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Abstract—We describe the “IBM Performance Simulation 
Framework for Cloud”, which supports modular, accurate and 
scalable performance simulations of clouds. The framework 
treats all hardware and software components of a cloud as first-
class citizens. Due to its modular design, it supports a rapid con-
struction of new cloud models by combining already available 
simulation modules. These models may then be extended or 
refined by adding new modules as required. The modeling 
accuracy can be adapted to address cloud performance analysis 
on various detail levels as well as taking time and resource 
constraints into account. The framework supports simulations to 
be parallelized using message-passing technologies to ensure 
scalability. A careful separation between hardware 
(infrastructure) modules and modules representing software 
workflows as well as the introduction of a hierarchy of requests 
separates the simulation of high-level cloud level workflows from 
the simulation of hardware components. Finally, we demonstrate 
how the framework can be applied by simulating image 
deployment performance in OpenStack managed clouds.  

Keywords—cloud; performance simulation; performance 
modeling; OpenStack 

I.  INTRODUCTION 

Cloud computing is perceived as a game changing 
technology to provide respectively to consume data center 
resources [1]. Performance and scalability are key non-
functional attributes of cloud services required to enable further 
growth of cloud computing [2]. 

To ensure a balanced, workload optimized and scalable 
design of clouds, a performance engineering approach limited 
to measurements and tuning only is not sufficient. In general 
these activities happen too late in the development cycle to 
address design issues and are too little to address scalability or 
cover a comprehensive set of benchmark scenarios on various 
cloud architectures due to time and resource limitations. 

 

Performance modeling and simulation technologies can 
help to alleviate these issues. In fact, they enable a performance 
analysis of cloud designs and dynamic capacity planning early 
in the development cycle, at a much larger scale, with moderate 
costs and respecting the strict time constraints of an industrial 
development project. Although performance modeling [3] [4] 
[5] and simulation technologies [6] [7] are widely used and 
well established in various branches of information and 
telecommunication industries, their application to clouds 
provides some new challenges due to complexity, diversity, 
agility and scale [8]. 

The “IBM Performance Simulation Framework for Cloud” 
addresses these challenges by providing a framework for 
modular, accurate and scalable performance simulations of 
clouds. After a discussion of related work available here, we 
will provide an overview over its design and architecture. Then 
we will shortly describe our simulation technology and tooling. 
The main part of our work then focuses on some 
implementation details, especially on the basic modeling 
abstractions and on how complex cloud simulation scenarios 
can be build from more basic building blocks (“Lego bricks”). 
Finally we outline the application of the framework to model 
image deployment in various OpenStack [9] managed clouds. 

II. RELATED WORK 

There are a quite a few simulation frameworks for clouds 
available and a good survey can be found in [10]. Currently the 
most popular cloud simulation framework seems to be 
CloudSim [11] and a number of other simulation tools like 
CloudAnalyst [12], NetworkCloudSim [13] or EMUSIM [14] 
based on CloudSim. Unfortunately, CloudSim does not meet 
our requirements in terms of scalability, accuracy (especially of 
the hardware modeling) and modularity. Other cloud 
computing simulators like GroudSim [15] seem to have made 
some progress concerning execution performance versus 
CloudSim by replacing a process-based by an event-based 
simulation, but they still lack parallelizability and provide very  
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Fig. 1. Samples of modeled cloud components 

little infrastructure simulation details. The iCanCloud [16] tool 
also provides almost no hardware modeling and no modeling 
of queuing for software resources, which is essential for 
simulating software workflows in clouds, see section VI.G 
below. Other tools like DCSim [17], GreenCloud [18] or 
SPECI [19] furthermore seem to focus on some special, cloud 
features like resource allocation, energy consumption or 
resiliency. 

There also exists a few cloud related analytic modeling 
efforts [20] [21], but unfortunately it seems to be too difficult 
to apply these methods to model clouds with the accuracy and 
flexibility required. 

