virtual device RX queue is shared
between the hypervisor and the guest kernel. The hy-
pervisor notifies the guest when a packet is received

High Level
AggregatorExternal Clients

...Mid Level
Aggregator

...Worker Worker

Mid Level
Aggregator

...Worker Worker

2

1

3

2

3 3 3

Figure 5: Partition-Aggregate application.

and the guest OS receives an interrupt. This interrupt
is handled according to the Linux NAPI framework. A
softirq is raised, which triggers consumption of the pack-
ets from the RX queue. The packet is transferred to the
netif_receive_skb function that does the IP routing
and filtering. If the packet is found to be destined to
the local stack it is enqueued in the destination socket
RX buffer based on the port number. If the destination
socket is full, then the packet is discarded. With TCP
sockets this should never happen, because TCP has end-
to-end flow control that limits the amount of injected
packets to the advertised window of the receiver. On
the other hand, with UDP sockets additional care is re-
quired. We modified the Linux kernel such that when
the destination socket RX queue occupancy reaches a
threshold—one MTU below maximum—the softirq is
canceled and the reception is paused. Once the process
consumes data from the socket, reception is resumed.
This ensures full lossless operation both for TCP and
UDP sockets.

4.2 zVALE: Lossless virtual Switch
As stated before, our lossless vSwitch is derived from

VALE [32], which is based on the Netmap architecture
[31]. It has one port for each VM running on the server
plus one additional port for the physical interface. Each
port has an input (TX) queue for the packets produced
by the VMs or received from the physical link and an
output (RX) queue for the packets to be consumed by
VMs or sent out over the physical link. The lossy state
of the art implementation is forwarding packets from
input queues to output queues as fast as they arrive. If
any output queue is full packets are discarded.

To make such a software switch lossless we imple-
mented the pseudocode shown in Algorithm 1. Each
sender (producer) is connected to an input queue Ij
and each receiver (consumer) is connected to an out-
put queue Ok. After a packet is produced, the sender
checks whether the associated TX queue is full. If the
queue is full, the sender goes to sleep until a free buffer
becomes available, else the sender enqueues the packet
in the TX queue and then starts a forwarding process
to try to push some packets from the input to the out-
put queues. The forwarder checks each output queue
for available space. If a queue has room, the forwarder
transfers the packets to the output queue and wakes

8

10
0

10
1

10
2

10
0

10
1

10
2

10
3

M
e
a
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [
m

s
]

Query Response [Pkts]

Linux
Bridge

VALE zOVN

(a) 1 server

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

M
e
a
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [
m

s
]

Query Response [Pkts]

Linux
Bridge

VALE zOVN

(b) 2 servers

Figure 6: Microbenchmarks: 6 VMs PA scenarios.

up the corresponding consumers that might be waiting
for new packets. On the receiver side, the associated
output queue is checked. If a queue is not empty, a
packet is consumed from it, else the forwarding process
is started to pull some packets from the input queues
to this output queue. If some data is pulled, then it is
consumed, else the receiver sleeps until woken up by the
sender.

The vSwitch is designed to operate in a dual push/pull
mode. When the sender is faster than the receiver, the
sender will sleep most of the time waiting for free buffers
and the receiver will wake it up only when it consumes
data. On the other hand, when the receiver is faster
than the sender, the receiver will sleep most of the time
and the sender will wake it up only when new data is
available. The overhead of lossless operation is thus
reduced to a minimum.

5. EVALUATION
In this section we evaluate our proposed lossless vSwitch

architecture, applying the PA workload described in
Section 5.1. We run this workload both in a lab-scale ex-
periment with eight virtualized servers hosting 32 VMs
and in a larger-scale simulation using an OMNeT++
model of a 256-server network.

5.1 Partition/Aggregate Workload
A generic 3-tier PA application is presented in [8, 40]

and illustrated in Figure 5. At the top tier, a high-
level aggregator (HLA) receives HTTP queries from ex-
ternal clients (1). Upon reception of such a request,
the HLA contacts a randomly selected Mid-Level Ag-
gregators (MLA) and sends them a subquery (2). The
MLAs further split the subquery across their workers,
one in each server within the same chassis (3). Even-
tually, each worker replies to the MLA by returning a
response. The MLA collects the partial results from
workers. When all the results have been received, the
MLA sends back its aggregated response to the HLA.
The query is completed when the HLA receives the ag-
gregated response from each MLA. The key metric of
interest is the flow (or query) completion time, mea-

vSwitch

VM VM VM VM

Server 1

1Gbps
Ethernet NIC

vSwitch

VM VM VM VM

Server 8

1Gbps
Ethernet NIC

Physical
Switch

Figure 7: Testbed setup: 8 servers.

