
RZ 3843 (#ZUR1303-012) 03/13/2013
Computer Science 23 pages

Research Report

Policy-based Secure Deletion

Christian Cachin,1 Kristiyan Haralambiev,1 Hsu-Chun Hsiao,2,3 and Alessandro Sorniotti1

1IBM Research – Zurich
8803 Rüschlikon
Switzerland
E-mail: (cca|kha|aso)@zurich.ibm.com

2Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213
USA
E-mail: hchsiao@cmu.edu

3work performed while at IBM Research – Zurich

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

Policy-based Secure Deletion

Christian Cachin∗ Kristiyan Haralambiev∗ Hsu-Chun Hsiao†

Alessandro Sorniotti∗

February 28, 2013

Abstract

Securely deleting data from storage systems has become difficult today. Most storage space is pro-
vided as a virtual resource and traverses many layers between the user and the actual physical storage
medium. Operations to properly erase data and wipe out all its traces are typically not foreseen. This
paper introduces a cryptographic model for policy-based secure deletion of data in storage systems,
whose security relies on the proper erasure of cryptographic keys. Deletion operations are expressed
in terms of a deletion policy that describes data destruction through deletion attributes and protection
classes. A protection class is first applied to the stored data. Later, a secure deletion operation takes
attributes as parameters and triggers the destruction of all data whose protection class is deleted ac-
cording to the policy. No stored data is ever re-encrypted. A cryptographic construction is presented
for deletion policies given by directed acyclic graphs; it is built in a modular way from exploit-
ing that secure deletion schemes may be composed with each other. Finally, the paper describes a
prototype implementation of a Linux filesystem with policy-based secure deletion.

1 Introduction

Modern storage systems do not include operations to reliably destroy stored information. Common
deletion operations simply mark the occupied space as free and remove an entry from the directory,
but some of the stored data may remain accessible for much longer. A technically knowledgeable
user with low-level access to the storage system can still obtain the data. This description applies to
simple magnetic storage devices like disks or tapes, but holds as well for networked storage services,
such as storage controllers in a data center, file servers, or cloud storage. Storage systems nowadays
contain many layers of virtualization and perform aggressive caching for increased performance. These
techniques leave around traces of stored data beyond the control of its users, because such data cannot
be securely wiped out through the usual service interface.

However, users would like to control the deletion of their information because supposedly deleted
data that reappears later may have undesirable consequences. Many companies have installed detailed
polices for retaining data and for deleting expired data; also the Electronic Frontier Foundation rec-
ommends controlled data deletion as a means to maintaining user privacy [8]. The European Data
Protection Directive mandates that personal data must be erased upon request of the data subject [10].

With the advent of cloud computing, many clients who outsource storage want to take control over
the shredding of their data themselves. They would like to retain an element of control that lets them
erase their outsourced data from the cloud, without relying on the cooperation of the storage service.
At the same time, providers of storage services are also interested to offer guaranteed destruction as a
∗IBM Research - Zurich, CH-8803 Rüschlikon, Switzerland. (cca|kha|aso)@zurich.ibm.com.
†Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA. hchsiao@cmu.edu.

1

feature to their customers. For instance, providers would like to erase data so that no trace of it reappears
later, not even during a forensic investigation.

In this paper, we explore the use of encryption and key management for securely deleting data. When
data is stored encrypted, only the corresponding key has to be destroyed for erasing the data. Deleting
data becomes a problem of managing keys. We introduce the concept of policy-based secure deletion,
where the stored data is grouped into protection classes, and attributes control the selective erasure of
data through a policy. The design relies on a master key stored in a controlled and erasable memory, and
operations to delete data manipulate the master key, e.g., by updating it or erasing parts of it. No bulk
data is ever re-encrypted.

This paper makes the following contributions.

• We introduce the notion of a secure deletion scheme and provide first formal model and a security
definition for encryption-based secure deletion. The notion is formulated in the secret-key setting,
but it can be extended to a public-key model.

• We construct a secure deletion scheme from encryption and threshold secret sharing; it supports
arbitrary policies that are modeled as a circuit with AND, OR, and threshold gates.

• We show how secure deletion schemes can be composed in a modular way. All existing construc-
tions for cryptographic secure deletion can be obtained as special cases of our approach.

• We present a prototype implementation of a Linux filesystem with policy-based secure deletion.

Encryption-based deletion methods apply to all kinds of storage systems, regardless of their phys-
ical storage media, and they can be integrated into existing systems with minimal effort. In contrast,
alternative solutions based on overwriting at the physical level [14] only work in close connection with
the media properties.

1.1 Related work

Secure deletion. Many systems have been proposed which essentially overwrite the data in order to
delete it [14]. Some methods are very flexible and can be integrated with arbitrary filesystems [15],
provided their source code is available. Recent work has addressed solid-state storage, which requires
completely different approaches than magnetic disks for destroying data [25, 20]. However, all solutions
using overwriting depend heavily on the properties of the underlying physical storage. With cloud
computing and the virtualized storage models that are widely used today, physical control over data-
storage locations is no longer feasible. Therefore we do not further consider secure deletion mechanisms
based on overwriting or other physical properties.

Employing encryption for the explicit goal of erasing information goes back to the work of Boneh
and Lipton [3]. Di Crescenzo et al. [7] introduce a tree construction for efficient secure deletion of
arbitrary files among a group of files. The master key at the root of the tree is kept in erasable memory,
and every key in the tree encrypts several keys below, until the keys at the leaves encrypt the files
themselves.

Mitra and Winslett [17] describe a method for creating an inverted index of keywords found in
stored data records. Their method uses encryption and allows to selectively delete a data record and the
corresponding keywords in the index by assuming the encryption keys can be destroyed.

Perlman’s Ephemerizer [18] employs a temporal sequence of keys modeling different expiration
times for encrypted data. The FADE system [24] uses public-key cryptography and introduces some
simple policies with Boolean operators governing deletion. FADE comes closest to our approach among
the existing work. The policies of FADE are restricted to one- or two-level Boolean expressions, though,

2

and its policies are intertwined with an implementation from a particular public-key cryptosystem. In
contrast, our work permits general policies using Boolean expressions with threshold operators, may use
generic cryptosystems, including secret-key systems, and supplies security proofs for all constructions.

Peterson et al. [19] use all-or-nothing transforms (AONT) at the block level for secure deletion, in
combination with overwriting. The idea is to store every block through an AONT and then to overwrite
only a part of it, which will render the whole block inaccessible.

Vanish [12] is a practical system for publishing content online with an expiration date, e.g., providing
secure deletion for user data published in social networks. It encrypts the content and splits the key using
secret sharing. The shares are then maintained by a peer-to-peer distributed system that gradually forgets
the stored items unless they are refreshed. This gives the user some control over the expiration of his
content.

Key-assignment schemes. Our approach to secure deletion schemes is related to key-assignment
schemes for hierarchical access control; the survey by Crampton et al. [5] presents a summary of the
diverse literature on this topic. In contrast to key management for secure deletion, these works consider
a publisher and multiple users. The publisher distributes one key to each user; every user can later derive
suitable keys that allow the user to access information according to a hierarchical policy. The construc-
tions may use public storage as well [1, 6]. Many constructions and improvements are available in the
literature [5, 1, 2, 4]; they may be applied to the policy formulation and to the implementation of secure
deletion schemes described here.

1.2 Organization

Section 2 introduces our notion of policy-based secure deletion. Multiple implementations of secure
deletion schemes and the composition operation appear in Section 3, and Section 4 discusses their effi-
ciency and other properties. Finally, Section 5 presents a filesystem with policy-based secure deletion.

2 Model

This section defines policy-based secure deletion schemes using a deletion policy represented by a graph.

