RZ 3851 (# ZUR1307-033) 08/13/2013
Computer Science 8 pages

Research Report

The IBM Performance Simulation Framework for Cloud

Peter Altevogt

Smart Cloud Development, IBM Germany Research & Development GmbH
Boeblingen, Germany

Wolfgang Denzel

Systems Department, IBM Research — Zurich

Rischlikon, Switzerland

Tibor Kiss

Gamax Kft
Budapest, Hungary

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-

ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

esearch

R
Africa - Almaden « Austin « Australia « Brazil - China « Haifa « India « Ireland « Tokyo « Watson « Zurich

The IBM Performance Simulation Framework for
Cloud

Peter Altevogt
Smart Cloud Development
IBM Germany Research & Development GmbH
Boeblingen, Germany

Wolfgang Denzel
Systems Department
IBM Research GmbH, Zurich Research Laboratory
Rueschlikon, Switzerland

Tibor Kiss
Gamax Kift
Budapest, Hungary

Abstract—We describe the “IBM Performance Simulation
Framework for Cloud”, which supports modular, accurate and
scalable performance simulations of clouds. The fraework
treats all hardware and software components of a aud as first-
class citizens. Due to its modular design, it supps a rapid con-
struction of new cloud models by combining alreadyavailable
simulation modules. These models may then be extesul or
refined by adding new modules as required. The model
accuracy can be adapted to address cloud performaacanalysis
on various detail levels as well as taking time andesource
constraints into account. The framework supports siralations to
be parallelized using message-passing technologiés ensure
scalability. A careful separation between hardware
(infrastructure) modules and modules representing aftware
workflows as well as the introduction of a hierarcly of requests
separates the simulation of high-level cloud levatorkflows from
the simulation of hardware components. Finally, we&lemonstrate

how the framework can be applied by simulating imag
deployment performance in OpenStack managed clouds.
Keywords—cloud; performance simulation; performance
modeling; OpenStack
l. INTRODUCTION

Performance modeling and simulation technologies ca
help to alleviate these issues. In fact, they enalgerformance
analysis of cloud designs and dynamic capacityrpfenearly
in the development cycle, at a much larger scath, moderate
costs and respecting the strict time constraintanoindustrial
development project. Although performance mode[Big[4]
[5] and simulation technologies [6] [7] are widaklged and
well established in various branches of informatiand
telecommunication industries, their application @bouds
provides some new challenges due to complexityerdity,
agility and scale [8].

The “IBM Performance Simulation Framework for Cléud
addresses these challenges by providing a framevark
modular, accurate and scalable performance sironktof
clouds. After a discussion of related work ava#ahkere, we
will provide an overview over its design and arebitire. Then
we will shortly describe our simulation technolagyyd tooling.
The main part of our work then focuses on some
implementation details, especially on the basic @lind
abstractions and on how complex cloud simulatioenados
can be build from more basic building blocks (“Ldgpicks”).
Finally we outline the application of the framewdtk model
image deployment in various OpenStack [9] manad¢mas.

Cloud computing is perceived as a game changing

technology to provide respectively to consume dztater
resources [1]. Performance and scalability are ken-
functional attributes of cloud services require@mable further
growth of cloud computing [2].

Il. RELATED WORK

There are a quite a few simulation frameworks fouds
available and a good survey can be found in [1Qfré&htly the
most popular cloud simulation framework seems to be

To ensure a balanced, workload optimized and sealabCloudSim [11] and a number of other simulation sotke

design of clouds, a performance engineering apprtiagted
to measurements and tuning only is not sufficitmtgeneral
these activities happen too late in the developnognte to
address design issues and are too little to addozdability or
cover a comprehensive set of benchmark scenariogugous
cloud architectures due to time and resource ltiita.