sured from arrival of the external query until query com-
pletion at the HLA. In the prototype experiments we
employ a reduced two-tier PA workload, in which the
MLAs are omitted, and the HLAs contact the workers
directly. In the simulations, on the other hand, we use
the full configuration. In both cases the flows are sent
over TCP. The connections between the different com-
ponents are kept open during the runs to allow TCP to
find the optimal congestion window sizes and to avoid
slow start.

5.2 Microbenchmarks
First, we deployed our prototype implementation in

a two-server configuration. The servers were Lenovo
M91p-7034 desktops (Intel i5-2400 @ 3.10GHz CPU ,
8GB memory, Ubuntu 11.10 with a 3.0 64-bit kernel
both for host and guests). The servers were connected
through a 1 Gbps 3com 3GSU05 consumer Ethernet
switch supporting IEEE 802.3x. The host kernel was
patched with the Netmap [31] extensions and our zOVN
switch and bridge. The guest kernel was patched with
our lossless UDP socket extension.

We ran PA queries with a single aggregator and five
workers. In Figure 6a the aggregators and the work-
ers resided in VMs on the same server whereas in Fig-
ure 6b the aggregator was on a different server than
the workers. We varied the size of the workers response
to the aggregator from 2 to 2048 MTUs. To achieve
statistical confidence each run consisted of 10K repe-
titions. We report the mean query completion time in
Figure 6. We compared the Linux Bridge with the lossy
VALE implementation [32] and our proposed lossless
zOVN. On the 2-server setup, the Netmap-based solu-
tions outperformed the Linux Bridge, but only for small
response sizes (up to 30% for 2 MTUs). For medium-
sized flows the Linux Bridge was better (e.g., 8% per-
formance degradation for 64 MTUs when using zOVN).
For large response sizes the three implementations ex-
hibited similar response times. The physical link has a
constant service rate, so that TCP was able to correctly
find the the proper congestion window to avoid most
losses. On the desktop machines the vSwitch could sup-
port up to 1.45 Gbps of traffic without losses compared
to the 256 Mbps for the laptop machines. However, the
maximum bandwidth through the vSwitch was limited
to the 1 Gbps of the physical link, which was the bot-

9

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

B
a
c
k
g
ro

u
n
d
 C

D
F

Flow Sizes [MB]

TCP
UDP

(a) Bkgd. flow size.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

C
D

F

Inter Arrivals [us]

Background
Partition/Aggregate

(b) Inter-arrival times.

Figure 8: Flow size and inter-arrival distribution.

tleneck in this case. Therefore, we measured loss ratios
of less than 0.02%. Enabling losslessness on such a con-
figuration brings no additional benefits. On the other
hand, this result validates the efficiency of our imple-
mentation.

In the single server setup the zOVN switch was consis-
tently better than the lossy VALE switch across all runs.
The Linux Bridge showed performance variability (up
to +19% improvement for the 16 MTU responses over
zOVN, but as much as –65% degradation over zOVN
for 128 MTU responses). The architecture of the Linux
Bridge requires one extra copy for each packet sent or
received. This extra overhead slows down the workers
reducing the pressure on the vSwitch, thereby reducing
packet losses. In the previous scenario the extra over-
head was hidden by the physical link bottleneck.

5.3 Lab-Scale Experiments
Next, we deployed zOVN over the testbed shown in

Figure 7, containing eight Lenovo T60p notebooks (In-
tel Core2 T7600 @ 2.33GHz CPU, 3GB memory) con-
nected through a 1 Gbps HP 1810-8G managed Ether-
net switch supporting IEEE 802.3x. The host and guest
kernels were identical to the ones used previously.

We ran a PA workload using 32 VMs with the same
methodology and flow sizes as in the previous para-
graph. In addition we varied the TCP version between
NewReno, Vegas and Cubic. In Figure 9 we report the
mean completion time, throughput, and performance
gain of lossless over lossy. Mean flow completion time
was reduced by a factor of up to 19.1×. The highest
benefit was achieved for flow sizes between 6KB and
48KB (4 and 32 packets). For very small flows the total
size of all the workers responses was too small to cause
any buffer overflow. For long flows the losses were re-
covered through fast-retransmit. All TCP versions per-
formed about equally.

