

RZ 3851 (# ZUR1307-033) 08/13/2013
Computer Science 8 pages

Research Report

The IBM Performance Simulation Framework for Cloud

Peter Altevogt

Smart Cloud Development, IBM Germany Research & Development GmbH
Boeblingen, Germany

Wolfgang Denzel

Systems Department, IBM Research – Zurich
Rüschlikon, Switzerland

Tibor Kiss

Gamax Kft
Budapest, Hungary

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

The IBM Performance Simulation Framework for
Cloud

Peter Altevogt
Smart Cloud Development

IBM Germany Research & Development GmbH
Boeblingen, Germany

Wolfgang Denzel
Systems Department

IBM Research GmbH, Zurich Research Laboratory
Rueschlikon, Switzerland

Tibor Kiss
Gamax Kft

Budapest, Hungary

Abstract—We describe the “IBM Performance Simulation
Framework for Cloud”, which supports modular, accurate and
scalable performance simulations of clouds. The framework
treats all hardware and software components of a cloud as first-
class citizens. Due to its modular design, it supports a rapid con-
struction of new cloud models by combining already available
simulation modules. These models may then be extended or
refined by adding new modules as required. The modeling
accuracy can be adapted to address cloud performance analysis
on various detail levels as well as taking time and resource
constraints into account. The framework supports simulations to
be parallelized using message-passing technologies to ensure
scalability. A careful separation between hardware
(infrastructure) modules and modules representing software
workflows as well as the introduction of a hierarchy of requests
separates the simulation of high-level cloud level workflows from
the simulation of hardware components. Finally, we demonstrate
how the framework can be applied by simulating image
deployment performance in OpenStack managed clouds.

Keywords—cloud; performance simulation; performance
modeling; OpenStack

I. INTRODUCTION

Cloud computing is perceived as a game changing
technology to provide respectively to consume data center
resources [1]. Performance and scalability are key non-
functional attributes of cloud services required to enable further
growth of cloud computing [2].

To ensure a balanced, workload optimized and scalable
design of clouds, a performance engineering approach limited
to measurements and tuning only is not sufficient. In general
these activities happen too late in the development cycle to
address design issues and are too little to address scalability or
cover a comprehensive set of benchmark scenarios on various
cloud architectures due to time and resource limitations.

Performance modeling and simulation technologies can
help to alleviate these issues. In fact, they enable a performance
analysis of cloud designs and dynamic capacity planning early
in the development cycle, at a much larger scale, with moderate
costs and respecting the strict time constraints of an industrial
development project. Although performance modeling [3] [4]
[5] and simulation technologies [6] [7] are widely used and
well established in various branches of information and
telecommunication industries, their application to clouds
provides some new challenges due to complexity, diversity,
agility and scale [8].

The “IBM Performance Simulation Framework for Cloud”
addresses these challenges by providing a framework for
modular, accurate and scalable performance simulations of
clouds. After a discussion of related work available here, we
will provide an overview over its design and architecture. Then
we will shortly describe our simulation technology and tooling.
The main part of our work then focuses on some
implementation details, especially on the basic modeling
abstractions and on how complex cloud simulation scenarios
can be build from more basic building blocks (“Lego bricks”).
Finally we outline the application of the framework to model
image deployment in various OpenStack [9] managed clouds.

II. RELATED WORK

There are a quite a few simulation frameworks for clouds
available and a good survey can be found in [10]. Currently the
most popular cloud simulation framework seems to be
CloudSim [11] and a number of other simulation tools like
CloudAnalyst [12], NetworkCloudSim [13] or EMUSIM [14]
based on CloudSim. Unfortunately, CloudSim does not meet
our requirements in terms of scalability, accuracy (especially of
the hardware modeling) and modularity. Other cloud
computing simulators like GroudSim [15] seem to have made
some progress concerning execution performance versus
CloudSim by replacing a process-based by an event-based
simulation, but they still lack parallelizability and provide very