2.1 Selective secure deletion

The goal of a policy-based secure deletion scheme is to maintain, on a permanent storage medium, a
collection of files and to selectively delete some of them. Each file consists of a bit string of arbitrary
length and is protected under a protection class from a set P , as specified by a deletion policy; a formal
definition of deletion policy will be presented in the next section. A protection class is a logical grouping
of files governed by an identical deletion rule. The universe of protection classes is denoted by P =
{p1, p2, . . . }.

The scheme provides operations for protecting a file, for accessing a file, and for securely deleting
files. Secure deletion schemes in our model represent specialized encryption schemes and provide
cryptographic security. We model only a secret-key secure deletion scheme, where the same key serves
for protection of files and access to files; our model applies also to public-key schemes that may be
defined analogously.

At the beginning, files of all protection classes are protected under an initial master key. The master
key is stored in a closely guarded erasable memory, which is kept secret from an adversary. The master
key will be changed later as a result of deletion operations. In contrast, all other data produced by the

3

scheme is called ciphertext and stored in immutable non-erasable memory, which is public and exposed
to the adversary at all times.

Each protection class is defined by means of attributes from a setA of strings over a fixed alphabet.
Secure deletion operates on a subset of attributes, by ensuring that protection classes subject to those
attributes become inaccessible. When a secure deletion operation is executed, a new master key is
computed and stored in the erasable memory; the master key stored there previously is erased. Secure
deletion may also change the ciphertext, i.e., add new ciphertext to the non-erasable memory.

2.2 Policy graph

A deletion policy graph G suitable for a secure deletion scheme is given by a pair (V,E), such that
(V,E) is a directed acyclic graph (DAG). It has two kinds of nodes, sources and interior nodes. Nodes
with no incoming edges (indegree zero) are sources and correspond one-to-one to the attributes in A.
All other nodes are called interior nodes; each of them is associated with a threshold parameter m,
which is a positive integer less than or equal to the indegree of the node. Every interior node is labeled
by a distinct protection class in P .

For simplicity we identify the nodes of G directly with attributes and protection classes, i.e., V =
A ∪ P . A policy graph must contain at least one source and one interior node, hence, the minimum
policy graph has two nodes and one edge from the source node to the interior node.

Every node and every edge of the graph is associated to a Boolean value. All outgoing edges from a
node take the same value as the node. The source nodes are assigned a value through the secure deletion
scheme. An interior node with threshold m and n incoming edges corresponds to a Boolean threshold
gate with threshold m: the node is TRUE whenever at least m among the n incoming edges are TRUE.
Notice thatG has a natural interpretation as a Boolean circuit whose sources correspond toA. Threshold
nodes subsume AND and OR gates as special cases.

2.3 Operation

Intuitively, deletion operations can be triggered by setting a subset of attributes to TRUE. The corre-
sponding source nodes in G are then set to TRUE, which may cause some protection classes of G to
become TRUE. This means that all files protected under these classes are deleted. Multiple secure
deletion steps may follow each other.

More precisely, secure deletion works as follows. All protection classes are initially accessible,
i.e., all source nodes and all their outgoing edges are FALSE at the start. As the circuit is monotone,
this means that also all other nodes initially evaluate to FALSE according to G. Hence, none of the
protection classes specified has been deleted and all files are accessible in the sense that their plaintext
can be obtained from the ciphertext with the master key. A secure deletion operation takes a subset
of the attributes as parameter and changes the associated source nodes, and, consequently, some edges
in G to TRUE. Those files governed by protection classes that change their value to TRUE are no longer
accessible after the master key has been updated. This model allows secure deletion of many files
according to the policy and the given attributes. The attributes to delete can be specified independently
of each other in arbitrary order.

Example 1. The policy graph of Figure 1 has six attributes (resp., source nodes) named Alice, Bob,
Project X, Exp 2014, Exp 2015, and Audit and six protection classes (resp., interior nodes) named
p1, . . . , p6. The latter are threshold nodes that implement binary AND and OR gates. The attributes
model users that own files with different protection needs, a project category, expiration dates for stored
data, and a special audit need for deleting stored data.

4

OR

Exp_2015BobAlice Exp_2014

Audit
OR

OR

AND

AND

p1

p2

p5

p4

Project_X

OR

p3

p6

Figure 1. A sample policy graph.

For example, protection class p3 is governed by a policy Alice OR Exp 2015; thus data in p3 becomes
inaccessible as soon as a delete operation for protection classes owned by Alice is executed or a delete
operation for the files with expiration Exp 2015 takes place.

Protection class p1 has policy (Alice OR Exp 2014) AND Audit. Data protected under this class only
disappears after the attribute Alice or the attribute Exp 2014 has been deleted, and, furthermore, after a
secure deletion operation for Audit has been executed. This might apply when data protected under p1
is more important for retention than data under p2, as data in class p1 can be destroyed only after an
auditor has given consent to its erasure.

User Bob owns the data protected under p4, p5, and p6. The policy dictates that classes p5 and p6
become inaccessible after securely deleting the attributes Exp 2014 or Exp 2015, respectively, or when
data owned by Bob and data labeled by Project X is securely deleted. For instance, Bob might be a
temporary user working on project X, and regardless of whether Bob leaves the organization, his data
must be retained until the end of the project, i.e., until it is erased explicitly by specifying Project X for
secure deletion.

Consider the initial state and suppose a secure deletion operation with attribute Exp 2014 is invoked.
Then p2 and p5 become inaccessible, but p1 remains present as Audit has not been specified for deletion.
If data protected with owner Alice securely deleted later, then p3 becomes inaccessible but p1 can still
be retrieved.

2.4 System model

In a practical system supporting policy-based secure deletion, there are two distinct kinds of storage
space: erasable and permanent memory. A small erasable memory forms the root of trust and must be
under close control by the system operators. It is provided, for instance, by key-management systems,
hardware-security modules (HSM), or trusted third parties. Content that has been deleted from the
erasable memory is impossible to retrieve for both legitimate and malicious parties. On the other hand,
permanent memory is readily available with large capacity, but its content can neither be erased nor
hidden from a determined adversary. Many forms of storage encountered in practice fall in this category,
ranging from the complex storage hierarchies of a data center to the mobile end-user devices attached
to storage back-ends in the cloud.

In this work, we consider a user with access to erasable memory and permanent memory. Her
goal is to store a potentially large number of files and to selectively delete files according to a deletion

5

policy. Information to be stored is protected, resulting in ciphertext being written to permanent memory.
The ciphertext is available later for accessing non-deleted files. Secure deletion operations make it
impossible for an adversary to retrieve the deleted files; they exploit the capability to remove data from
erasable memory.

2.5 Secure deletion schemes

We now introduce the formal notion of a policy-based secure deletion scheme. The model is crypto-
graphic [16] and formulated as a secret-key scheme for simplicity.

We define a predicate deleted(G,D, p) for a deletion policy with attributes A, policy graph G,
and protection classes P that denotes whether deleting all attributes in a set D ⊆ A implies that the
protection class p ∈ P should become inaccessible. In terms of the Boolean circuit interpretation
of G, suppose those source nodes of G corresponding to the attributes in D are set to TRUE; then
deleted(G,D, p) denotes the value of node p in G. The notation [a, b] for two integers a and b denotes
the set of integers {a, . . . , b}; the expression [a] is short for [1, a].

Definition 1. A policy-based deletion scheme E is a tuple (Init, Protect, Access, Delete), consisting
of four probabilistic polynomial-time algorithms (in terms of a security parameter κ) with the following
properties:

• Init(κ,G)→ (M0, S0)

The initialization algorithm takes as input the security parameter κ and a policy graph G. It
outputs an initial master key M0 and initial auxiliary state S0.

• Delete(Mt, St, At)→ (Mt+1, St+1)

The secure deletion algorithm takes a master keyMt, auxiliary state St, and a set of attributesAt ⊆
A, and outputs a new master key/auxiliary state pair reflecting the deletion of the supplied at-
tributes.