In Figure 11 we report the same metrics, but with
added background traffic. In this scenario, each VM
hosts an additional traffic generator producing back-
ground flows. The generator chooses a random uni-
formly distributed destination, then it sends to it a TCP
flow with the length drawn from the distribution in Fig-

128 uplinks 128 uplinks 128 uplinks128 uplinks

16 servers 16 servers 16 servers 16 servers

ToR
Switches

Chassis
Switches

Core
Switches

Rack 1

Rack 2 Rack 3 Rack 4

Figure 10: Simulated topology: 256 servers.

ure 8a. Afterward, the generator sleeps according to the
background flow inter-arrival distribution shown in Fig-
ure 8b. Both PA and background flows use the same
TCP version. The gain is smaller than in the previ-
ous scenario, because the background flows also benefit
from losslessness. In particular the congestion window
of NewReno and Cubic are kept open due to the absence
of losses. On the other hand, the latency sensitive Ve-
gas injects background traffic at a lower rate thus the
completion times are shorter.

5.4 Simulation Experiments
To finalize our validation, we implemented a model of

the zOVN virtualized network on top of the OMNeT++
network simulator. The simulator models at frame level
a 10G CEE fabric with generic input-buffered output-
queued switches. We model a faster fabric than the one
used in the testbed measurement in an attempt to quan-
tify the behavior of our proposal on fabrics currently
used in production datacenters. As the TCP models im-
plemented in OMNeT++, as well as those from NS2/3,
are highly simplified, we ported the TCP stack from a
FreeBSD v9 kernel into this simulator with only mini-
mal changes, mostly related to memory management.
As we focus on the network, we did not model the
endnode CPUs, assuming that the endnodes can process
the segments as fast as they arrive, and that the applica-
tions can immediately reply. The stack adds only a fixed
delay to each segment, calibrated from our prior hard-
ware experiments. Even if idealized, these assumptions
are consistent with our network-centric methodology.
The simulator also incorporates a thin UDP layer used
for background flows, performing simple segmentation
and encapsulation of the application data.

The zOVN model performs switching and bridging in
the same way as in the testbed experiment. However,
we chose a different encapsulation size of 54B reflect-
ing a VXLAN-type encapsulation: 18B outer Ethernet
header + 20B outer IP header + 8B UDP header + 8B
VXLAN header. To avoid fragmentation, we decreased
the MTU value accordingly, from 1500B to 1446B. Mod-
ern CEE hardware is able to increase its physical MTUs,
thus preserving the default settings.

The simulated network topology is shown in Figure 10,

10

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

M
e
a
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [
m

s
]

Query Response [Pkts]

Cubic L
Cubic Z

NReno L
NReno Z

Vegas L
Vegas Z

(a) Completion time.

 0

 50

 100

 150

 200

 250

 300

 350

10
0

10
1

10
2

10
3

Q
u
e
ry

 T
h
ro

u
g
p
u
t
[Q

/s
]

Query Response [Pkts]

Cubic L
Cubic Z

NReno L
NReno Z

Vegas L
Vegas Z

(b) Throughput.

 0

 5

 10

 15

 20

 25

10
0

10
1

10
2

10
3

G
a
in

 R
a
ti
o
 o

v
e
r

L
o
s
s
y

Query Response [Pkts]

Cubic NReno Vegas

(c) Performance gain.

Figure 9: Testbed results: 32 VMs PA running on 8 servers. Without background traffic.

consisting of 256 servers, distributed in 16 chassis, in-
terconnected through a three-layer fat tree. Clients at-
tached to the up-links inject HTTP queries that are
served by the VMs residing on each virtualized server.
The queries were generated according to the inter-arrival
times shown in Figure 8b. Each server hosts 3 VMs,
one HLA, one MLA and one worker. The client query
reaches a randomly chosen HLA that in turns chooses
16 MLAs one in each chassis. Each MLA contacts all
the worker VMs from the same chassis. The messages
exchanged between the HLA, MLAs and workers have
a fixed size of 20KB.

Figure 12 compares the mean completion times and
the 5- and 95-percentile for different flow control config-
urations under no, light, and heavy background traffic.
We studied four flow control configurations: no flow
control (LL), flow control activated in the physical net-
work (LZ), flow control activated in the virtual network
(ZL), and flow control activated in both (ZZ). We also
considered the same three TCP versions as before.