Compute nodes

FirewallsVirtual Machines

(Workflows) Workloads

Router

Switches

Disks

Disk Arrays HBAs/NICs

CPUs

Memory

Compute nodes

FirewallsVirtual Machines

(Workflows) Workloads

Router

Switches

Disks

Disk Arrays HBAs/NICs

CPUs

Memory

Compute nodes

FirewallsVirtual Machines

(Workflows) Workloads

Router

Switches

Disks

Disk Arrays HBAs/NICs

CPUs

Memory

Fig. 1. Samples of modeled cloud components

little infrastructure simulation details. The iCanCloud [16] tool
also provides almost no hardware modeling and no modeling
of queuing for software resources, which is essential for
simulating software workflows in clouds, see section VI.G
below. Other tools like DCSim [17], GreenCloud [18] or
SPECI [19] furthermore seem to focus on some special, cloud
features like resource allocation, energy consumption or
resiliency.

There also exists a few cloud related analytic modeling
efforts [20] [21], but unfortunately it seems to be too difficult
to apply these methods to model clouds with the accuracy and
flexibility required.

Our work provides a significant step forward to an
industry-strength cloud performance simulation framework
capable of addressing performance and scalability problems of
real clouds on both hardware and software level with the
required accuracy, flexibility, modularity and scalability.

III. REQUIREMENTS

To address the challenge of supporting the design and
deployment of performant and scalable compute clouds, the
framework must fulfill various requirements, especially it
should

• treat all hardware and software components of a cloud
as first-class citizens

• model these components on an appropriate level of
detail

• support the rapid construction of new cloud models

• allow for an easy extension or modification of existing
models

• enable the adaption of modeling accuracy to address
cloud performance analysis on various detail levels as
well as taking time and resource constraints into
account

• scale-out to enable modeling of large clouds leveraging
additional hardware resources if required

• support end-to-end performance analysis of cloud
workloads as well as an in-depth performance analysis
of some selected cloud components only

processor cycle provider

bandwidth provider

token provider

(passive resource)

software workflow

processor cycle provider

bandwidth provider

token provider

(passive resource)

software workflow

processor cycle provider

bandwidth provider

token provider

(passive resource)

software workflow

Fig. 2. The fundamental building blocks (basic modules) of the simulation
framework

Obviously, some of these requirements are conflicting and
the design needs to be sufficiently balanced to address all of
them to a certain extend.

IV. DESIGN AND ARCHITECTURE

Although clouds are in general highly complex systems,
they frequently consist of a rather small set of fundamentally
different building blocks, see Fig. 1. In fact we consider all
hardware components being build out of a few fundamental
parameterizable building blocks (“Lego bricks”, see Fig. 2),
namely a

• bandwidth provider

• processor cycle provider (processor core)

• token provider

• software workflow

The first two represent active resources and the token
provider passive ones. Workload requests may queue for active
or passive resources, e.g. for some processor cycles for a
certain amount of time or for bandwidth to send data.
Implementation details of these basic components are
described. These fundamental building blocks (modules) can
be quite easily combined to create more complex objects (like
switches, disks or compute nodes) which again can be
combined to create more complex objects like compute racks,
disk arrays or even complete data centers respectively clouds.
Objects on any level of complexity can be flexibly combined
and communicate via messages. They can be replicated (“copy-
and-paste”)1 to enable e.g. the creation of various
geographically distributed set of data centers, see Fig. 12.

The request workflows are in general implemented by
separate software workflow modules requesting the resources
from the appropriate hardware modules.