Our work provides a significant step forward to an 
industry-strength cloud performance simulation framework 
capable of addressing performance and scalability problems of 
real clouds on both hardware and software level with the 
required accuracy, flexibility, modularity and scalability.  

III.  REQUIREMENTS 

To address the challenge of supporting the design and 
deployment of performant and scalable compute clouds, the 
framework must fulfill various requirements, especially it 
should 

• treat all hardware and software components of a cloud 
as first-class citizens 

• model these components on an appropriate level of 
detail 

• support the rapid construction of new cloud models 

• allow for an easy extension or modification of existing 
models  

• enable the adaption of modeling accuracy to address 
cloud performance analysis on various detail levels as 
well as taking time and resource constraints into 
account 

• scale-out  to enable modeling of large clouds leveraging 
additional hardware resources if required 

• support end-to-end performance analysis of cloud 
workloads as well as an in-depth performance analysis 
of some selected cloud components only  
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Fig. 2. The fundamental building blocks (basic modules) of the simulation 
framework 

Obviously, some of these requirements are conflicting and 
the design needs to be sufficiently balanced to address all of 
them to a certain extend. 

IV.  DESIGN AND ARCHITECTURE 

Although clouds are in general highly complex systems, 
they frequently consist of a rather small set of fundamentally 
different building blocks, see Fig. 1. In fact we consider all 
hardware components being build out of a few fundamental 
parameterizable building blocks (“Lego bricks”, see Fig. 2), 
namely a 

• bandwidth provider  

• processor cycle provider (processor core) 

• token provider 

• software workflow 

The first two represent active resources and the token 
provider passive ones. Workload requests may queue for active 
or passive resources, e.g. for some processor cycles for a 
certain amount of time or for bandwidth to send data. 
Implementation details of these basic components are 
described. These fundamental building blocks (modules) can 
be quite easily combined to create more complex objects (like 
switches, disks or compute nodes) which again can be 
combined to create more complex objects like compute racks, 
disk arrays or even complete data centers respectively clouds. 
Objects on any level of complexity can be flexibly combined 
and communicate via messages. They can be replicated (“copy-
and-paste”)1 to enable e.g. the creation of various 
geographically distributed set of data centers, see Fig. 12.  

The request workflows are in general implemented by 
separate software workflow modules requesting the resources 
from the appropriate hardware modules. 

These workflows are implemented on various levels with 
the higher level workflows starting lower level workflows, e.g. 
a cloud level workflow implemented in Virtual Machines may 
start lower level independent workflows at compute nodes or 
network storage. This allows an implementation of workloads 
at cloud level to ignore workflow level details at lower levels,  

                                                           
1 Because this feature clearly goes beyond the capabilities of ordinary 

Lego bricks, one might think of the modules here as “Lego++ bricks”. 
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Fig. 3. The default FCFS arbitration for requests to access resources. 

e.g. at disk arrays. On the other hand, this also allows the 
modification of lower level workflows (e.g. on disk level) 
without impacting workflows at higher level (e.g. at disk array 
of cloud level). 

Any of the fundamental building blocks may be replaced by 
a more appropriate one if required, e.g. a more accurate or 
more coarse-grained one depending on the modeling 
objectives.  

Modularity and the ability to easily replicate modules at 
any complexity level are the key features of the framework 
supporting the flexible creation of simulation models for 
various clouds architectures with moderate effort and time but 
supporting high accuracy when required.   

Scalability is supported by parallelization using the MPI 
Message Passing Interface [22].   

V. IMPLEMENTATION DETAILS 

A. Simulation Technology 

The framework leverages standard discrete-event 
simulation technologies [6] [7] and uses the OMNEST 
Network Simulation Framework [23] [24] as a basis for its 
implementation2. 

B. Basic Simulation Modules 

The basic simulation modules provide the active (hardware) 
resources in form of processor cycles or bandwidth associated 
with disk or network IO as well as passive (software) 
resources, see Fig. 2.  