CloudAnalyst [12], NetworkCloudSim [13] or EMUSIM 4]
based on CloudSim. Unfortunately, CloudSim does megt
our requirements in terms of scalability, accur@aspecially of
the hardware modeling) and modularity. Other cloud
computing simulators like GroudSim [15] seem to éhavade
some progress concerning execution performanceusers
CloudSim by replacing a process-based by an ewesdeb
simulation, but they still lack parallelizabilityd provide very

Virtual Machines Firewalls

(Workflows) Workloads

processor cycle provider token provider

(passive resource)
Compute nodes a @/
® . Router
*‘4
CPUs
\\ 'ti
/ T switeh
Memory e . witches
Disks

bandwidth provider software workflow

Disk Arrays HBAs/NICs

Fig. 2. The fundamental building blocks (basic modulesYhef simulation

Fig. 1. Samples of modeled cloud components framework

little infrastructure simulation details. The iCda@d [16] tool
also provides almost no hardware modeling and ndetimg
of queuing for software resources, which is esaerfor
simulating software workflows in clouds, see settidl.G
below. Other tools like DCSim [17], GreenCloud [18f
SPECI [19] furthermore seem to focus on some shextud
features like resource allocation, energy conswmptor Although clouds are in general highly complex syste
resiliency. they frequently consist of a rather small set afdiamentally
different building blocks, see Fig. 1. In fact wensider all
hardware components being build out of a few furelsad
parameterizable building blocks (“Lego bricks”, dewg. 2),
namely a

Obviously, some of these requirements are conftictind
the design needs to be sufficiently balanced taesddall of
them to a certain extend.

IV. DESIGN ANDARCHITECTURE

There also exists a few cloud related analytic ringe
efforts [20] [21], but unfortunately it seems to fo® difficult
to apply these methods to model clouds with theiraoy and
flexibility required.

Our work provides a significant step forward to an » bandwidth provider

industry-strength cloud performance simulation feamark e processor cycle provider (processor core)
capable of addressing performance and scalabildilems of .

real clouds on both hardware and software leveh wite * token provider

required accuracy, flexibility, modularity and saaility. « software workflow

The first two represent active resources and thento
lll. REQUIREMENTS provider passive ones. Workload requests may gfogactive
To address the challenge of supporting the desigth a or passive resources, e.g. for some processor scyole a
deployment of performant and scalable compute dptite certain amount of time or for bandwidth to send adat
framework must fulfill various requirements, espdlgi it Implementation details of these basic components ar
should described. These fundamental building blocks (meg)utan
be quite easily combined to create more complegaibj(like
switches, disks or compute nodes) which again cen b
combined to create more complex objects like compatks,
« model these components on an appropriate level dfisk arrays or even complete data centers resgéctilouds.
detail Objects on any level of complexity can be flexilolymbined

: i and communlcate via messages. They can be reﬂl(:‘ampy—

. allow for an easy extension or modification of €xis geographlcally distributed set of data centersfFsgel?2.
models The request workflows are in general implemented by

parate software workflow modules requesting &s®urces
om the appropriate hardware modules.

» treat all hardware and software components of adclo
as first-class citizens

* enable the adaption of modeling accuracy to addres?;e
cloud performance analysis on various detail leasls
well as taking time and resource constraints into These workflows are implemented on various levelh w
account the higher level workflows starting lower level wélows, e.g.

a cloud level workflow implemented in Virtual Madieis may

start lower level independent workflows at compneeles or

network storage. This allows an implementation ofkloads

+ support end-to-end performance analysis of cloudt cloud level to ignore workflow level detailslaver levels,
workloads as well as an in-depth performance aizalys
of some selected cloud components only

» scale-out to enable modeling of large clouds legieg
additional hardware resources if required

! Because this feature clearly goes beyond the dijgsbof ordinary
Lego bricks, one might think of the modules heréLago++ bricks”.

start computational or 10 phase for a request

fequired resources for the reques!
available ?

put request into queue

| allocate resources for the requestl

| decrease available resources accordingly |

delay the request by scheduling a future event
land continue from here when this event is encountered|

deallocate resources

| increase available resources accordingly |
!

queuedRequest = queue->pop()

?
queuelength() > 0?2 immediately schedule queuedRequest at @ |

| finish computational/lO phase for the request |

Fig. 3. The default FCFS arbitration for requests to acoessurces.

e.g. at disk arrays. On the other hand, this alkws the
modification of lower level workflows (e.g. on didkvel)
without impacting workflows at higher level (e.d.disk array
of cloud level).

Any of the fundamental building blocks may be repthby
a more appropriate one if required, e.g. a moreirate or
more coarse-grained one depending on
objectives.

Modularity and the ability to easily replicate mdehu at
any complexity level are the key features of themiework
supporting the flexible creation of simulation mtsddor
various clouds architectures with moderate effadd time but
supporting high accuracy when required.