These workflows are implemented on various levels with
the higher level workflows starting lower level workflows, e.g.
a cloud level workflow implemented in Virtual Machines may
start lower level independent workflows at compute nodes or
network storage. This allows an implementation of workloads
at cloud level to ignore workflow level details at lower levels,

1 Because this feature clearly goes beyond the capabilities of ordinary

Lego bricks, one might think of the modules here as “Lego++ bricks”.

required resources for the request
available ?

put request into queue

start computational or IO phase for a request

no

yes

delay the request by scheduling a future event
and continue from here when this event is encountered

allocate resources for the request

deallocate resources

queue.length() > 0 ?
queuedRequest = queue->pop()
immediately schedule queuedRequest at 1

no

yes

finish computational/IO phase for the request

decrease available resources accordingly

increase available resources accordingly

1

required resources for the request
available ?

put request into queue

start computational or IO phase for a request

no

yes

delay the request by scheduling a future event
and continue from here when this event is encountered

allocate resources for the request

deallocate resources

queue.length() > 0 ?
queuedRequest = queue->pop()
immediately schedule queuedRequest at 1

no

yes

finish computational/IO phase for the request

decrease available resources accordingly

increase available resources accordingly

1

Fig. 3. The default FCFS arbitration for requests to access resources.

e.g. at disk arrays. On the other hand, this also allows the
modification of lower level workflows (e.g. on disk level)
without impacting workflows at higher level (e.g. at disk array
of cloud level).

Any of the fundamental building blocks may be replaced by
a more appropriate one if required, e.g. a more accurate or
more coarse-grained one depending on the modeling
objectives.

Modularity and the ability to easily replicate modules at
any complexity level are the key features of the framework
supporting the flexible creation of simulation models for
various clouds architectures with moderate effort and time but
supporting high accuracy when required.

Scalability is supported by parallelization using the MPI
Message Passing Interface [22].

V. IMPLEMENTATION DETAILS

A. Simulation Technology

The framework leverages standard discrete-event
simulation technologies [6] [7] and uses the OMNEST
Network Simulation Framework [23] [24] as a basis for its
implementation2.

B. Basic Simulation Modules

The basic simulation modules provide the active (hardware)
resources in form of processor cycles or bandwidth associated
with disk or network IO as well as passive (software)
resources, see Fig. 2.

A request executing in the context of its workflow tries to
allocate the resources required to proceed. If it is successful, it

2 The architecture of our framework is independent of the specific

discrete-event simulation tooling, but we found the OMNEST Network
Simulation Framework quite suitable here due to its support of modularity and
parallelizability.

Fig. 4. A NED code snippet for the connection of switches with compute
nodes in the context of creating a cloud.

decreases the available resources accordingly and proceeds to
be delayed for a specified amount of time by scheduling an
appropriate event in the future event list. If not, the request is
inserted into a queue for the required resource and waits. When
encountering the scheduled event, the request deallocates the
requested resources again, increases the available resources
accordingly and retrieves the requests waiting in the
appropriate queue to be scheduled immediately so that they can
proceed to try to allocate the required resources, see Fig. 3.
This default FCFS arbitration scheme may be replaced by more
advanced ones if required.

C. Passive Resources

Passive (software) resources are modeled using a simple
combination of a pool of tokens and a blocking queue, see Fig.
5. Owning passive resources may be the prerequisite for
requests to access active resources and are essential in
modeling so called “critical sections” in software workflows
allowing only one concurrent request (thread) in flight.

D. Workflow Modules

The workflow of requests is implemented in separate
modules enabling an easy reuse of the basic modules providing
hardware resources. The workflow modules post requests
against the appropriate hardware modules to queue for the
resources needed.

E. Simple Compound Modules

Compute modules on various levels can be created by
combining more basic modules using the OMNEST Network
Description (NED) language, see Fig. 4. For definiteness we
will describe some compound modules in details below.

time

pool of
tokens

blocking
queue

aquire resource
release

resource
critical region

phase 1 phase 2 phase 3

time

pool of
tokens

blocking
queue

aquire resource
release

resource
critical region

phase 1 phase 2 phase 3

Fig. 5. Modeling a critical region allowing only one request (thread)
concurrently in flight using a pool of tokens (passive resources) in
combination with a blocking queue.

1) Network devices
We introduce a general network device that maybe used to

model general interconnects, switches routers or firewalls. For
all of these devices, the basic architecture is the one shown in
Fig. 6 and they differ e.g. in term of number of ports and
various parameters like bandwidths, latencies, service times at
controllers and the maximal number of requests in flight at the
various components. During initialization, appropriate routing
tables are created by the software workflow module. These
modules are heavily used to glue cloud components together on
various detail levels.