Enabling flow control in only one network (either
physical or virtual) almost entirely nullified the ben-
efits, because packet losses were just shifted from one
domain to the other. However, the effect was not totally
the same, because virtual flow control still benefited the
flows between VMs on the same host. Therefore, en-
abling only virtual flow control (ZL) still achieved a per-
formance improvement, although significantly smaller
than the ZZ case. Enabling both flow controls (ZZ)
achieved significant gains similar to the ones observed
in the testbed: a reduction in FCT of up to 10.1× with
Cubic, and no background flows. When adding light
background traffic, we observed similar gain decreases.
However, a new insight is that with heavy UDP back-
ground traffic enabling flow control harms performance.
In this case, the uncooperative background UDP pack-
ets did not get dropped anymore and, consequently,
hogged link capacity and harmed the foreground PA
workload traffic. This results confirmed the need to seg-
regate the traffic into PFC priorities with true resource
separation and scheduling.

In the scenario with background traffic, Vegas outper-
formed NewReno and Cubic confirming the results ob-
tained on the testbed setup. In the case without back-
ground traffic Vegas was again better. On the other
hand, on the testbed all TCP produced similar results.
This difference is due to the more complex communi-
cation pattern with more hops, where more flows share
the same path. This produces longer queues, especially
in the core switches. These hotspots produce longer de-
lays that are detected by Vegas, that in turns reduces
its congestion window to avoid packet losses, obtaining
thus shorter completion times.

6. DISCUSSION
We review the main takeaways from the preceding

results. Using the zOVN’s experimental platform we
demonstrated both correctness, i.e., no packet drops to
support converged storage and HPC applications, and
improved FCT performance. Thus, we have achieved
our primary objective of reconciling performance with
correctness for overlay virtual networks.

Is lossless flow control more relevant for physical or
virtual networks? Having tested all four combinations
of lossy and lossless physical and virtual flow control
both in our testbed and in simulations, we found that
contiguous end-to-end flow control, hop-by-hop within
each respective domain, yields the largest reductions
in FCT: PA over zOVN with 32 virtual workers dis-
tributed across eight physical servers achieved a 19-fold
peak speedup. Relevant to OLDI workloads in general,
the highest speedups recorded are for flows between 6
and 50 KB.

Unexpectedly, if a suboptimal choice must still be
made between flow control in either the physical or the
virtual network, the latter is better for FCT perfor-
mance, as demonstrated by the results for ZL vs. LZ
in Figure 12. As noted initially, this situation entails a
paradoxical twist: Although CEE and IB fabrics have
already implemented the costlier (buffers, logic, and sig-
naling) hardware flow control, this remains practically
non-existent in today’s virtual networks, despite much

11

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

M
e
a
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [
m

s
]

Query Response [Pkts]

Cubic L
Cubic Z

NReno L
NReno Z

Vegas L
Vegas Z

(a) Completion time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

10
0

10
1

10
2

10
3

Q
u
e
ry

 T
h
ro

u
g
p
u
t
[Q

/s
]

Query Response [Pkts]

Cubic L
Cubic Z

NReno L
NReno Z

Vegas L
Vegas Z

(b) Throughput.

 0

 5

 10

 15

 20

 25

10
0

10
1

10
2

10
3

G
a
in

 R
a
ti
o
 o

v
e
r

L
o
s
s
y

Query Response [Pkts]

Cubic NReno Vegas

(c) Performance gain.

Figure 11: Testbed results: 32 VMs PA running on 8 servers. With background traffic.

lower implementation and configuration effort.
Is our modest experimental platform relevant for blade-

based racks and top-of-the-rack switches with 40 Gbps
uplinks? While the definitive answer entails a multi-
million dollar datacenter setup, we are confident in the
relevancy of our admittedly limited prototype platform.
Thin and embedded low-power CPUs as used in mi-
croservers as well as fully virtualized, and hence loaded,
“fat” CPUs are likely to exhibit qualitatively similar be-
haviors as measured. In our zOVN experiments, we con-
sistently observed a correlation between CPU perfor-
mance and network capacity. A fast (or unloaded) CPU
coupled to a slow network produces much less packet
losses in the virtual switch than a slow (or loaded) CPU
coupled to a fast network. A fast CPU has more com-
putational resources to assign to the vSwitch to handle
the network load.