Scalability is supported by parallelization usirge tMPI
Message Passing Interface [22].

V. IMPLEMENTATION DETAILS

A. Smulation Technology

The framework leverages standard

simulation technologies [6] [7] and uses the OMNES

Network Simulation Framework [23] [24] as a basis fts
implementatioh

B. Basic Smulation Modules

The basic simulation modules provide the activedivare)
resources in form of processor cycles or bandwédtociated
with disk or network IO as well as passive (sof&yar
resources, see Fig. 2.

A request executing in the context of its workfltnes to
allocate the resources required to proceed. s$fsuccessful, it

2 The architecture of our framework is independéthe specific
discrete-event simulation tooling, but we found @ &dNEST Network
Simulation Framework quite suitable here due tsugport of modularity and
parallelizability.

the modelin

with conpute nodes:

for 1=0..nun0fSwitchesLevel2-o-Conputetiodes-1, for 3=0..nunCfConnsPerSitchlevel2ForComputetodes-1 {
suitchesdfx10GhpsLevel2[1]. suitchletuorkGatesTypad+
<=+ niovaCorputeNodes (1 nun0f ConnsPe~SuizchLevel2=orConputlindes)+] . networkGates 2]
}
for 10, .nun0fConnsPerSwitchTaillevel 2ForComputeNodes-1, if nunOfConnsPerSwitchTaillevel2orCorputellodes != 8 {
suitchesdfx10GbpsLeve 2 [nun0fSuitches evel2ForComputellodes-1] . suitchNetuorkGatesTyped[1+nur0f ConnsPerSuitch evel2ForComputellodes+]
[hovaCmputeNodes[numOfSwi:(hesLevelZForCmputeNodes’numOfConnsPerSwitchLevelZFurCampute\odes+i].netwur(Gates[Z] 5

}

Fig. 4. A NED code snippet for the connection of switchathveompute
nodes in the context of creating a cloud.

decreases the available resources accordingly swkeds to
be delayed for a specified amount of time by scliegan
appropriate event in the future event list. If nibg request is
inserted into a queue for the required resourcevaits. When
encountering the scheduled event, the requestodasdis the
requested resources again, increases the availabteirces
accordingly and retrieves the requests waiting he t
appropriate queue to be scheduled immediatelyatatiey can
proceed to try to allocate the required resourses, Fig. 3.
This default FCFS arbitration scheme may be repléagemore
advanced ones if required.

C. Passive Resources

Passive (software) resources are modeled usingnplesi
combination of a pool of tokens and a blocking qaee Fig.
5. Owning passive resources may be the prerequisite
requests to access active resources and are absanti
ﬁ’]odeling so called “critical sections” in softwanerkflows
allowing only one concurrent request (thread) ightf.

D. Workflow Modules

The workflow of requests is implemented in separate
modules enabling an easy reuse of the basic mogrude&ling
hardware resources. The workflow modules post mque
against the appropriate hardware modules to queudhg
resources needed.

E. Smple Compound Modules

Compute modules on various levels can be created by
combining more basic modules using the OMNEST N#two

discrete-everlp€scription (NED) language, see Fig. 4. For dedimitss we
TWill describe some compound modules in detailswelo

pool of
tokens

- -
4 N
N

\
\
\
)

_}

>

p

release

critical region

’

blocking ’
queue

aquire resource resource
phase 1 phase 2 phase 3

time

>

Fig. 5. Modeling a critical region allowing only one reqtue@hread)
concurrently in flight using a pool of tokens (gdass resources) in
combination with a blocking queue.

1) Network devices

We introduce a general network device that maylee ts
model general interconnects, switches routersrewdlls. For
all of these devices, the basic architecture isotie shown in
Fig. 6 and they differ e.g. in term of number ofrtpoand
various parameters like bandwidths, latencies,iceimes at
controllers and the maximal number of requestdightf at the
various components. During initialization, appreypei routing
tables are created by the software workflow modiileese
modules are heavily used to glue cloud componenqgtier on
various detail levels.