2) Disk and disk arrays
Using a generic network device (see above) to model an

interconnect, it is quite straightforward to create a module for a
disk, see Fig. 7. Different disk types like SATA , SAS or SSDs
are then modeled by different parameterizations. Based on this
general disk module, we create a generic module for disk
arrays, see Fig. 8.

bidirectional ports

crossbar switch
processor core(s)

routing

bidirectional ports

crossbar switch
processor core(s)

routing

Fig. 6. A general network device consisting of bidirectional ports, a crossbar
switch, a software workflow module implementing routing and processor
cores. The red line indicates the flow of a request. Using various
parameterizations, we can turn this module into e.g. an interconnection
module, a switch, a router or a firewall.

disk controller with workflow

and processor core(s)

disk media

bus interface

interconnect

disk controller with workflow

and processor core(s)

disk media

bus interface

interconnect

Fig. 7. Disk module consisting of bandwdith providers for modeling the bus
interface and disk media, a network device for modeling the intra disk
interconnect and the disk controller modeled as a combination of a processor
cycle provider (processor core) and a software module implementing the
request workflow at the disk.

disks

bus interface

disk array

interconnect

disk array controller with

workflow and processor core(s)

disks

bus interface

disk array

interconnect

disk array controller with

workflow and processor core(s)

Fig. 8. Disk array module consisting of disks (see Fig. 7), network devices
for modeling the bus interface, the disk array interconnect and the disk array
controller modeled as a combination of a processor cycle provider (processor
core) and a software module implementing the request workflow at the disk
array.

3) Compute nodes
Compute node modules are built of basic processor cycle

and bandwidth providers as well as of network devices, disks
and disk arrays, see Fig. 9.

F. Virtual Machines

Virtual Machines (VMs) implement workflows on cloud
level, e.g. the deployment of new images in clouds or various
application workloads posted against VMs. Each VM
implements several computational and IO phases, where each
phase is separately parameterized e.g. by the number of
required processor cores, IO bandwidth and maximal allowed
concurrency.

G. Requests

Each request posted against the cloud is characterized by a
set of attributes supporting e.g. the implementation of its

NICs

hypervisor

processors

memory

IO subsystem

internal disk

array

internal disk

internal HBAs

external HBAs

to virtual machines

NICs

hypervisor

processors

memory

IO subsystem

internal disk

array

internal disk

internal HBAs

external HBAs

to virtual machines

Fig. 9. A compute node module consisting of a software workflow modeling
the hypervisor (also containing some passive resources in form of locks, not
shown here), processors (consisting of various cores and a software module
implementing the request workflow at the processor complex), a passive
resource representing memory, various network devices modeling
interconnects, bandwidth provider for modeling host bus adapters (HBAs),
network interface controllers (NICs) and finally disk respectively disk array
modules.

Request

CloudManagement Application

DeployImage Logon AddUser ... OneTierRequest TwoTierRequest ...

Request

CloudManagement Application

DeployImage Logon AddUser ... OneTierRequest TwoTierRequest ...

Fig. 10. Request hierarchy with the request of type “Request” at its root

workflow, characterizing its resource consumption and a
collection of statistical data.

The requests form a hierarchy with a general request of
type “Request” as the root of the tree, see Fig. 10. This
supports the type dependent implementation of request
workflows, e.g. some VMs may only accept requests of a
certain types implementing a special workflow for each type.
Hardware resources of course handle requests of any given
type.

H. Workload Generator

In the workload generator module we have implemented all
functionality related to generating, initializing and posting
requests of various types against the cloud and collecting all
request related statistics. Device related statistics like
utilization and queue lengths are collected at the device
simulation modules. Therefore, all requests need to return to
the workload generator, even if they do not spend any
simulation time on their way back.