Throughout the operation of the scheme, a set D ⊆ A that contains the union of all attributes
deleted so far is implicitly maintained. That is, after t+ 1 calls to Delete, it holds D = ∪ti=0Ai.

• Protect(Mt, St, p, f)→ c

The protect algorithm takes as inputs a master key Mt, auxiliary state St, a protection class
p ∈ P , and a file f which is a binary string of any length, and outputs a ciphertext c. If
deleted(G,D, p) = TRUE, i.e., the protection class has already been deleted, then c = ⊥.
Otherwise, the protection class is still accessible and c ∈ {0, 1}∗ is a protected version of the
file f .

• Access(Mt, St, p, c)→ f

The access algorithm takes a master key Mt, auxiliary state St, a protection class p, and a cipher-
text c, and outputs a string f ∈ {0, 1}∗ or ⊥.

Whenever a master key/auxiliary state tuple (Mt, St) appears here, we assume that Mt and St are
well-formed and result from a call to Init and a number of subsequent repeated calls to Delete. In
other words, for some Init(κ,G) = (M0, S0) and a sequence A0, A1, . . . , At−1 of subsets ofA, it holds
that Delete(Mi, Si, Ai) = (Mi+1, Si+1), for i ∈ [t − 1]. Note that this assumption incurs no loss of
generality in the adversarial model considered here.

6

All four algorithms except for Access are usually probabilistic; they output a random variable
induced by their internal random choices. In statements about particular output values of an algorithm,
such as in the preceding paragraphs, it is implied that these outputs may occur with non-zero probability.

Next, we discuss the completeness and security properties of a policy-based deletion scheme E .

Definition 2. A policy-based deletion scheme defined as above is said to be complete if any protected
file can be accessed at a later time unless it has been deleted. That is, for any t and j ≤ t, for all p ∈ P ,
for all f ∈ {0, 1}∗, for all {Ai}t−1i=0, where Ai ⊆ A, and all key/state tuples (Mi, Si), for i ∈ [t − 1],
such that Init(1k, G) = (M0, S0) and Delete(Mi, Si, Ai) = (Mi+1, Si+1), it holds that

Access
(
Mt, St, p,Protect(Mj , Sj , p, f)

)
= f.

conditioned on deleted(G,∪t−1i=0Ai, p) = FALSE.

The security of a policy-based deletion scheme is defined using the following experiment for an
adversary A and a security parameter κ.

Secure deletion experiment SecdelA,E(κ) :

1. The adversary A is given κ and outputs a policy graph G with corresponding sets A
and P for the attributes and the protection classes, respectively. Also, the adversary
outputs a set D ⊆ A of all attributes to be deleted at the end.
Then, algorithm Init(κ,G)→ (M0, S0) is executed and S0 is given to A.

2. A is given oracle access to protection and deletion operations. In particular, the set
D of deleted attributes, the index t, and the current master key/auxiliary state pair
(Mt, St) are maintained; A may choose inputs (p, f) for protection and receives the
output of Protect(Mt, St, p, f); A may also specify At ⊆ D, which causes algorithm
Delete(Mt, St, At)→ (Mt+1, St+1) to be invoked, then A receives St+1.

3. The adversary A outputs some p∗ ∈ P such that deleted(G,D, p∗) = FALSE and
two strings f0, f1 ∈ {0, 1}∗ of the same length.

4. After a random bit b← {0, 1} is chosen, a ciphertext c∗ ← Protect(Mt, St, p
∗, fb) is

computed and given to A.

5. The adversary is given further oracle access to protection and deletion operations,
continued from step 2, until A stops under the condition that deleted(G,D, p∗) =
TRUE and D = D, i.e., p∗ is inaccessible for the current set D of deleted attributes
and that set is the same as the one defined in step 1.

6. A receives the current value of Mt and outputs a bit b̂. The experiment returns 1 if
b̂ = b and 0 otherwise.

Definition 3. A policy-based deletion scheme E is called secure when for all probabilistic polynomial-
time adversaries A, there exists a negligible function ε such that

Pr
[
SecdelA,E(κ) = 1

]
≤ 1

2
+ ε(κ).

Remark. A secure deletion scheme maintains the secrecy of the protected and deleted content. Ac-
cording to the security definition, in the last step of Secdel, the adversary receives the master key. At
this point, the files protected under all classes that have not yet been deleted are obviously exposed to A.
However, any protected file that has already been deleted is guaranteed to remain confidential, even after
the master key has been leaked.

7

Note that the security model requires the adversary to declare the attributes to delete upfront, before
it can observe any output produced by the scheme and adaptively choose in what order to delete these
attributes. Hence, our security notion is not strongest possible, similarly to “selective security” for
attribute-based encryption [21, 13].

2.6 Measuring efficiency

We will characterize implementations of secure deletion schemes in terms of the cost incurred for exe-
cuting their operations. We define the deletion cost, protection cost, and access cost as the complexities
of running the deletion, protection, and access algorithms, respectively. Complexities are expressed in
terms of computation steps or, more usually, through the number of calls to an encryption primitive
made by the algorithm.

We consider deletion schemes with constant deletion cost, independent of the number of protected
files, to be the most interesting. For the constructions considered in this work, protection and access
cost do not differ, hence we are mainly interested in access cost.

Furthermore, the size of the erasable memory for storing the master key and the permanent memory
for storing the auxiliary state are important parameters. We quantify them as the master-key size and
auxiliary-state size, respectively. Note the protected files must be maintained outside the secure deletion
scheme.

3 Constructions

3.1 Prerequisites

In the constructions described below, we assume for simplicity that master keys and auxiliary state
values Mt and St, returned by Init and Delete operations, are associative arrays indexed by nodes and
edges of G. Thus, the values St[v] and St[e] denote the auxiliary data, if any, associated to v ∈ V
and e ∈ E, respectively. The notation St|V

′,E′ denotes only the collection of entries of St restricted to
v ∈ V ′ ⊆ V and e ∈ E′ ⊆ E.

Secret-key encryption schemes. A secret-key encryption scheme S consists of three algorithms Keygen,
Encrypt, and Decrypt. The probabilistic key generation algorithm Keygen(κ) outputs a key K; algo-
rithm Encrypt(K,m) takes a key K and a plaintext m as inputs and returns a ciphertext c; algorithm
Decrypt(K, c) takes a key K and a ciphertext c as inputs and returns a plaintext m. We assume S is
complete and IND-CPA secure according to the standard notions [16].

Secret-sharing schemes. A (m + 1)-out-of-n secret-sharing scheme denotes a method to split a se-
cret s into n shares s1, . . . , sn such that m + 1 or more shares are sufficient to recover s, but m or
fewer shares give away no statistical information about s. The operation of sharing s is expressed
by (s1, . . . , sn) ← Θn

m+1(s), and the algorithm to recover s from shares s̄1, . . . , s̄m+1 is written as
s ← Ω(s̄1, . . . , s̄m+1). We use, for instance, the well-known implementation based on polynomial
interpolation [22].

3.2 Direct secure deletion schemes

We now introduce a class of secure deletion schemes with a particularly simple implementation of the
deletion operation. We call them direct because their deletion operation merely erases parts of the master
key that corresponds directly to the deleted attributes.

8

K1

p

a2 ana1

K2 Kn

(x1, ..., xn) Kp

Figure 2. Basic secure deletion scheme, implemented from encryption and secret sharing.

More precisely, a direct secure deletion scheme always generates a master key Mt in the form of a
tuple with exactly one component for every attribute in A. The deletion operation for a set of attributes
At ⊆ A erases those components of Mt that correspond to At. In other words, every master key Mt is
an associative array indexed by a ∈ A, where Mt[a] denotes the component corresponding to a. The
deletion operation for At computes Mt+1 as

Mt+1[a] ←

{
⊥ if a ∈ At

Mt[a] otherwise.