2) Diskand disk arrays

Using a generic network device (see above) to madel
interconnect, it is quite straightforward to creatmodule for a
disk, see Fig. 7. Different disk types like SATSAS or SSDs
are then modeled by different parameterizationseBan this
general disk module, we create a generic moduledfsk
arrays, see Fig. 8.

bidirectional ports

routing

crossbar switch
processor core(s)

Fig. 6. A general network device consisting of bidirectibparts, a crossbar
switch, a software workflow module implementing ting and processor
cores. The red line indicates the flow of a requedsing various
parameterizations, we can turn this module into ey interconnection
module, a switch, a router or a firewall.

bus interface

disk controller with workflow
and processor core(s)

interconnect —

disk media

Fig. 7. Disk module consisting of bandwdith providers fondeling the bus

interface and disk media, a network device for nindethe intra disk

interconnect and the disk controller modeled asrabination of a processor
cycle provider (processor core) and a software neodimplementing the

request workflow at the disk.

bus interface

J\DF

n

disk array controller with
workflow and processor core(s)

VN

disk array
interconnect

disks

Fig. 8. Disk array module consisting of disks (see Fig.n8twork devices
for modeling the bus interface, the disk arrayrittenect and the disk array
controller modeled as a combination of a procesgole provider (processor
core) and a software module implementing the reqweskflow at the disk
array.

3) Compute nodes

Compute node modules are built of basic procesgdec
and bandwidth providers as well as of network desjidisks
and disk arrays, see Fig. 9.

F. Virtual Machines

Virtual Machines (VMs) implement workflows on cloud
level, e.g. the deployment of new images in cloodsarious
application workloads posted against VMs. Each VM
implements several computational and 10 phasesrembach
phase is separately parameterized e.g. by the numbe
required processor cores, 10 bandwidth and maxatialved
concurrency.

G. Requests

Each request posted against the cloud is charzeteby a
set of attributes supporting e.g. the implementadibits

__——— tovirtual machines

processors

hypervisor

internal disk
array

internal disk memory

10 subsystem
internal HBAs

external HBAs

Fig. 9. A compute node module consisting of a software fiorkmodeling
the hypervisor (also containing some passive ressuin form of locks, not
shown here), processors (consisting of variousscarel a software module
implementing the request workflow at the processomplex), a passive
resource representing memory, various network @svicmodeling
interconnects, bandwidth provider for modeling hbas adapters (HBAs),
network interface controllers (NICs) and finallyskirespectively disk array
modules.

Request

CloudManagement Application

Deploylmage Logon AddUser ... OneTierRequest TwoTierRequest ...

Fig. 10.Request hierarchy with the request of type “Reduasts root

workflow, characterizing its resource consumptiond aa
collection of statistical data.

The requests form a hierarchy with a general rdqoes
type “Request” as the root of the tree, see Fig. Tflis
supports the type dependent implementation of que
workflows, e.g. some VMs may only accept requedtsao
certain types implementing a special workflow faclke type.
Hardware resources of course handle requests ofgawen

type.

H. Workload Generator

In the workload generator module we have implenteate
functionality related to generating, initializinghdh posting
requests of various types against the cloud anigativlg all
request related statistics. Device related stedistiike
utilization and queue lengths are collected at tievice
simulation modules. Therefore, all requests needcetarn to
the workload generator, even if they do not spemny a
simulation time on their way back.

We currently support the creation of open and dose
streams of various request types possibly with KHblktch)
arrivals.

[. Complex Compound Modules

Complex compound modules to model one cloud data

center or world wide distributed data centers olbad can be

» Lego approach”:
create compound objects by combining existing bricks

» Lego++ approach” :
create new objects by copying existing objects

Fig. 11.Complex compound modules can be created by contbimire basic
modules, e.g. a server rack by combining computiesiavith various VMs,
disk arrays and network components. Using thedesracdata center can then
be created by a copy-and-paste approach.

Fig. 12.A cloud consisting of a number of world-wide distried data centers
can also be created by applying the copy-and-pgogteach, this time applied
on data center level.

build by combining simpler compound modules andnthe
copying the more complex ones, see Fig. 11 and Figfor
more details here.

An important implementation feature is here thegaesaf
abstract interfaces for modules allowing an eaghamge of
submodules, e.g. replacing 10 Gbps switches withGHbps
ones in a compound data center module.

managed-from and managed-to components
(horizon, nova-api, nova-conpute, hypervisor...)