We currently support the creation of open and closed
streams of various request types possibly with bulk (batch)
arrivals.

I. Complex Compound Modules

Complex compound modules to model one cloud data
center or world wide distributed data centers of a cloud can be

InternetInternet

„ Lego++ approach“ :

create new objects by copying existing objects

„ Lego approach“ :

create compound objects by combining existing bricks

InternetInternet

„ Lego++ approach“ :

create new objects by copying existing objects

„ Lego approach“ :

create compound objects by combining existing bricks

Fig. 11. Complex compound modules can be created by combining more basic
modules, e.g. a server rack by combining compute nodes with various VMs,
disk arrays and network components. Using these racks, a data center can then
be created by a copy-and-paste approach.

InternetInternetInternetInternet

Fig. 12. A cloud consisting of a number of world-wide distributed data centers
can also be created by applying the copy-and-paste approach, this time applied
on data center level.

build by combining simpler compound modules and then
copying the more complex ones, see Fig. 11 and Fig. 12 for
more details here.

An important implementation feature is here the usage of
abstract interfaces for modules allowing an easy exchange of
submodules, e.g. replacing 10 Gbps switches with 40 Gbps
ones in a compound data center module.

InternetInternet

managed-from and managed-to components
(horizon, nova-api, nova-conpute, hypervisor...)

48 x 10 Gbps switch

InternetInternet

managed-from and managed-to components
(horizon, nova-api, nova-conpute, hypervisor...)

48 x 10 Gbps switch

Fig. 13. An OpenStack managed cloud with all OpenStack components on one
compute node, i.e. this node is used as the managed-from as well as the
managed-to system.

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet

Fig. 14. An OpenStack managed cloud with all OpenStack management
components on one compute node, but with separate nodes for the managed-to
system

VI. APPLICATION EXAMPLE: OPENSTACK IMAGE

DEPLOYMENT

In this section we will demonstrate the application of our
framework to simulating performance of OpenStack image
deployment on various cloud architectures. We will show how
simulations can be used to obtain information on the maximal
workload an OpenStack managed cloud can support as well as
to identify the limiting bottlenecks. In the following
subsections, we will describe the steps associated with this
simulation effort.

A. Cloud Architectures

For simplicity, we will consider here only the following
two cloud architectures, see Fig. 13 and Fig. 14 with all

• OpenStack components being installed on only one
compute node

• managed-from components of OpenStack being
installed on one compute node and having 100 separate
compute nodes available as managed-to nodes.

The infrastructure modeled consists of state-of-the-art main
stream components like a 10 Gbps switches and NICs, disk
arrays with 15K SAS disks and compute nodes with Intel*
Xeon* processors3.

B. Simulation Scenarios

The workflow of the OpenStack image deployment
scenario modeled is shown in Fig. 15, Fig. 16 and Fig. 17.

C. Some implementation details

Our current model includes some idealized modeling
assumptions like an almost ideal balancing of deployment
workload to all of the compute nodes that might not be fulfilled
by the current OpenStack implementation. Furthermore, we
currently ignore any thrashing and the resource consumption of
already deployed VMs.

nova-api keystonehorizoninternet nova database message queue nova-schedule
nova-compute/

hypervisor

1

2

3

lock

nova-api keystonehorizoninternet nova database message queue nova-schedule
nova-compute/

hypervisor

1

2

3

lock

Fig. 15. Workflow phases of the OpenStack image deployment, part 1.

3 A more detailed specification including the parameters used is beyond

the scope of this publication.

nova-network cinderglancenova database message queue nova-schedule
nova-compute/

hypervisor
swift

3

lock

unlock

unlock

nova-network cinderglancenova database message queue nova-schedule
nova-compute/

hypervisor
swift

3

lock

unlock

unlock

Fig. 16. Workflow phases of the OpenStack image deployment, part 2.