Stronger security for direct schemes. Recall from Definition 3 that in the last step of its experiment,
the adversary is given the current value of the master key. Given that D is supplied by A, the set of all
attributes to be deleted eventually, in the first step, it is clear that the master key given to the adversary at
the end is M0|ArD. As a consequence, A can receive it in the first rather than last step, hence providing
the adversary with more information earlier in the experiment. We use this stronger security definition
when showing the security of direct policy-based deletion schemes.

3.3 Basic scheme

A secure deletion scheme with a very basic policy can be implemented directly from a secret-key en-
cryption scheme S and a secret-sharing scheme Θ.

Let G1 = (V,E) be a policy graph with n ≥ 1 source nodes, connected to a single interior node
that is also the only protection class. In other words, as shown in Figure 2, the nodes V = A ∪ P are
given by a set of attributes A = {a1, . . . , an} and a set P = {p} composed of a single protection class,
and the edges are E = {e1, . . . , en}, where ei = (ai, p) for i ∈ [n]. The interior node p has a threshold
parameter m.

We construct E = (Init, Protect, Access, Delete) as follows:

• Init(κ,G1)

– For each attribute ai ∈ A select a random key Ki ← S.Keygen(κ) and set M0[ai]← Ki;

– Select a random key Kp ← S.Keygen(κ) and construct a (n−m+ 1)-out-of-n secret shar-
ing for the key, i.e., (s1, . . . , sn)← Θn

n−m+1(Kp); then, compute xi ← S.Encrypt(Ki, si)
for i ∈ [n] and set the initial auxiliary state to be S0[p]← (x1, . . . , xn);

– Output (M0, S0).

• Delete(Mt, St, At)

As this is a direct secure deletion scheme, proceed as defined in Section 3.2.

9

• Protect(Mt, St, p, f)

If deleted(G,D, p) = TRUE, set c ← ⊥. Otherwise, let (x1, . . . , xn) ← St[p]; for each i ∈ [n]
such that ai 6∈ D compute the share si ← S.Decrypt(Mt[ai], xi) and reconstruct the key Kp

from the shares; finally, compute c ← S.Encrypt(Kp, f). Output c as a protected version of the
file f .

• Access(Mt, St, p, c)

If deleted(G,D, p) = FALSE, reconstruct Kp as above and output f ← S.Decrypt(Kp, c).
Otherwise, when the protection class is inaccessible, return f ← ⊥.

The auxiliary state St contains data only for the interior node p, i.e., the shares of the key Kp

encrypted under the keys representing the n attributes. Note that the Protect and Access methods
obtain at least n −m + 1 shares for reconstructing Kp whenever deleted(G,D, p) = FALSE; this is
shown in the next theorem.

Theorem 1. The direct secure deletion scheme E with policy graph G1 defined above is complete and
secure.

Proof. Given the structure of G1 with p being an interior node with threshold m, it follows that the
predicate deleted(G1, D, p) is TRUE if and only if |D| ≥ m.

It is easy to check that the scheme is complete because as long as deleted(G1, D, p) = FALSE,
fewer than m attribute keys have been deleted; in other words, more than n−m of the keys K1, . . . , Kn

are present in the master key. Using the auxiliary data St[p], this allows to recover more than n−m of
the secret shares s1, . . . , sn. Then the key Kp can be obtained by running the reconstruction algorithm
Ω of the secret sharing scheme. Hence, Protect and Access can operate on all files protected under p.

The proof that the scheme is secure proceeds in a sequence of games [23]:

Game 0. This is the original game and its experiment is defined according to the security definition.
Note that in the first step of the experiment, A is required to specify the set of attributesD which satisfies
deleted(G1,D, p) = TRUE. As mentioned above, this happens if and only if |D| ≥ m.

Game 1. We proceed as in the previous game except that for each i ∈ [n] such that ai ∈ D, the Init
algorithm sets xi ← S.Encrypt(Ki, ri), for a randomly chosen ri ∈ {0, 1}|si|, and stores these in the
auxiliary state value S0[p] = (x1, . . . , xn). By the security of the encryption scheme S and the fact
that all Ki with ai ∈ D are removed from the master key before it is revealed to A, it holds that the
adversary’s advantage changes by at most negligible probability from the previous game.

Game 2. This game is initially the same as the previous game, in which Init chooses a random key
Kp ← S.Keygen(κ), secret-shares it to obtain the shares s1, . . . , sn, and uses these for computing the
auxiliary state. However, we also choose a different random key K ′p ← S.Keygen(κ) and use this key
rather than Kp to protect and access any files under p in responses to queries of A.

Recall that A will ask for at leastm attributes to be deleted before it obtains the master key.Therefore,
by the security of the secret-sharing scheme, the adversary cannot tell which key is secret-shared, hence
behaves like in the previous game except for a negligible difference. Also, note that the key K ′p is
completely independent from the master key and the auxiliary state.

10

Game 3. In this last game, when the adversary presents files f0 and f1 with the same length, the
challenger computes c∗ ← S.Encrypt(K ′p, r) for a randomly chosen r ∈ {0, 1}∗ of the same length as
the files. By the security of the encryption scheme S, the advantage of A changes at most by a negligible
amount from the previous game. Moreover, as r is independent of f1 and f2, the adversary cannot do
better than guess b at random, hence Pr[b̂ = b] = 1

2 .

As the adversary A can guess b exactly with probability 1
2 in the last game and her advantage changes

only negligibly between every two consecutive games, it follows that E is secure.

Note that the auxiliary state contains values neither for the attributes nor for the edges incident with
them. We use this property when constructing more complex secure deletion schemes and maintain this
invariant for all direct schemes.

3.4 Composition

Two secure deletion schemes can be composed into a more elaborate scheme whose policy graph results
from combining the two basic policy graphs. We consider first the case when both schemes are direct
and relax this requirement later on.

Suppose the two secure deletion schemes are arranged in a hierarchy as a higher and a lower scheme.
The key step of the composition uses the higher secure deletion scheme to protect the master key of the
lower scheme. The protection classes applied to particular components of the lower scheme’s master
key will determine the policy graph of the resulting scheme. Importantly, the lower master key needs no
longer be stored in the erasable memory. In this way, secure deletion operations of the higher scheme
extend to files protected with the lower scheme.

Suppose Eh and El are secure deletion schemes with policy graphs Gh = (Vh, Eh) and Gl =
(Vl, El), protection classesPh andPl, and potentially overlapping attribute setsAh andAl, respectively.
Apart from Ah and Al, the nodes Vh and Vl in the two graphs are mutually exclusive. Then, a secure
deletion scheme E with policy graph G, attributesA, and protection classes P is constructed as follows.

The composition specifies two sets PJ and AJ , where PJ ⊆ Ph and AJ ⊆ Al, as well as a map
J : AJ → PJ . The map J determines to which protection class in PJ each attribute of AJ is joined.
Also, we require that AJ ∩ Ah = ∅, i.e., the attributes to be joined contain no attributes of Gh, so that
the new policy graph will not contain cycles. The policy graph G = (V,E) is defined as:

• V = Vh ∪ Vl \ AJ , i.e., G contains all nodes from Gh and Gl except those attributes of Gl which
are being joined to a protection class in Gh;

• E = Eh ∪ {(u, v) | (u, v) ∈ El ∧ u /∈ AJ} ∪ {(w, v) | (u, v) ∈ El ∧ u ∈ AJ ∧ w = J(u)};
this denotes (1) all edges of Gh, (2) the edges of Gl not incident to nodes in AJ , and (3) one
edge (w, v) for every edge (u, v) ∈ El with u ∈ AJ , where w = J(u) is the protection class
to which u is joined according to the composition. Note that |E| = |Eh| + |El| and there is a
one-to-one mapping between E and Eh ∪ El determined by J .

The attributes of E are all attributes of Gh and Gl except for those involved in the composition, i.e.,
A = Ah ∪ Al \ AJ , and the set of protection classes is the union of the present protection classes,
P = Ph ∪ Pl. An illustration of how two policy graphs are composed is shown in Figure 3.