48 x 10 Gbps switch

Fig. 13.An OpenStack managed cloud with all OpenStack corapiz on one
compute node, i.e. this node is used as the marfemmdas well as the
managed-to system.

managed-from node
(horizon, nova-api,...)

100 managed-to nodes
(nova-compute / hypervisor)

hierarchy of 48 x 10 Gbps switches

Fig. 14.An OpenStack managed cloud with all OpenStack memagt
components on one compute node, but with sepacatesrfor the managed-to
system

VI. APPLICATION EXAMPLE: OPENSTACK IMAGE

DEPLOYMENT

In this section we will demonstrate the applicatafnour
framework to simulating performance of OpenStaclagm
deployment on various cloud architectures. We stitbw how
simulations can be used to obtain information anrtraximal
workload an OpenStack managed cloud can suppevekhas
to identify the limiting bottlenecks. In the folling
subsections, we will describe the steps associaitd this
simulation effort.

A. Cloud Architectures

For simplicity, we will consider here only the fling
two cloud architectures, see Fig. 13 and Fig. it# all

OpenStack components being installed on only on
compute node

managed-from components of

nova-compute/
hypervisor

swift

nova database | |message queue| [nova-schedule glance || || nova-network cinder |

pr—

Fig. 16.Workflow phases of the OpenStack image deploynpart,2.

D. Parameterization and Calibration

Parameterization is based on internal measurermentsal
clouds as well as on the analysis of [25] and atiigations

gf the various hardware components used. Becaustheof

rareness and noisiness of available measuremeant fdat
OpenStack image deployment, we calibrate our siioula

OpenStack beingising relative measurement results, e.g. we usinthease of

installed on one compute node and having 100 separamean response times for requests in bulk arrivatsus the

compute nodes available as managed-to nodes.

The infrastructure modeled consists of state-ofetttenain
stream components like a 10 Gbps switches and NGk,
arrays with 15K SAS disks and compute nodes witielin
Xeon* processors

B. Smulation Scenarios

The workflow of the OpenStack image deployment
scenario modeled is shown in Fig. 15, Fig. 16 agd ¥ .

C. Some implementation details

Our current model includes some idealized modeling
assumptions like an almost ideal balancing of depknt
workload to all of the compute nodes that mightlefulfilled
by the current OpenStack implementation. Furtheemave
currently ignore any thrashing and the resourcewaption of
already deployed VMs.

nova database | [message queue] | nova-schedule

[| |[roron | [Cvemne

nova-compute/
hypervisor

Fig. 15.Workflow phases of the OpenStack image deploynpart, 1.

% A more detailed specification including the par&neused is beyond
the scope of this publication.

single request times for calibration, see Fig. 18.

E. Execution Characteristics

The event throughput measured for our simulation is
approximately 10events/sec e.g. on a contemporary laptop and

memory consumption for the 100 compute node cleud i

Components involved
> 3 3
l3lalililiel.l, |} .
Phase |3 |2 |Z2 |2 |8 |fR2[= (2|2 |2 Workflow details
S5 |8 (8 (% |338/3|2(3 |2
S8 |E|2|B2F3(B 7|22
=|® |8 |& |c[2¢c 3
8|5 |2 £ =
- authentication
- create instance entry in database
@ VvV vV - send ack to dashboard
- forward request to scheduler
- create schedule for instance
@ vivi v - update entry in database
- forward request to compute / hypervisor
- retrieve instance infos from database
- setup data for hypervisor
- process instance request
@ - get image URI from glance
viv V|V | V| V| V| -getimage from swift
- reserve and allocate network
- update instance entry in database
- provision storage volume for instance
- forward request to compute / hypervisor

Fig. 17.Some details associated with the various phasdbeofOpenStack
image deployment workflow.

Bulk Arrival of Deployment Requests

B Measurements|
W Simulation

relative response times

O R N W R OO N ® O

5

concurrent requests in bulk arrival

8 20

Fig. 18.A number of bulk arrival requests is used for aaliton of the
simulation.

approximately 2.5 GB. The execution time then ddpen
significantly on the accuracy required and theefon the
number of iterations for each measurement point\am@us
parameters like data segmentation sizes for netagrind
storage access and the size of time slices forsatge CPU
cycles. Using random generators at several planeshe
simulation (e.g. for the initial placement of a VMye found
that the number of iterations should be at least @& number
of concurrent active deployment requests, e.g. 3@0060
concurrent active deployment requests. The totahbmn of
events processed here is approximately 1.8'xedilting in an
execution time of approximately 18 secchds

F. Logging and Tracing

Scalable logging and measurement facilities arentisd
for any cloud simulation project. In our framewavke support
various logging and measurement modes that malyefurore
be enabled selectively for each module or a grduparules
allowing us to limit the generation of measuremessults to
the most relevant items only if required.