D. Parameterization and Calibration

Parameterization is based on internal measurements on real
clouds as well as on the analysis of [25] and on specifications
of the various hardware components used. Because of the
rareness and noisiness of available measurement data for
OpenStack image deployment, we calibrate our simulation
using relative measurement results, e.g. we use the increase of
mean response times for requests in bulk arrivals versus the
single request times for calibration, see Fig. 18.

E. Execution Characteristics

The event throughput measured for our simulation is
approximately 106 events/sec e.g. on a contemporary laptop and
memory consumption for the 100 compute node cloud is

✔

cin
d

e
r

✔

n
o

va
-n

e
tw

o
rk

✔

sw
ift

✔

gla
n

ce

✔

n
o

va
-co

m
p

u
te

h
y

p
e

rv
iso

r

✔

n
o

va
-sch

e
d

u
le

r

✔

✔

✔

m
e

ssa
g

e
 q

u
e

u
e

✔

✔

✔

n
o

v
a

 d
a

ta
b

a
se

✔

k
e

y
sto

n
e

✔

n
o

va
-a

p
i

h
o

rizo
n

- retrieve instance infos from database

- setup data for hypervisor

- process instance request

- get image URI from glance

- get image from swift

- reserve and allocate network

- update instance entry in database

- provision storage volume for instance

- forward request to compute / hypervisor

- create schedule for instance

- update entry in database

- forward request to compute / hypervisor

- authentication

- create instance entry in database

- send ack to dashboard

- forward request to scheduler

Workflow details

✔

Components involved

Phase

1

2

3
✔

cin
d

e
r

✔

n
o

va
-n

e
tw

o
rk

✔

sw
ift

✔

gla
n

ce

✔

n
o

va
-co

m
p

u
te

h
y

p
e

rv
iso

r

✔

n
o

va
-sch

e
d

u
le

r

✔

✔

✔

m
e

ssa
g

e
 q

u
e

u
e

✔

✔

✔

n
o

v
a

 d
a

ta
b

a
se

✔

k
e

y
sto

n
e

✔

n
o

va
-a

p
i

h
o

rizo
n

- retrieve instance infos from database

- setup data for hypervisor

- process instance request

- get image URI from glance

- get image from swift

- reserve and allocate network

- update instance entry in database

- provision storage volume for instance

- forward request to compute / hypervisor

- create schedule for instance

- update entry in database

- forward request to compute / hypervisor

- authentication

- create instance entry in database

- send ack to dashboard

- forward request to scheduler

Workflow details

✔

Components involved

Phase

1

2

3

Fig. 17. Some details associated with the various phases of the OpenStack
image deployment workflow.

Bulk Arrival of Deployment Requests

0

1

2

3

4

5

6

7

8

9

1 5 8 20

concurrent requests in bulk arrival

re
la

tiv
e

re
sp

on
se

 ti
m

es

Measurements
Simulation

Bulk Arrival of Deployment Requests

0

1

2

3

4

5

6

7

8

9

1 5 8 20

concurrent requests in bulk arrival

re
la

tiv
e

re
sp

on
se

 ti
m

es

Measurements
Simulation

Bulk Arrival of Deployment Requests

0

1

2

3

4

5

6

7

8

9

1 5 8 20

concurrent requests in bulk arrival

re
la

tiv
e

re
sp

on
se

 ti
m

es

Measurements
Simulation

Fig. 18. A number of bulk arrival requests is used for calibration of the
simulation.

approximately 2.5 GB. The execution time then depends
significantly on the accuracy required and therefore on the
number of iterations for each measurement point and various
parameters like data segmentation sizes for networking and
storage access and the size of time slices for accessing CPU
cycles. Using random generators at several places in the
simulation (e.g. for the initial placement of a VM), we found
that the number of iterations should be at least 50 x the number
of concurrent active deployment requests, e.g. 3000 for 60
concurrent active deployment requests. The total number of
events processed here is approximately 1.8 x 107 resulting in an
execution time of approximately 18 seconds4.

F. Logging and Tracing

Scalable logging and measurement facilities are essential
for any cloud simulation project. In our framework we support
various logging and measurement modes that may furthermore
be enabled selectively for each module or a group of modules
allowing us to limit the generation of measurement results to
the most relevant items only if required.