The algorithms (Init, Protect, Access, Delete) of E are composed from those of Eh and El:

• E .Init(κ,G)

11

u dx

i

vy

h(Vl, El)

b ca

z

we

f

(Vh, Eh)

g

b

d

i

vy

h

b ca

z

we

f

(V, E)

g

Figure 3. Two policy graphs (Vh, Eh) and (Vl, El) on the left are combined to (V,E), shown right.
Note that AJ = {x, u} and PJ = {w, z}, and the composition map specifies J(x) = z and J(u) = w.
Only the edges of case (3) in E .Init are drawn here; the remaining edges are omitted and not affected by
the composition.

Compute (Mh,0, Sh,0) ← Eh.Init(κ,Gh) and (Ml,0, Sl,0) ← El.Init(κ,Gl), and for every a ∈ A
set

M0[a] =

Mh,0[a] if a ∈ Ah and a /∈ Al,

Ml,0[a] if a /∈ Ah and a ∈ Al,

Mh,0[a]
⊕
Ml,0[a] if a ∈ Ah ∩ Al,

where
⊕

denotes the concatenation of two entries or tuples into one tuple. Note that M0[a] may
contain more than one entry; in general, M0[a] is a tuple with one entry for every edge incident to
node a. For notational convenience, we write M0[a][v] for the entry in M0[a] that corresponds to
the specific edge from a to v.

The initial auxiliary state stores no data for the attributes in our constructions.1 For every pro-
tection class p ∈ V , the auxiliary data S0[p] is simply Sh,0[p] or Sl,0[p] respective to whether
p ∈ Vh or p ∈ Vl. As there is one-to-one mapping between E and Eh ∪ El, we consider every
edge e = (u, v) ∈ Eh ∪ El and define the initial auxiliary state of its corresponding edge in E as
follows:

– S0[(u, v)] = Sh,0[(u, v)], if (u, v) ∈ Eh;

– S0[(u, v)] = Sl,0[(u, v)], if (u, v) ∈ El ∧ u /∈ AJ ;

– S0[(w, v)] = Sl,0[(u, v)]
⊕
Eh.Protect(Mh,0, Sh,0, w,Ml,0[u][v]), if (u, v) ∈ El for u ∈

AJ and w = J(u), where w ∈ PJ is the protection class to which u ∈ AJ is joined.

That is, all edges in E which are also present in Eh or El keep their initial auxiliary state un-
changed. The edges from a node w ∈ Vh to a node v ∈ Vl store the auxiliary data of (u, v) and
the master-key component from El related to (u, v) protected under w with Eh; here, u ∈ Vl is the
attribute which was joined to w such that the edge (u, v) ∈ El corresponds to (w, v) ∈ E. Note
that in our construction, edges adjacent to the attributes have no auxiliary data; thus, in the last
case, S0[(w, v)] is simply Eh.Protect(Mh,0, Sh,0, w,Ml,0[u][v]).

1This may not necessarily be true for other constructions; should that be the case, auxiliary data for AJ specified by the
composition map can be stored either in the auxiliary data of the nodes to which they are joined or in the new edges created in
the composition, i.e. those in case (3) described above.

12

Protecting the components of the master key from the lower scheme with the higher scheme
represents the main mechanism of the composition. It is also the building block for the hierar-
chical implementation of secure deletion schemes with arbitrary policy graphs, as explained in
Section 3.5.

• E .Delete(Mt, St, At)

Execute Eh.Delete(Mt|Vh,Eh , St|Vh,Eh , At∩Ah) and El.Delete(Mt|Vl,El , St|Vl,El , At∩Al), and
update the master key and auxiliary state accordingly. Recall that when a scheme is direct, the
deletion operation does not change the auxiliary state but only deletes part of the master key;
hence, the deletion operations are trivial.

• E .Protect(Mt, St, p, f)

– If p ∈ Ph, then compute c← Eh.Protect(Mt|Vh,Eh , St|Vh,Eh , p, f);

– Otherwise, when p ∈ Pl, we reconstruct Ml,t by computing for a ∈ Al:

Ml,t[a] =

{
Mt[a] if a /∈ AJ⊕

(a,v)∈El
Eh.Access(Mt|Vh,Eh , St|Vh,Eh , w, St[(w, v)]) if a ∈ AJ ,

where w = J(a) and
⊕

stands for the concatenation of entries into a tuple.
Then, compute c ← El.Protect(Ml,t, St|Vl,El , p, f). Note that any node u ∈ Vl and any
edge (u, v) ∈ El, where u ∈ AJ , are not present in G; hence, they are not defined in St and
its restriction St|Vl,El . This agrees with the invariant defined in the last section that a direct
secure deletion scheme stores no data in the auxiliary state for attributes and edges incident
with them.2

Return c as the protected version of f .

• E .Access(Mt, St, p, c):

This operation proceeds analogously to Protect:

– If p ∈ Ph, then compute f ← Eh.Access(Mt|Vh,Eh , St|Vh,Eh , p, c);

– If p ∈ Pl, then reconstruct the master key Ml,t of El as described in the E .Protect algorithm
and compute f ← El.Access(Ml,t, St|Vl,El , p, c).

Finally, return f .

Theorem 2. The above-described policy-based secure deletion scheme E is direct, complete, and secure
if Eh and El are direct policy-based secure deletion schemes,

Proof. It is easy to show that E is complete from the fact that Eh and El are complete and from the way
they are composed.

The proof of security proceeds in a sequence of games. In each game, we modify slightly further E
when an algorithm B plays the role of a challenger in the experiment SecdelA,E(κ) against an adversary
A attacking E by running the experiments SecdelB,Eh(κ) and/or SecdelB,El(κ); note that B plays the
role of a challenger against A for E and the role of an adversary for Eh and/or El.

2In the general case, when there is auxiliary data associated with attributes or their adjacent edges, we adjust the recon-
struction of Ml,t and Sl,t easily to match the modification needed in that case as described in the Init algorithm.

13

Game 0. The experiment SecdelA,E(κ) proceeds according to its definition for the E defined above.

Game 1. The simulator B performs the experiment SecdelB,Eh(κ) in the role of the adversary, while
simulating SecdelA,E(κ) for A. The scheme E is modified to use oracle access to protection and deletion
operations for Eh, and every time A moves from one step to the next in her experiment SecdelA,E(κ),
so does B in SecdelB,Eh(κ).

In particular, for a set D given by A in the first step of her experiment, B outputs Dh ← D|Vh,Eh

in the first step of his experiment. The E .Init algorithm computes the auxiliary state as defined with the
exception that B runs only (Ml,0, Sl,0) ← El.Init(κ,Gl), whereas Sh,0 is obtained from the challenger
in his experiment; at any time, the respective induced calls to Eh.Delete, Eh.Protect, and Eh.Access
are replaced by oracle calls provided to B by the challenger of SecdelB,Eh(κ).

This game is indistinguishable to A from the previous one as the only difference is the way B handles
the recursive calls to Eh which are perfectly simulated from the experiment B runs against his challenger.

Game 2. This game is identical to the previous one except for computing the auxiliary state for edges
in case (3) in the E .Init algorithm (see Figure 3). Previously, the auxiliary value for the edge in G
corresponding to (u, v) ∈ Eh ∪ El, for u ∈ AJ , was computed as

S0[(w, v)] = Eh.Protect(Mh,0, Sh,0, w,Ml,0[u][v]),

where (u, v) ∈ El for u ∈ AJ and w = J(u).
For the same u ∈ AJ and w = J(u), if deleted(G,D, w) = TRUE, this is modified to:

S0[(w, v)] = Eh.Protect(Mh,0, Sh,0, w, r),

for a randomly chosen r ← {0, 1}∗ of the same length as the corresponding key component.
This game is indistinguishable to A from the previous one except for a negligible probability due

to the security of Eh; in particular, for protection classes which are deleted before the master key is
revealed, A cannot distinguish between a chosen value or a random value being protected under such a
class.