G. Results

As examples for typical simulation results, we prés
image deployment throughputs and response timegafious
levels of request concurrency, see Fig. 19 andof.tlke one
node cloud architecture, the bottleneck is caugecbhtention
for locks at the hypervisor, see Fig. 21.

As expected, the maximal image deployment throughpu
the 100 managed-to node cloud architecture is éovwb the
value of naively extrapolating throughput of theeonode
casé. This is caused by a bottleneck at the storageystsm
of the swift image repository, i.e. the bottlendskmoving
from a software resource to a hardware componeetf-g. 22.

Because of the limited data available for paranetton
and calibration, these results have to be considaas
preliminary and they significantly depend on infrasture and
software workflow details beyond the scope of fhiblication.

Throughputs

2500
2000
1500
1000

500

MultiComputeNodes
[SingleNode

VM/h]

1 4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment
requests

Fig. 19.Image deployment throughputs for various level aficurrency for
both cloud architectures under consideration.

4 Plus several minutes required for the initialiaatof the simulation
modules.

® Approximately 300 VM/h x 100 compute node resgtin 30000
VM/h.

simulation framework and demonstrated how
successfully applied to simulate performance of gena
deployment requests of OpenStack managed clouds.

Mean Response Times

600
400 +
g W MultiComputeNodes
2 SingleNode
200 @ Sing
o

1 4 8 12 16 20 24 28 32 36 40

Number of concurrent deployment
requests

Fig. 20.Image deployment response times for various leflvebocurrency for
both cloud architectures under consideration.

Mean Queue Lengths for Locks at
. Hypervisor
15
10

2] SlngIeNode
5 4
0 4

12 16 20 24 28 32 36 40

Number of concurrent deployment requests

Fig. 21.Queue length for image deployment for various l@fetoncurrency
for the single node cloud architecture. No sigaificqueueing occurs here in
the multiple node architecture.

Mean Disk Array External Interface
Utilizations
20
15
10

1] MuIt|ComputeNodes
5 4
0 4

4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment
requests

Utilization [%)]

Fig. 22.Utilization of the external interface at the Swifhage repository
indicating an icreased contention for bandwidthehdm the single node case

the utilization here is negligible.

VII. CONCLUSION

We have designed and implemented a comprehensive,

modular, highly scalable, accurate and flexiblefqrenance

it can be

optimize

VIIl. OuTLOOK

Future work will focus on leveraging the framewadxk
and upcoming cloud

the design of current

architectures on hardware and software level. Willsmost
likely result in additional requirements against framework
which may be added to the framework quite easily by
exploiting its modular design.

ACKNOWLEDGMENT

The authors would like to thank the IBM management
IBM Germany Research & Development GmbH and IBM

Research GmbH, Zurich Research Laboratory for stipgo
this work over the last years. We especially thémk IBM
cloud performance verification team for sharinghwits their
high-quality cloud performance measurement results.

* Trademark, service mark, or registered tradenaduiktel

Corporation in the United States, other countoegoth.

Other brands and product names mentioned in thisuata
may be trademarks or service marks of their resmect

companies organizations and are hereby acknowledged

(1
(2]

(3]

(4]
(5]

(6]
[
(8]

9]
[10]

REFERENCES

Cloud Computing, http://en.wikipedia.org/wiki/Cloucbmputing.
Above the Clouds: A Berkeley View of Cloud Compagtin
http://www.eecs.berkeley.edu/Pubs/TechRpts/ 2008&E2009-28.pdf .
G. Bloch, S. Greiner, H. de Meer, K.S. Trivedi. Qeimg Networks and
Markov Chains, Second Edition. Wiley-Intersciern2@06.

L. Kleinrock. Queueing Systems, Volume 1: Theoohrd Wiley, 1975.
L. Kleinrock. Queueing Systems, Volume 2: Compu@plications.
John Wiley, 1976.