7. RELATED WORK
In recent years, the TCP incast and FCT-based per-

formance of PA applications has been extensively ana-
lyzed. For example, [15, 38] suggest a 10-1000× retrans-
mission timeout reduction. Other proposals achieve siz-
able FCT reductions for typical datacenter workloads
using new single-path [8, 9, 40, 37] or multi-path [41, 23,
35, 7] transports, in conjunction with deadline-aware or
agnostic schedulers and per-flow queuing. Related to
our work and to [21, 17], DeTail [41] identifies packet
loss in physical networks as one of the three major is-
sues; the authors enable the PFC mechanism and intro-
duce a new multi-path congestion management scheme
targeted against flash hotspots typical of PA workloads,
also employing explicit congestion notification (ECN)
against persistent congestion. While DeTail uses a TCP-
compatible version of NewReno to reduce FCT by 50%
at the 99.9-percentile, it does not address virtual over-
lays.

pFabric [10] re-evaluates the end-to-end argument:
It introduces a “deconstructed” light transport stack
resident in the end node and re-designed specifically
for latency-sensitive datacenter applications, while rel-

egating the deadline-aware global scheduling complex-
ity to a greedy scheduler and a simplified retransmis-
sion scheme to recover from losses. By replacing both
the TCP stack and the standard datacenter fabric, this
scheme achieves near-ideal FCT performance for short
flows. Open issues are scalability to datacenter-scale
port counts, costs of replacing commodity fabrics and
TCP, fairness, and compatibility with the lossless con-
verged datacenter applications.

DCTCP [8] uses a modified ECN feedback loop with a
multibit feedback estimator filtering the incoming ECN
stream. This compensates the stiff AQM setup in the
congestion point detector with a smooth congestion win-
dow reduction function reminiscent of QCN’s rate de-
crease. While DCTCP reduces the FCT by 29%, as a
deadline-agnostic TCP it misses ca. 7% of the deadlines.
D3 [40] is a deadline-aware first-come first-reserved non-
TCP transport. Its performance comes at the cost of
priority inversions for ca. 33% of the requests [37], and
a new protocol stack. PDQ [23] introduces a multi-path
preemptive scheduling layer for meeting flow deadlines,
using FIFO taildrop similar to D3. By allocating re-
sources first to the most critical flows, PDQ improves
by ca. 30% on D3, RCP and TCP. As it is not TCP, its
fairness remains to be studied. D2TCP [37] improves on
D3 and DCTCP, with which it shares common features
in the ECN filter, by penalizing the window size with
a gamma factor; thus, it provides iterative feedback
to near-deadline flows and prevents congestive collapse.
This deadline-aware TCP-friendly proposal yields 75%
and 50% fewer deadline misses than DCTCP and D3,
respectively. Hedera and MP-TPC [7, 22, 30] propose
multi-path TCP versions optimized for load balancing
and persistent congestion. However, short flows with
fewer than 10 packets, or FCT-sensitive applications do
not benefit, despite the complexity of introducing new
sub-sequence numbers in the multi-path TCP loop.

8. CONCLUDING REMARKS
Fabric-level per-lane flow control to prevent packet

loss due to contention and transient congestion has long

12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

NewReno Vegas Cubic

M
e
a
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [
m

s
]

LL LZ ZL ZZ

(a) w/o bkgd

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

NewReno Vegas Cubic

M
e
a
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [
m

s
]

LL LZ ZL ZZ

(b) TCP bkgd

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

NewReno Vegas Cubic

M
e
a
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [
m

s
]

LL LZ ZL ZZ

(c) UDP bkgd

Figure 12: Simulation results: 768 VMs PA with 256 servers.

been the signature feature of high-end networks and
HPC interconnects. The recent introduction of CEE
priority flow control has now made it a commodity. In
spite of the advances at layer-2, we have shown that
present virtual overlays are lagging behind. Congestion,
whether inherent to the traffic pattern, or as an artifact
of transient CPU overload, is still handled by dropping
packets, thus breaking correctness, degrading perfor-
mance, and wasting CPU and network resources. We
provided first evidence that, for latency-sensitive vir-
tualized datacenter applications, packet loss is a costly
singularity in terms of correctness and performance.