Game 3. The simulator B performs the experiments SecdelB,Eh(κ) and SecdelB,El(κ) while simulat-
ing SecdelA,E(κ) for A. In the first step of the main experiment, A returns a setD, from which B derives
his set Dh ← D|Vh,Eh for the experiment SecdelB,Eh(κ) as before; for the experiment SecdelB,El(κ),
Dl is computed as the union of all attributes a ∈ Al such that:

• a /∈ AJ ∧ a ∈ D; or

• a ∈ AJ ∧ deleted(G,D, J(a)) = TRUE.

That is, all attributes of Al which are present in G and belong to D or which are attributes joined in the
composition and whose protection classes from Gh become inaccessible when all attributes from D are
deleted. Once B returnsDh andDl in the first step of the respective experiments against his challengers,
he is able to compute M0, S0 for E as defined in the previous game. As before, every time A moves
from one step to the next in her experiment so does B for his.

This game is indistinguishable to A from the previous one as the only difference is the way B handles
the respective induced calls to El which are perfectly simulated from experiment that B runs against his
challengers.

14

Note that in the last game B simulates SecdelA,E(κ) perfectly without the knowledge of Mh,0 and
Ml,0 using only oracle access provided by SecdelB,Eh(κ) and SecdelB,El(κ). Hence, any adversary A
winning SecdelA,E(κ) with non-negligible advantage implies an adversary B which can break the se-
curity of Eh or El. Therefore, if Eh and El are secure, so is the composed E .

Next, we observe that we can relax the requirement that Eh is a direct scheme if Eh and El share
no attributes; note this implies Vh ∩ Vl = ∅ as the composition requires that the nodes of both graphs
are disjoint except for the attributes. Hence, one may compose an arbitrary policy-based secure deletion
scheme Eh with a direct scheme El.

Theorem 3. Let Eh and El be policy-based secure deletion schemes, where El is direct. If Vh∩Vl = ∅, the
two schemes can be composed as described above and the resulting scheme E is complete and secure.

Proof. Note that the above construction and proof do not utilize the fact that Eh is direct except for the
possibility that Eh and El share attributes. Thus, if Ah ∩ Al = ∅, the result follows analogously.

3.5 Direct policy-graph construction

One may use the basic secure deletion scheme of Section 3.3 and the composition operation to imple-
ment direct secure deletion schemes for arbitrary policy graphs. Recall that every DAG G = (V,E)
has a topological order that can be computed in time O(|V |+ |E|), which arranges the nodes of G in a
sequence that respects the direction of all edges.

We traverse G in the topological order and gradually build up a secure deletion scheme for G.
Initially we take the first encountered interior node v0 and implement a secure deletion scheme for v0
according to the basic scheme of Section 3.3. Subsequently, whenever we encounter the next interior
node v, we take the subgraphGv induced by v and its incoming edges, implement a basic secure deletion
scheme for Gv according to Section 3.3, and compose it with the secure deletion scheme realized so far.

The resulting secure deletion scheme for G implicitly contains a key for every node and a key for
certain edges. More precisely, for a source node (attribute) a, the key Ka is explicitly stored in the
master key and has one entry for every outdoing edge; for any interior node (protection class) p with
n incoming edges and threshold m, the key Kp is stored encrypted as follows. For every incoming
edge (v, p), except for those incident to an attribute, the auxiliary state contains an encryption of a
key Kv,p under the key Kv, which corresponds to node v. In turn, the auxiliary state associated to p
contains a vector (xp,1, . . . , xp,n), where some xp,j is associated to v and represents an encryption of
sp,j under Kv,p. The value sp,j is a share of Kp in a (m+ 1)-out-of-n secret sharing scheme.

Thus, every node in G is associated with one encryption key and every edge in G not incident to a
source is also associated with one encryption key. The resulting structure is an iterative key-encrypting
key-assignment scheme (IKEKAS) according to Crampton et al. [5].

The access cost is proportional to the size of G. More precisely, accessing a node p needs a maxi-
mum of two secret-key cryptographic operations for every edge that must be traversed (i.e., set to TRUE),
in order to derive p (i.e., set p to TRUE). The master key contains one component for every attribute and
the total size of the auxiliary state is in O(|V |+ |E|).

Note that the master key component for an attribute a, the key Ka, is a tuple of keys with one entry
for every outgoing edge. This is done so that the resulting secure deletion scheme is the same, regardless
of which topological order is used during composition, as the edges adjacent to attributes are used in a
special way in the composition. However, once constructed, one can replace the tuple Ka with a single
key K ′a, and for every edge (a, p) store the key Ka,p protected with K ′a in the auxiliary state of the edge
(a, p), as done for all other edges; this reduces the master-key size.

15

3.6 Tree construction

In an early work on secure deletion, Di Crescenzo et al. [7] introduce a tree construction that protects
data in an arbitrary number of emulated memory locations. The scheme is realized from persistent
storage exposed to an adversary and allows to overwrite individual memory locations. Only a small
erasable memory of constant size is needed for maintaining a master key.

Using our terminology, their scheme permits n protection classes p1, . . . , pn and each one can
be specified for deletion independently of the others. The deletion policy graph consists of n at-
tributes a1, . . . , an, the n protection classes p1, . . . , pn, and n edges (ai, pi) for i ∈ [n].

A balanced tree with n leaves, labeled by p1, . . . , pn, is constructed as follows. First, a key Kv of a
secret-key encryption scheme is generated, ranging over all nodes v in the tree. Next, for every node v,
the keys of all children of v are encrypted with Kv and the resulting ciphertext is added to the auxiliary
state associated to v. The key of the root node represents the master key; is not stored in the auxiliary
state.

For protecting or for accessing a file under protection class pi, all keys along the path from the root
to pi are decrypted, starting from the root, and Kpi is used to encrypt or decrypt the file, respectively.

Deletion for attribute ai makes all data protected under pi inaccessible. This operation is imple-
mented by generating fresh keys for all nodes on the path from the root to pi in the tree. More precisely,
the keys of all nodes and their siblings along this path are first decrypted, then a fresh key is generated
for every node on the path except for pi, and finally all fresh keys are encrypted under the fresh key of
the respective parent node and stored in the auxiliary state. The fresh root key is written to the master
key and the previous root key is deleted in the erasable memory.

Clearly, this construction represents a secure deletion scheme, which can be proved secure assuming
a secret-key cryptosystem along the lines of the existing proof [7]. The access cost of the scheme as
well as its deletion cost areO(log n) secret-key operations. The erasable memory contains only one key
of the secret-key encryption scheme as the master key and the auxiliary state is of size O(n).

3.7 Combined construction

Recall that for composing two secure deletion schemes with Theorem 2, only the lower scheme must
be direct. Therefore, we can combine the tree construction of Section 3.6 with the direct scheme of
Section 3.5 to obtain a secure deletion scheme with some attributes organized in a tree, as described
above, whereas the rest are organized using a direct scheme. This is useful for modeling a case where
many attributes are values from a large set or interval, such as user identities or dates.

One can further combine two or more such tree constructions trivially through logical expressions if
the attributes in the trees are all distinct. In this way, we can compose many separate tree schemes with
a direct scheme to obtain an elaborate and practical secure deletion scheme. The prototype implemen-
tation described later follows this approach.

4 Properties

4.1 Efficiency of the schemes

In Table 1, we present a comparison of the direct graph and tree schemes described, respectively, in
Section 3.5 and Section 3.6; as well as two obvious “trivial” constructions, discussed next. As mentioned
earlier, access and protection costs are the same for all schemes considered in this paper.