A request executing in the context of its workflow tries to 
allocate the resources required to proceed. If it is successful, it  

                                                           
2 The architecture of our framework is independent of the specific 

discrete-event simulation tooling, but we found the OMNEST Network 
Simulation Framework quite suitable here due to its support of modularity and 
parallelizability. 

Fig. 4. A NED code snippet for the connection of switches with compute 
nodes in the context of creating a cloud. 

decreases the available resources accordingly and proceeds to 
be delayed for a specified amount of time by scheduling an 
appropriate event in the future event list. If not, the request is 
inserted into a queue for the required resource and waits. When 
encountering the scheduled event, the request deallocates the 
requested resources again, increases the available resources 
accordingly and retrieves the requests waiting in the 
appropriate queue to be scheduled immediately so that they can 
proceed to try to allocate the required resources, see Fig. 3. 
This default FCFS arbitration scheme may be replaced by more 
advanced ones if required.  

C. Passive Resources 

Passive (software) resources are modeled using a simple 
combination of a pool of tokens and a blocking queue, see Fig. 
5. Owning passive resources may be the prerequisite for 
requests to access active resources and are essential in 
modeling so called “critical sections” in software workflows 
allowing only one concurrent request (thread) in flight. 

D. Workflow Modules 

The workflow of requests is implemented in separate 
modules enabling an easy reuse of the basic modules providing 
hardware resources. The workflow modules post requests 
against the appropriate hardware modules to queue for the 
resources needed. 

E. Simple Compound Modules 

Compute modules on various levels can be created by 
combining more basic modules using the OMNEST Network 
Description (NED) language, see Fig. 4. For definiteness we 
will describe some compound modules in details below. 
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Fig. 5. Modeling a critical region allowing only one request (thread) 
concurrently in flight using a pool of tokens (passive resources) in 
combination with a blocking queue. 



 

1) Network devices 
We introduce a general network device that maybe used to 

model general interconnects, switches routers or firewalls. For 
all of these devices, the basic architecture is the one shown in 
Fig. 6 and they differ e.g. in term of number of ports and 
various parameters like bandwidths, latencies, service times at 
controllers and the maximal number of requests in flight at the 
various components. During initialization, appropriate routing 
tables are created by the software workflow module. These 
modules are heavily used to glue cloud components together on 
various detail levels.  

2) Disk and disk arrays 
Using a generic network device (see above) to model an 

interconnect, it is quite straightforward to create a module for a 
disk, see Fig. 7. Different disk types like SATA , SAS or SSDs 
are then modeled by different parameterizations. Based on this 
general disk module, we create a generic module for disk 
arrays, see Fig. 8. 
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Fig. 6. A general network device consisting of bidirectional ports, a crossbar 
switch, a software workflow module implementing routing and processor 
cores. The red line indicates the flow of a request. Using various 
parameterizations, we can turn this module into e.g. an interconnection 
module, a switch, a router or a firewall. 
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Fig. 7. Disk module consisting of bandwdith providers for modeling the bus 
interface and disk media, a network device for modeling the intra disk 
interconnect and the disk controller modeled as a combination of a processor 
cycle provider (processor core) and a software module implementing the 
request workflow at the disk. 
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Fig. 8. Disk array module consisting of disks (see Fig. 7), network devices 
for modeling the bus interface, the disk array interconnect and the disk array 
controller modeled as a combination of a processor cycle provider (processor 
core) and a software module implementing the request workflow at the disk 
array.  

3) Compute nodes 
Compute node modules are built of basic processor cycle 

and bandwidth providers as well as of network devices, disks 
and disk arrays, see Fig. 9.  

F. Virtual Machines 

Virtual Machines (VMs) implement workflows on cloud 
level, e.g. the deployment of new images in clouds or various 
application workloads posted against VMs. Each VM 
implements several computational and IO phases, where each 
phase is separately parameterized e.g. by the number of 
required processor cores, IO bandwidth and maximal allowed 
concurrency. 