To remedy this situation, we first identified the ori-
gins of packet drops across the entire virtualized com-
munication stack, and subsequently designed and im-
plemented a fully lossless virtual network prototype.

Based on this experimental results using our proto-
type implementation, as well as larger-scale simulations,
we have demonstrated average FCT improvements of
one order of magnitude. Additional takeaways from this
work are that (i) packet loss in virtualized datacenters
is even costlier than previously shown in physical net-
working, (ii) FCT performance of Partition/Aggregate
workloads is greatly improved by losslessness in the vir-
tualized network, and (iii) commodity CEE fabrics and
standard TCP stacks still have untapped performance
benefits.

9. REFERENCES

[1] Iperf. Available from:
http://iperf.sourceforge.net.

[2] Linux Bridge. Available from:
http://www.linuxfoundation.org/

collaborate/workgroups/networking/bridge.
[3] Open vSwitch. Available from:

http://openvswitch.org.
[4] QEMU-KVM. Available from:

http://www.linux-kvm.org.
[5] VMware Player. Available from:

http://www.vmware.com/products/player/.

[6] P802.1Qbb/D2.3 - Virtual Bridged Local Area
Networks - Amendment: Priority-based Flow
Control, 2011. Available from: http:
//www.ieee802.org/1/pages/802.1bb.html.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In Proc.
NSDI 2010, San Jose, CA, April 2010.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, et al.
DCTCP: Efficient Packet Transport for the
Commoditized Data Center. In Proc. ACM
SIGCOMM 2010, New Delhi, India, August 2010.

[9] M. Alizadeh, A. Kabbani, T. Edsall,
B. Prabhakar, A. Vahdat, and M. Yasuda. Less is
More: Trading a little Bandwidth for Ultra-Low
Latency in the Data Center. In Proc. NSDI 2012,
San Jose, CA, April 2012.

[10] M. Alizadeh, S. Yang, S. Katti, N. McKeown,
B. Prabhkakar, and S. Shenker. Deconstructing
Datacenter Packet Transport. In Proc. HotNets
2012, Redmond, WA, October 2012.

[11] K. Barabash, R. Cohen, D. Hadas, V. Jain,
R. Recio, and B. Rochwerger. A Case for Overlays
in DCN Virtualization. In Proc. DCCAVES’11,
San Francisco, CA, September 2011.

[12] P. Baran. On Distributed Communications
Networks. IEEE Transactions on
Communications, 12(1):1–9, March 1964.

[13] R. Birke, D. Crisan, K. Barabash, A. Levin,
C. DeCusatis, C. Minkenberg, and M. Gusat.
Partition/Aggregate in Commodity 10G Ethernet
Software-Defined Networking. In Proc. HPSR
2012, Belgrade, Serbia, June 2012.

[14] M. S. Blumenthal and D. D. Clark. Rethinking
the Design of the Internet: The End-to-End
Arguments vs. the Brave New World. ACM
Transactions on Internet Technology, 1(1):70–109,
August 2001.

[15] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D.
Joseph. Understanding TCP Incast Throughput
Collapse in Datacenter Networks. In Proc. WREN

13

2009, Barcelona, Spain, August 2009.
[16] R. Cohen, K. Barabash, B. Rochwerger,

L. Schour, D. Crisan, R. Birke, C. Minkenberg,
M. Gusat, R. Recio, and V. Jain. An Intent-based
Approach for Network Virtualization. In Proc.
IFIP/IEEE IM 2013, Ghent, Belgium, May 2013.

[17] D. Crisan, A. S. Anghel, R. Birke, C. Minkenberg,
and M. Gusat. Short and Fat: TCP Performance
in CEE Datacenter Networks. In Proc. HOTI
2011, Santa Clara, CA, August 2011.

[18] D. Crisan, R. Birke, N. Chrysos, and M. Gusat.
How Elastic is Your Virtualized Datacenter
Fabric? In Proc. INA-OCMC 2013, Berlin,
Germany, January 2013.

[19] N. Dukkipati and N. McKeown. Why
Flow-Completion Time is the Right Metric for
Congestion Control. ACM SIGCOMM CCR,
36(1):59–62, January 2006.

[20] H. Grover, D. Rao, D. Farinacci, and V. Moreno.
Overlay Transport Virtualization. Internet draft,
IETF, July 2011.

[21] M. Gusat, D. Crisan, C. Minkenberg, and
C. DeCusatis. R3C2: Reactive Route and Rate
Control for CEE. In Proc. HOTI 2010, Mountain
View, CA, August 2010.