The first trivial scheme uses a separate key for each protection class. This results in a large master
secret key but achieves fast deletion operations. The Ephemerizer [18], for instance, encrypts all files

16

Scheme Deletion cost Access cost Master-key size
Trivial direct O(1) O(1) O(|P|)
Trivial tree O(|P|) O(1) O(1)

Direct graph O(1) O(d · `) O(|A|)
Tree O(log |P|) O(log |P|) O(1)

Table 1. Efficiency comparison. |A| and |P| denote the number of attributes and protection classes in
the policy graph, d is the maximum in-degree of a node, and ` is the longest path in the graph.

with a particular expiration time with the same time-specific key, and Vanish [12] encrypts every user-
data object with an independent key. Likewise, the Data Node Encrypted Filesystem (DNEFS) [20] uses
this approach for protecting every data node of the flash filesystem independently.

The second trivial scheme implements a tree of depth one: it uses a single encryption key as a
master key and one encryption key for each protection class; the master key is used to encrypt the keys
of the protection classes and the ciphertexts are stored in the auxiliary state. Deletion requires the re-
encryption of all remaining protection-class keys with a new master key. This scheme appears, e.g., in
the extension of DNEFS to an encrypted filesystem [20]. Note that removing this level of indirection,
and using the master key to protect the files directly, would result in much worse deletion performance,
as the number of files is typically much greater than the number of protection classes.

The operational cost of our direct policy-graph secure deletion scheme is determined by the pa-
rameters of its graph, namely, the maximum in-degree d of a node and the longest path `. The main
advantages of this scheme are its fast deletion operation coupled with its high expressibility. Unlike the
other schemes, which consider only protection classes mapped one-to-one to attributes, the policy-graph
scheme allows flexible policies formulated through logical expressions over attributes. In practice, d and
` will often be small numbers, though in O(|A|) and O(|P|), respectively.

4.2 Relation to secret-key encryption

Every secure deletion scheme is also a secret-key cryptosystem with security against chosen-plaintext
attacks. We only sketch this relation here; adding the formal details is straightforward.

Recall that a secret-key cryptosystem S consists of a key-generation algorithm, an encryption algo-
rithm, and a decryption algorithm. The following steps emulate S from a secure deletion scheme E :

1. Let G1 be the minimal policy graph with one attribute a, one protection class p, and one edge
from a to p. For key generation in S, run the initialization algorithm of E with G1 and use its
output as the secret key.

2. For encryption of a plaintext m with S, invoke the protection algorithm of E on p and m, obtain
a ciphertext c, and output (p, c).

3. For decrypting a ciphertext (p, c) of S, invoke the access algorithm of E , and output the response.

We claim that S is a secret-key cryptosystem with indistinguishable ciphertexts under chosen-
plaintext attacks (IND-CPA security [16]). To see this, suppose S is not secure. Then we construct
a simulator SIM that contradicts the security of E in experiment Secdel, by interacting with an adver-
sary AS that breaks the security of S .

The simulator executes the operations of S according the described emulation of S from E ; note that
SIM does not call Delete. When AS outputs two plaintexts m0 and m1 such that one is to be encrypted
as challenge, the simulator outputs p, m0, and m1. Then Secdel responds with a ciphertext c∗ that

17

contains a representation of mb, where b ∈ {0, 1}. According to the emulation of S, the simulator
gives (p, c∗) to AS . When AS outputs a bit b̂S as its guess for the challenge plaintext, then SIM queries
its oracle for the deletion operation with attribute set {a}, ignores the master key that it receives, and
outputs b̂S . Note that SIM emulates the IND-CPA security experiment perfectly. By the assumption that
AS breaks the indistinguishability of ciphertexts of S, it follows that Pr[SecdelSIM,E(κ) = 1]− 1

2 is not
negligible. Hence, E is not a secure policy-based deletion scheme.

5 Prototype implementation

Here we describe a filesystem prototype implementation of a policy-based secure deletion scheme ac-
cording to Sections 2 and 3. The secure-deletion filesystem (delfs) is implemented as an extension to
EncFS [9], a virtual cryptographic filesystem in Linux based on FUSE [11]. As a virtual filesystem, delfs
does not handle space allocation itself, just like EncFS, but acts as a transparent protection layer and
projects the stored directories and files with the same structure onto a lower-layer (physical) filesystem.

5.1 Overview

Data stored in delfs seamlessly benefits from secure deletion. Together with every instance of a delfs-
mounted directory tree, the user specifies a deletion policy in the format described later. Every file
maintained by delfs is associated with a protection class and protected accordingly. A file can be ac-
cessed as long as its protection class is accessible according to the deletion policy.

As shown in Figure 4, three directories are involved in operating a delfs filesystem. First, secure dir
contains the master key of delfs and must be backed by erasable memory. For increased security, it
should be accessible only to the process running delfs and protected against exposure to any other entity
during operation. In practice, when running delfs on a personal machine, this might be a USB-attached
storage token; if delfs guards data hosted by a remote virtualized storage system, like a NAS server or
cloud storage, it may be the local magnetic disk. Second, bulk storage is provided by raw dir, which
represents the non-erasable memory; only protected versions of files and auxiliary data reside here.
Finally, the user stores and accesses protected files through mount dir.

When a delfs directory is mounted for the first time, an initialization file has to be provided as well,
which specifies the initial deletion policy and its attributes. All files written to mount dir benefit from
secure deletion. Files can be securely deleted by running a dedicated delfsctl utility and specifying
attributes to delete. This securely deletes files according to the deletion policy such that an adversary
can no longer recover them later. The adversary might obtain the contents of secure dir afterwards and
see all data that has ever been written to raw dir, but can no longer infer anything about the data in the
deleted files.

5.2 Attributes and policy specification

In order not to burden the user with specifying a deletion policy graph that may contain hundreds or thou-
sands of possible attributes, delfs implements only restricted deletion policies compared to the model of
Section 2. We argue below that these are sufficient for practical purposes.

All attributes in delfs are partitioned into attribute types such that every attribute occurs in one type.
Types represent the categories relevant for secure deletion, such as owners, projects, organizations,
or expiration dates. For each attribute type, many different attribute values can be specified through
enumeration of strings or by giving a range for numeric attributes. A range is expanded into an enu-
meration. A sample delfs attribute specification in the initialization file might look like this (written in
libConfig++ syntax):

18

User

delfs
FUSE

/mount_dir

/raw_dir

/secure_dir

Figure 4. delfs architecture.

types = (
{

name = "user";
attributes = ["Alice", "Bob", "Charlie"];
implementation = "simple";

},
{

name = "project";
attributes = ["X", "Y", "Z"];
implementation = "simple";

},
{

name = "expiration";
attributes = ["2000", "2099"];
specification = "range",
implementation = "tree";

}
);

Here, attribute type expiration is specified as a range, and this simply maps to an enumeration of the
100 different attributes. The meaning of implementation is explained in the next section. The attribute
types in delfs model the familiar convention that objects have typed attributes and that every attribute
can have only one value (for example, attributes of a POSIX file in the stat structure or attributes in a
tuple of a relational database).

The deletion policy is given as a collection of policies, where each policy has a name and is repre-
sented by a logical expression over the attribute types, using AND and OR operators. By instantiating
every attribute type with all of its possible values, each policy maps to many different multiple protec-
tion classes. Hence, the exact protection class is defined by the policy and the attribute values associated
to a file.

19

ff

Bob

OR

AND

preferred

type=expiration
Alice Charlie X Y Z

20992000

2001

type=projecttype=user

AND

confidential

f

fff

Figure 5. An illustration of the two delfs policies preferred and confidential as described in the text.
The attribute type expiration uses the tree implementation, indicated by the triangle.