G. Requests 

Each request posted against the cloud is characterized by a 
set of attributes supporting e.g. the implementation of its  
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Fig. 9. A compute node module consisting of a software workflow modeling 
the hypervisor (also containing some passive resources in form of locks, not 
shown here), processors (consisting of various cores and a software module 
implementing the request workflow at the processor complex), a passive 
resource representing memory, various network devices modeling 
interconnects, bandwidth provider for modeling host bus adapters (HBAs), 
network interface controllers (NICs) and finally disk respectively disk array 
modules. 
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Fig. 10. Request hierarchy with the request of type “Request” at its root 

workflow, characterizing its resource consumption and a 
collection of statistical data.  

The requests form a hierarchy with a general request of 
type “Request” as the root of the tree, see Fig. 10. This 
supports the type dependent implementation of request 
workflows, e.g. some VMs may only accept requests of a 
certain types implementing a special workflow for each type. 
Hardware resources of course handle requests of any given 
type. 

H. Workload Generator 

In the workload generator module we have implemented all 
functionality related to generating, initializing and posting 
requests of various types against the cloud and collecting all 
request related statistics. Device related statistics like 
utilization and queue lengths are collected at the device 
simulation modules. Therefore, all requests need to return to 
the workload generator, even if they do not spend any 
simulation time on their way back. 

We currently support the creation of open and closed 
streams of various request types possibly with bulk (batch) 
arrivals. 

I. Complex Compound Modules 

Complex compound modules to model one cloud data 
center or world wide distributed data centers of a cloud can be 
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Fig. 11. Complex compound modules can be created by combining more basic 
modules, e.g. a server rack by combining compute nodes with various VMs, 
disk arrays and network components. Using these racks, a data center can then 
be created by a copy-and-paste approach. 

InternetInternetInternetInternet

 

Fig. 12. A cloud consisting of a number of world-wide distributed data centers 
can also be created by applying the copy-and-paste approach, this time applied 
on data center level. 

build by combining simpler compound modules and then 
copying the more complex ones, see Fig. 11 and Fig. 12 for 
more details here. 

An important implementation feature is here the usage of 
abstract interfaces for modules allowing an easy exchange of 
submodules, e.g. replacing 10 Gbps switches with 40 Gbps 
ones in a compound data center module. 
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Fig. 13. An OpenStack managed cloud with all OpenStack components on one 
compute node, i.e. this node is used as the managed-from as well as the 
managed-to system. 

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet

 

Fig. 14. An OpenStack managed cloud with all OpenStack management 
components on one compute node, but with separate nodes for the managed-to 
system 



VI.  APPLICATION EXAMPLE: OPENSTACK IMAGE 

DEPLOYMENT 

In this section we will demonstrate the application of our 
framework to simulating performance of OpenStack image 
deployment on various cloud architectures. We will show how 
simulations can be used to obtain information on the maximal 
workload an OpenStack managed cloud can support as well as 
to identify the limiting bottlenecks. In the following 
subsections, we will describe the steps associated with this 
simulation effort.    

A. Cloud Architectures 

For simplicity, we will consider here only the following 
two cloud architectures, see Fig. 13  and Fig. 14 with  all 

• OpenStack components being installed on only one 
compute node 

• managed-from components of OpenStack being 
installed on one compute node and having 100 separate 
compute nodes available as managed-to nodes. 

The infrastructure modeled consists of state-of-the-art main 
stream components like a 10 Gbps switches and NICs, disk 
arrays with 15K SAS disks and compute nodes with Intel* 
Xeon* processors3. 

B. Simulation Scenarios 

The workflow of the OpenStack image deployment 
scenario modeled is shown in Fig. 15, Fig. 16 and Fig. 17.  

C. Some implementation details 

Our current model includes some idealized modeling 
assumptions like an almost ideal balancing of deployment 
workload to all of the compute nodes that might not be fulfilled 
by the current OpenStack implementation. Furthermore, we 
currently ignore any thrashing and the resource consumption of 
already deployed VMs. 

nova-api keystonehorizoninternet nova database message queue nova-schedule
nova-compute/  

hypervisor

1

2

3

lock

nova-api keystonehorizoninternet nova database message queue nova-schedule
nova-compute/  

hypervisor

1

2

3

lock

 

Fig. 15. Workflow phases of the OpenStack image deployment, part 1. 