G. Results

As examples for typical simulation results, we present
image deployment throughputs and response times for various
levels of request concurrency, see Fig. 19 and 0. For the one
node cloud architecture, the bottleneck is caused by contention
for locks at the hypervisor, see Fig. 21.

As expected, the maximal image deployment throughput at
the 100 managed-to node cloud architecture is far below the
value of naively extrapolating throughput of the one node
case5. This is caused by a bottleneck at the storage subsystem
of the swift image repository, i.e. the bottleneck is moving
from a software resource to a hardware component, see Fig. 22.

Because of the limited data available for parameterization
and calibration, these results have to be considered as
preliminary and they significantly depend on infrastructure and
software workflow details beyond the scope of this publication.

Throughputs

0

500

1000

1500

2000

2500

1 4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment

requests

[V
M

/h
]

MultiComputeNodes
SingleNode

Fig. 19. Image deployment throughputs for various level of concurrency for
both cloud architectures under consideration.

4 Plus several minutes required for the initialization of the simulation

modules.
5 Approximately 300 VM/h x 100 compute node resulting in 30000

VM/h.

Mean Response Times

0

200

400

600

1 4 8 12 16 20 24 28 32 36 40

Number of concurrent deployment
requests

[s
ec

]

MultiComputeNodes
SingleNode

Fig. 20. Image deployment response times for various level of concurrency for
both cloud architectures under consideration.

Mean Queue Lengths for Locks at
Hypervisor

0

5

10

15

20

1 4 8 12 16 20 24 28 32 36 40

Number of concurrent deployment requests

SingleNode

Fig. 21. Queue length for image deployment for various level of concurrency
for the single node cloud architecture. No significant queueing occurs here in
the multiple node architecture.

Mean Disk Array External Interface
Utilizations

0

5

10

15

20

1 4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment

requests

U
til

iz
at

io
n

[%
]

MultiComputeNodes

Fig. 22. Utilization of the external interface at the Swift image repository
indicating an icreased contention for bandwidth here. In the single node case
the utilization here is negligible.

VII. CONCLUSION

We have designed and implemented a comprehensive,
modular, highly scalable, accurate and flexible performance
simulation framework and demonstrated how it can be
successfully applied to simulate performance of image
deployment requests of OpenStack managed clouds.

VIII. OUTLOOK

Future work will focus on leveraging the framework to
optimize the design of current and upcoming cloud
architectures on hardware and software level. This will most
likely result in additional requirements against the framework
which may be added to the framework quite easily by
exploiting its modular design.

ACKNOWLEDGMENT

The authors would like to thank the IBM management at
IBM Germany Research & Development GmbH and IBM
Research GmbH, Zurich Research Laboratory for supporting
this work over the last years. We especially thank the IBM
cloud performance verification team for sharing with us their
high-quality cloud performance measurement results.

* Trademark, service mark, or registered trademark of Intel

Corporation in the United States, other countries, or both.

Other brands and product names mentioned in this manual
may be trademarks or service marks of their respective
companies organizations and are hereby acknowledged.

REFERENCES

[1] Cloud Computing, http://en.wikipedia.org/wiki/Cloud_computing.

[2] Above the Clouds: A Berkeley View of Cloud Computing,
http://www.eecs.berkeley.edu/Pubs/TechRpts/ 2009/EECS-2009-28.pdf .

[3] G. Bloch, S. Greiner, H. de Meer, K.S. Trivedi. Queueing Networks and
Markov Chains, Second Edition. Wiley-Interscience, 2006.

[4] L. Kleinrock. Queueing Systems, Volume 1: Theory. John Wiley, 1975.

[5] L. Kleinrock. Queueing Systems, Volume 2: Computer Applications.
John Wiley, 1976.

[6] A.M. Law, W.D. Kelton. Simulation Modeling and Analysis, Third
Edition. McGraw-Hill, 2000.