A.M. Law, W.D. Kelton. Simulation Modeling and Anais, Third
Edition. McGraw-Hill, 2000.

J. Banks, J.S. Carson I, B.L. Nelson, D.M. NicBliscrete-Event
System Simulation, Fourth Edition. Prentice HallD2.

P. Altevogt, W. Denzel, T. Kiss. Proc. of the 200Inter Simulation
Conference (WSC'11). S. Jain, R.R. Creasey, J. tispach, K.P.
White, and M. Fu, eds.

OpenStackhttp://www.openstack.org

Wei Z., Yong P., Feng X., Zhonghua D., “Modelimgd Simulation of
Cloud Computing: A Review”, IEEE Asia Pacific Clou@omputing
Congress (APCloudCC), 2012, pp.20-24.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.0ré Rose, and R.
Buyya, "CloudSim: a toolkit for modeling and simtidea of cloud
computing environments and evaluation of resourcevigioning
algorithms." Software: Practice and Experience,AhINo.1, pp.23-50,
2011.

Wickremasinghe, B., Calheiros, R.N. , Buyya, R.|ol@Analyst: A
CloudSim-Based Visual Modeller for Analysing Clou@omputing
Environments and Applications”, IEEE 24th Interoatl Conference
on Advanced Information Networking and Applicati@@10, pp. 446 —
452,

S. K. Garg and R. Buyya, “NetworkCloudSim: modelipgrallel
applications in cloud simulations,” 4th IEEE Intational Conference
on Utility and Cloud Computing, pp.105-113, 2011.

R. N. Calheiros, M .A. S. Netto, C. A. F. De Rosed R. Buyya,
“EMUSIM: an integrated emulation and simulation ieorment for
modeling, evaluation, and validation of performan€eloud computing
applications,” Software-Practice and Experience, 1608, 2012.

S. Ostermann, K. Plankensteiner, R. Prodan, andFahringer,
“GroudSim: an event-based simulation framework ¢omputational
grids and clouds,” CoreGRID/ERCIM Workshop on Gratsl Clouds.
Springer Computer Science Editorial, Ischia, 2010.

A. Nunez, J. L. Vazquez-Poletti, A. C. Caminero,G.Castane et al.,
“iCanCloud: a flexible and scalable cloud infrasture simulator,”
Journal of Grid Computing, Vol.10, No.1, pp.185-22012.

M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “[¥Im: a data centre
simulation tool for evaluating dynamic Vvirtualizedesource
management,” The 6th International DMTF Academicliafce
Workshop on Systems and Virtualization Managem@taindard and the
Cloud, 2012.

D. Kliazovich, P. Bouvry, and S. U. Khan, “Green@o a packet-level
simulator of energy-aware cloud computing cata ersiit Journal of
Supercomputing, special issue on Green Networkkl.20

I. Sriram, “SPECI, a Simulation Tool Exploring Ctb$cale Data
Centers,” CloudCom’09, LNCS 5931, pp.381-392, 2009.

W. Zhang, X. Huang, N. Chen, W. Wang, H. Zhong, d®&riented
Performance Modeling for Cloud Computing”, |IEEE [86Annua
Computer Software and Applications Conference (CGK@), 2012.

H. Khazaei, J. Misic, V. B. Misic, “A Fine-Graind®erformance Model
of Cloud Computing Centers”, IEEE Transactions oceralel and
Distributed Systems , Vol. X, No. Y, 201Z.

Ewing L. Lusk and Anthony Skjellum, Using MPI - 2ridition:

Portable Parallel Programming with the Message iRgskterface
(Scientific and Engineering Computation). The MIflegs, Cambridge
Massachusetts, 1999.

OMNEST - High-Performance Simulation for All Kind$ Networks.
Accessed May 7, 201http://www.omnest.com/

A. Varga, R. Hornig, An overview of the OMNeT++ n8ilation
Environment. In Proceedings of First Internatio@nference on
Simulation Tools and Techniques for Communicatiddstworks and
Systems (SIMUTools’08). Marseille, France, Marcl9@0

P. Feiner, Scaling the Boot Barrier: Identifying &Iliminating
Contention in Openstack, http://www.openstack.engfsit/portland-
2013/session-videos/presentation/scaling-the-baoids-identifying-
and-eliminating-contention-in-openstack.