Every policy in the configuration corresponds to a protection class according to our model. Below
is a sample delfs deletion policy from the initialization file, as shown in Figure 5:

policies = (
{

name = "preferred";
expr = "((user AND project) OR expiration)";

},
{

name = "confidential";
expr = "(expiration AND project)";

}
);

Thus, when a file stored with policy preferred has attributes user = Bob, project = X , and
expiration = 2014, this corresponds to protection class p5 in the graph of Figure 1. Compared to
the deletion policy graph in Section 2, delfs policies support only AND and OR gates. We next discuss
how attribute values are associated to files.

5.3 Implementation

delfs implements the constructions of Section 3. The master key structure M is stored in secure dir,
whereas the auxiliary state S and all protected data reside in permanent memory under raw dir. Every
file stored in delfs is associated to one policy. If more flexibility is required, the policy graph should be
extended.

A delfs attribute type with simple implementation corresponds to a direct secure deletion scheme
with one protection class for every delfs-attribute value according to Section 3.3. For delfs attribute
types with tree implementation, which are typically those with a large number of attribute values, the
construction of Section 3.6 is invoked. These are further combined according to the delfs policies
through the policy-graph construction in Section 3.5. The resulting scheme implements the combined
model of Section 3.7.

20

When delfs is invoked for the first time on a particular mount point, the initial policy must be given.
The current policy, some defaults, and auxiliary state are then stored in a system-wide state file in the
root of raw dir. Information specific to a file, such as its attribute values, the applicable policy, and the
encrypted file-encryption key, are stored together with the file itself in its extended attributes.

Once the filesystem is mounted, every new file created inside mount dir is protected according to
the policy. The file takes its initial attribute values and policy from a special defaults file, located inside
the directory where the file will reside; note that FUSE makes it possible to obtain the pathname when
creating a file. If the defaults file is not present, parent directories in the path to mount dir are searched;
if no file defaults file is found, the system-wide initial policy stored in raw dir is applied. An example
delfs defaults file may contain:

attributes = ["project=X", "expiration=2013"];
policy = "confidential";

The user can perform regular filesystem operations on the files under delfs without affecting their
deletion policy, as long as these operations leave the extended attributes intact.

Deletion-specific operations are done through a delfsctl administrative tool. In particular, (1) it
performs secure deletion operations according to one or more given attributes and may update secure dir
during this operation; (2) it can reclaim space in raw dir for files that have been deleted according to the
policy and therefore have become inaccessible; and (3) it can manipulate the delfs policy and modify
the attributes of existing files. However, the policy graph can only be extended.

When delfs starts, it reads the master key from a file in secure dir and buffers it in the daemon during
operation. For every secure deletion operation, delfs first updates the auxiliary state and writes it back to
raw dir; then it updates the master key and overwrites the file in secure dir with the changed contents.

Note that the design so far has no provision for securely deleting a directory and all its subdirectories.
This can be achieved as follows. A predefined attribute named PARENT exists and can be used to
formulate policies. The attribute may occur directly in a deletion policy. It represents the presence, in
the filesystem, of the parent directory of a file, such that deleting that directory through a filesystem
command triggers a secure deletion operation for the attribute PARENT on the children of the directory.
Its implementation uses the tree construction of Section 3.6 with the topology of the filesystem tree and
metadata maintained in per-directory state files. All delfs operations that modify the directory tree may
thus implicitly modify the auxiliary state.

6 Conclusion

This paper introduces the novel cryptographic notion of a policy-based secure deletion scheme. It uses a
policy expressed as a directed acyclic graph and provides operations for protecting data under protection
classes, accessing data, and deleting data according to attributes. An implementation in the secret-key
model is given that generalizes earlier work of Tang et al. [24], which was restricted in the power of its
policies and was tied to particular properties of its underlying cryptographic mechanisms.

The approach has been validated through a prototype implementation of policy-based secure dele-
tion in the form of a virtual filesystem layer. It introduces a pragmatic approach to expressing typical
attributes from practical systems through through defining a suitable policy graph.

21

Acknowledgments

We thank Robert Haas, Alexis Hafner, and Anıl Kurmuş for interesting suggestions and discussions
about this topic.

This work has been supported in part by the European Union’s Seventh Framework Programme
(FP7/2007–2013) under grant agreement number ICT-257243 TCLOUDS.

References

[1] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dynamic and efficient key
management for access hierarchies. ACM Transactions on Information and System Security, 12(3),
2009.

[2] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. Incorporating temporal capabilities
in existing key management schemes. In Joachim Biskup and Javier Lopez, editors, Proc. 12th
European Symposium On Research In Computer Security (ESORICS), volume 4734 of Lecture
Notes in Computer Science, pages 515–530. Springer, 2007.

[3] Dan Boneh and Richard Lipton. A revocable backup system. In Proc. 6th USENIX Security
Symposium, 1996.

[4] Jason Crampton. Practical and efficient cryptographic enforcement of interval-based access control
policies. ACM Transactions on Information and System Security, 14(1), 2011.

[5] Jason Crampton, Keith M. Martin, and Peter R. Wild. On key assignment for hierarchical access
control. In Proc. 19th IEEE Computer Security Foundations Symposium (CSF), pages 98–111,
2006.

[6] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Efficient provably-secure hierarchical
key assignment schemes. Theoretical Computer Science, 412:5684–5699, 2011.

[7] Giovanni Di Crescenzo, Niels Ferguson, Russell Impagliazzo, and Markus Jakobsson. How to for-
get a secret. In Christoph Meinel and Sophie Tison, editors, Proc. 16th Symposium on Theoretical
Aspects of Computer Science (STACS), volume 1563 of Lecture Notes in Computer Science, pages
500–509. Springer, 1999.

[8] Electronic Frontier Foundation. Surveillance self-defense project. Available online at https:
//ssd.eff.org/, 2013.

[9] EncFS. EncFS encrypted filesystem. http://www.arg0.net/encfs.

[10] European Parliament and Council. Protection of individuals with regard to the processing of per-
sonal data and on the free movement of such data. Directive 95/46/EC, 1995.

[11] FUSE. Filesystem in userspace. http://fuse.sourceforge.net/.

[12] Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry M. Levy. Vanish: Increasing data
privacy with self-destructing data. In Proc. 18th USENIX Security Symposium, 2009.

[13] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM Conference on Computer and Communications
Security, pages 89–98, 2006.

22

[14] Nikolai Joukov, Harry Papaxenopoulos, and Erez Zadok. Secure deletion myths, issues, and solu-
tions. In Proc. 3rd International IEEE Security in Storage Workshop (SISW), 2005.

[15] Nikolai Joukov and Erez Zadok. Adding secure deletion to your favorite file system. In Proc. 3rd
International IEEE Security in Storage Workshop (SISW), 2005.

[16] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography: Principles and Proto-
cols. Chapman & Hall/CRC, 2007.

[17] Soumyadeb Mitra and Marianne Winslett. Secure deletion from inverted indexes on compliance
storage. In Proc. Workshop on Storage Security and Survivability (StorageSS), pages 67–72, 2006.

[18] Radia Perlman. File system design with assured delete. In Proc. Network and Distributed Systems
Security Symposium (NDSS), 2007.

[19] Zachary N. J. Peterson, Randal Burns, Joe Herring, Adam Stubblefield, and Aviel D. Rubin. Se-
cure deletion for a versioning file system. In Proc. 4th USENIX Conference on File and Storage
Technologies (FAST), pages 143–154, 2005.

[20] Joel Reardon, Srdjan Capkun, and David Basin. Data node encrypted file system: Efficient secure
deletion for flash memory. In Proc. 21st USENIX Security Symposium, 2012.

[21] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, Proc.
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer,
2005.

[22] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November
1979.

[23] Victor Shoup. Sequences of games: A tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

[24] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia Perlman. FADE: Secure overlay cloud
storage with file assured deletion. In Proc. Securecomm, 2010.

[25] Michael Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swanson. Reliably erasing data
from flash-based solid state drives. In Proc. 9th USENIX Conference on File and Storage Tech-
nologies (FAST), 2011.

23