[7] J. Banks, J.S. Carson II, B.L. Nelson, D.M. Nicol. Discrete-Event
System Simulation, Fourth Edition. Prentice Hall, 2005.

[8] P. Altevogt, W. Denzel, T. Kiss. Proc. of the 2011 Winter Simulation
Conference (WSC'11). S. Jain, R.R. Creasey, J. Himmelspach, K.P.
White, and M. Fu, eds.

[9] OpenStack, http://www.openstack.org.

[10] Wei Z., Yong P., Feng X., Zhonghua D., “Modeling and Simulation of
Cloud Computing: A Review”, IEEE Asia Pacific Cloud Computing
Congress (APCloudCC), 2012, pp.20-24.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, "CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms." Software: Practice and Experience, Vol.41, No.1, pp.23-50,
2011.

[12] Wickremasinghe, B., Calheiros, R.N. , Buyya, R., “CloudAnalyst: A
CloudSim-Based Visual Modeller for Analysing Cloud Computing
Environments and Applications”, IEEE 24th International Conference
on Advanced Information Networking and Application, 2010, pp. 446 –
452.

[13] S. K. Garg and R. Buyya, “NetworkCloudSim: modeling parallel
applications in cloud simulations,” 4th IEEE International Conference
on Utility and Cloud Computing, pp.105-113, 2011.

[14] R. N. Calheiros, M .A. S. Netto, C. A. F. De Rose, and R. Buyya,
“EMUSIM: an integrated emulation and simulation environment for
modeling, evaluation, and validation of performance of cloud computing
applications,” Software-Practice and Experience, 00: 1-18, 2012.

[15] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“GroudSim: an event-based simulation framework for computational
grids and clouds,” CoreGRID/ERCIM Workshop on Grids and Clouds.
Springer Computer Science Editorial, Ischia, 2010.

[16] A. Nunez, J. L. Vazquez-Poletti, A. C. Caminero, G. G. Castane et al.,
“iCanCloud: a flexible and scalable cloud infrastructure simulator,”
Journal of Grid Computing, Vol.10, No.1, pp.185-209, 2012.

[17] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “DCSim: a data centre
simulation tool for evaluating dynamic virtualized resource
management,” The 6th International DMTF Academic Alliance
Workshop on Systems and Virtualization Management: Standard and the
Cloud, 2012.

[18] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: a packet-level
simulator of energy-aware cloud computing cata centers,” Journal of
Supercomputing, special issue on Green Networks, 2011.

[19] I. Sriram, “SPECI, a Simulation Tool Exploring Cloud-Scale Data
Centers,” CloudCom’09, LNCS 5931, pp.381-392, 2009.

[20] W. Zhang, X. Huang, N. Chen, W. Wang, H. Zhong, “PaaS-Oriented
Performance Modeling for Cloud Computing”, IEEE 36th Annua
Computer Software and Applications Conference (COMPSAC), 2012.

[21] H. Khazaei, J. Misic, V. B. Misic, “A Fine-Grained Performance Model
of Cloud Computing Centers”, IEEE Transactions on Parallel and
Distributed Systems , Vol. X, No. Y, 201Z.

[22] Ewing L. Lusk and Anthony Skjellum, Using MPI - 2nd Edition:
Portable Parallel Programming with the Message Passing Interface
(Scientific and Engineering Computation). The MIT Press, Cambridge
Massachusetts, 1999.

[23] OMNEST – High-Performance Simulation for All Kinds of Networks.
Accessed May 7, 2011. http://www.omnest.com/.

[24] A. Varga, R. Hornig, An overview of the OMNeT++ Simulation
Environment. In Proceedings of First International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems (SIMUTools’08). Marseille, France, March 2008.

[25] P. Feiner, Scaling the Boot Barrier: Identifying & Eliminating
Contention in Openstack, http://www.openstack.org/summit/portland-
2013/session-videos/presentation/scaling-the-boot-barrier-identifying-
and-eliminating-contention-in-openstack.