 

                                                           
3 A more detailed specification including the parameters used is beyond 

the scope of this publication. 
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Fig. 16. Workflow phases of the OpenStack image deployment, part 2. 

D. Parameterization and Calibration 

Parameterization is based on internal measurements on real 
clouds as well as on the analysis of [25] and on specifications 
of the various hardware components used. Because of the 
rareness and noisiness of available measurement data for 
OpenStack image deployment, we calibrate our simulation 
using relative measurement results, e.g. we use the increase of 
mean response times for requests in bulk arrivals versus the 
single request times for calibration, see Fig. 18.   

E. Execution Characteristics 

The event throughput measured for our simulation is 
approximately 106 events/sec e.g. on a contemporary laptop and 
memory consumption for the 100 compute node cloud is 
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Fig. 17. Some details associated with the various phases of the OpenStack 
image deployment workflow. 
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Fig. 18. A number of bulk arrival requests is used for calibration of the 
simulation. 



approximately 2.5 GB. The execution time then depends 
significantly on the accuracy required and therefore on the 
number of iterations for each measurement point and various 
parameters like data segmentation sizes for networking and 
storage access and the size of time slices for accessing CPU 
cycles. Using random generators at several places in the 
simulation (e.g. for the initial placement of a VM), we found 
that the number of iterations should be at least 50 x the number 
of concurrent active deployment requests, e.g. 3000 for 60 
concurrent active deployment requests. The total number of 
events processed here is approximately 1.8 x 107 resulting in an 
execution time of approximately 18 seconds4. 

F. Logging and Tracing 

Scalable logging and measurement facilities are essential 
for any cloud simulation project. In our framework we support 
various logging and measurement modes that may furthermore 
be enabled selectively for each module or a group of modules 
allowing us to limit the generation of measurement results to 
the most relevant items only if required.  

G. Results 

As examples for typical simulation results, we present 
image deployment throughputs and response times for various 
levels of request concurrency, see Fig. 19 and 0. For the one 
node cloud architecture, the bottleneck is caused by contention 
for locks at the hypervisor, see Fig. 21.  

As expected, the maximal image deployment throughput at 
the 100 managed-to node cloud architecture is far below the 
value of naively extrapolating throughput of the one node 
case5. This is caused by a bottleneck at the storage subsystem 
of the swift image repository, i.e. the bottleneck is moving 
from a software resource to a hardware component, see Fig. 22. 

Because of the limited data available for parameterization 
and calibration, these results have to be considered as 
preliminary and they significantly depend on infrastructure and 
software workflow details beyond the scope of this publication.   
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Fig. 19. Image deployment throughputs for various level of concurrency for 
both cloud architectures under consideration. 

 

                                                           
4 Plus several minutes required for the initialization of the simulation 

modules. 
5 Approximately 300 VM/h x 100 compute node  resulting in 30000 

VM/h. 
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Fig. 20. Image deployment response times for various level of concurrency for 
both cloud architectures under consideration. 
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Fig. 21. Queue length for image deployment for various level of concurrency 
for the single node cloud architecture. No significant queueing occurs here in 
the multiple  node architecture. 
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Fig. 22. Utilization of the external interface at the Swift image repository 
indicating an icreased contention for bandwidth here. In the single node case 
the utilization here is negligible. 

VII.  CONCLUSION 

We have designed and implemented a comprehensive, 
modular, highly scalable, accurate and flexible performance 
simulation framework and demonstrated how it can be 
successfully applied to simulate performance of image 
deployment requests of OpenStack managed clouds. 



VIII.  OUTLOOK 

Future work will focus on leveraging the framework to 
optimize the design of current and upcoming cloud 
architectures on hardware and software level. This will most 
likely result in additional requirements against the framework 
which may be added to the framework quite easily by 
exploiting its modular design.  
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