[22] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant,
and D. Towsley. Multi-Path TCP: A Joint
Congestion Control and Routing Scheme to
Exploit Path Diversity in the Internet.
IEEE/ACM Transactions on Networking,
14(6):1260–1271, December 2006.

[23] C.-Y. Hong, M. Caesar, and P. B. Godfrey.
Finishing Flows Quickly with Preemptive
Scheduling. In Proc. ACM SIGCOMM 2012,
Helsinky, Finland, August 2012.

[24] S. Kandula, D. Katabi, S. Sinha, and A. Berger.
Dynamic Load Balancing Without Packet
Reordering. ACM SIGCOMM Computer
Communication Review, 37(2):53–62, April 2007.

[25] M. Mahalingam, D. Dutt, K. Duda, et al.
VXLAN: A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks. Internet
draft, IETF, August 2011.

[26] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, et al. OpenFlow: Enabling
Innovation in Campus Networks. ACM
SIGCOMM Computer Communication Review,
38(2):69–74, April 2008.

[27] J. Mudigonda, P. Yalagandula, J. C. Mogul,
B. Stiekes, and Y. Pouffary. NetLord: A Scalable
Multi-Tenant Network Architecture for
Virtualized Datacenters. In Proc. ACM
SIGCOMM 2011, Toronto, Canada, August 2011.

[28] B. Pfaff, B. Lantz, B. Heller, C. Barker, et al.
OpenFlow Switch Specification Version 1.1.0.

Specification, Stanford University, February 2011.
Available from: http://www.openflow.org/
documents/openflow-spec-v1.1.0.pdf.

[29] G. Pfister and V. Norton. Hot Spot Contention
and Combining in Multistage Interconnection
Networks. IEEE Transactions on Computers,
C-34(10):943–948, October 1985.

[30] C. Raiciu, S. Barre, and C. Pluntke. Improving
Datacenter Performance and Robustness with
Multipath TCP. In Proc. ACM SIGCOMM 2011,
Toronto, Canada, August 2011.

[31] L. Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In Proc. USENIX ATC 2012, Boston,
MA, June 2012.

[32] L. Rizzo and G. Lettieri. VALE, a Switched
Ethernet for Virtual Machines. In Proc. CoNEXT
2012, Nice, France, December 2012.

[33] R. Russell. virtio: Towards a De-Facto Standard
For Virtual I/O Devices. ACM SIGOPS Operating
System Review, 42(5):95–103, July 2008.

[34] J. H. Saltzer, D. P. Reed, and D. D. Clark.
End-to-End Arguments in System Design. ACM
Transactions on Computer Systems, 2(4):277–288,
November 1984.

[35] M. Scharf and T. Banniza. MCTCP: A Multipath
Transport Shim Layer. In Proc. IEEE
GLOBECOM 2011, Houston, TX, December
2011.

[36] M. Sridharan, K. Duda, I. Ganga, A. Greenberg,
et al. NVGRE: Network Virtualization using
Generic Routing Encapsulation. Internet draft,
IETF, September 2011.

[37] B. Vamanan, J. Hasan, and T. N. Vijaykumar.
Deadline-Aware Datacenter TCP (D2TCP). In
Proc. ACM SIGCOMM 2012, Helsinky, Finland,
August 2012.

[38] V. Vasudevan, A. Phanishayee, H. Shah,
E. Krevat, D. G. Andersen, G. R. Ganger, G. A.
Gibson, and B. Mueller. Safe and Effective
Fine-grained TCP Retransmissions for Datacenter
Communication. In Proc. ACM SIGCOMM 2009,
Barcelona, Spain, August 2009.

[39] G. Wang and T. S. E. Ng. The Impact of
Virtualization on Network Performance of
Amazon EC2 Data Center. In Proc. INFOCOM
2010, San Diego, CA, March 2010.

[40] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowstron. Better Never than Late: Meeting
Deadlines in Datacenter Networks. In Proc. ACM
SIGCOMM 2011, Toronto, Canada, August 2011.

[41] D. Zats, T. Das, P. Mohan, D. Borthakur, and
R. Katz. DeTail: Reducing the Flow Completion
Time Tail in Datacenter Networks. In Proc. ACM
SIGCOMM 2012, Helsinky, Finland, August 2012.

14

