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1. Introduction 
 
The explosion in data volumes as well as the emergence of new types of workloads 
(e.g., NoSQL) have increased the importance of cost-efficient, scale-out storage in 
modern data centers. To achieve cost-efficiency, new storage architectures take 
advantage of commodity hardware components. To accommodate the new require-
ments, storage device manufacturers are striving to provide higher capacity at a lower 
cost, often sacrificing performance as well as backwards compatibility of interfaces and 
ease of use to squeeze more capacity out of the storage media.  
 
Low-cost SSDs. In the case of Flash Solid State Drives (SSDs), vendors are 
increasingly offering SSDs with higher densities (up to 4 TBs in a 2.5” drive) at lower 
prices (as low as $0.3/GB) by using consumer-level Flash and keeping the device 
controllers as simple as possible. However, the reduced price comes at the cost of 
lower write endurance and lower performance. In addition, traditional storage 
architectures are not a good fit for this type of devices: to deal with the low performance 
and reliability of disks, system designers have traditionally aggregated them in RAID 
arrays, with RAID5 and RAID6 being the most popular schemes in use. For low-cost 
SSDs, this approach only makes matters worse: the 2x and 3x write amplification 
penalty for small writes due to RAID5 and RAID6 read-modify-write, respectively, 
causes performance degradation and further accelerates wear-out. Amplified writes 
end up consuming most of the SSD resources, causing read operations to suffer long 
latencies: in our experiments with low-cost SSDs, we often observed that read 
operations wait for several milliseconds for writes to complete because of the high write 
amplification.  
 
Host-Managed SSDs. Recently, SSD vendors have announced host-managed SSDs, 
which allow some of the internal operations of the SSD controller to be controlled by 
the host through software APIs and access the hidden Flash capacity that regular 
SSDs use as over-provisioning space. Although host-managed SSDs promise a higher 
potential for application-storage integration and lower cost, they come with a 
significantly higher complexity: they can no longer be accessed as regular block 
devices. Instead, the user has to access them over a specific interface through which 
low-level Flash operations, such as block erasures, are communicated to the device, 
meaning that a significant portion of the Flash management needs to be carried out by 
the user of the device. 
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SMR disks. In the case of magnetic Hard Disk Drives (HDDs), manufacturers started 
offering HDDs that use Shingled-Magnetic Recording (SMR). SMR is a technology that 
enables a higher grain density by using writes heads with stronger fields. SMR is 
particularly appealing as it does not require a dramatic rework of the magnetic media 
and can increase the capacity density without compromising the stability of the written 
bits. However, with SMR technology, the tracks on a platter overlap like rows of 
shingles on a roof, which prevents the user from modifying tracks independently of one 
another: modifying a disk sector results in corrupting sectors on overlapping tracks. To 
ensure that this never happens, specific access patterns need to be adopted and 
enforced, which entails the introduction of additional complexity before the user can 
access those drives using the conventional block interface. 
 
SoftwAre Log-Structured Array (or SALSA for short) is a unified software stack that 
enables the use of low-cost SSDs and SMR HDDs in existing systems. SALSA is 
targeted at cost-competitive, commodity storage devices and uses software 
intelligence to mitigate their limitations. By shifting the complexity from the hardware 
controller of the devices to software running on the host, SALSA not only reduces cost, 
but also takes advantage of the ample host resources to manage the device resources 
more effectively. For Flash-based SSDs, SALSA elevates their performance and 
endurance to meet the requirements of modern data centers, and in the case of host-
managed SSDs, it provides a conventional block interface that hides the complexity of 
managing the resources of the SSDs. Similarly, for host-managed SMR HDDs, SALSA 
offers a conventional block interface and controls the data placement on the devices 
to improve their read and write performance. In addition, SALSA offers redundancy, 
storage virtualization and data reduction functionality, which allow the user to pool 
multiple devices and create storage volumes with improved performance, reliability 
and cost. Most importantly, SALSA exposes a standard block interface so that it can 
be used by file systems and applications without any modification. Using SALSA, we 
have achieved more than 1600% of performance improvement for a cloud database 
workload without any modifications to the database or the application.  
 
In what follows, we present a brief overview of SALSA. In Section 2, we present the 
core technologies employed by SALSA when used with Flash-based SSDs and in 
Section 3 extensions that enable the use of SALSA on host-managed SMR disks. We 
provide some details about the implementation of the SALSA software stack in Section 
4. In Section 5, we present the promising results of our experimental study with SALSA 
under various workloads, and conclude in Section 6. 

2. SALSA for low-cost SSDs 
 
SALSA intercepts the user I/O requests and remaps them in ways that transform the 
user access pattern to be as efficient as possible for the underlying storage medium. 
For instance, for a low-cost SSD, SALSA transforms the user access patterns to be as 
Flash-friendly as possible: SALSA is designed from the ground up for low write 
amplification. Thereby, the device controller hardly ever needs to relocate data 
internally, and is therefore relieved from a significant burden. As a result, the user 
experiences significantly improved performance and endurance. 
 
The main benefits of SALSA come from the way data is organized on the SSDs. 
SALSA, at its core, follows a Log Structured Array (LSA) architecture: data is packed 
into logical segments appended to a global log structure that may span multiple 
devices. As data is written out-of-place, a dynamic mapping is maintained to keep track 
of the current data placement. Because of the out-of-place writes required for an 
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efficient management of the log structure, Garbage Collection (GC) of invalidated data 
is required: SALSA uses a holistic data placement and GC scheme that reduces the 
probability of encountering invalid data upon a GC operation and thus reduces Write 
Amplification (WA). Using intelligent scheduling of foreground and background 
operations, SALSA guarantees an excellent read performance that is not disturbed by 
write traffic. The various technologies used by SALSA are outlined in the subsections 
below. 
 

2.1. Log-Structured Data Placement 

The goal of the log-structured data placement is to implicitly ‘force’ the device controller 
to not do any garbage collection internally. This is achieved by ensuring that SALSA 
will always write data to the SSDs using large sequential I/O operations. In particular, 
as write I/O comes down to SALSA from the user, SALSA packs the written data into 
large segments. Each segment is typically a multiple of the logical erase block size of 
the underlying device. SALSA always writes full segments to storage and, effectively, 
overwrites multiple logical erase blocks in the underlying device. As a result, when the 
underlying device attempts to perform garbage collection, all the data in a garbage-
collected logical erase block are found to be invalid and no data relocation is required. 
In turn, this means that no write amplification is generated in the device.  
 
This enables the use of SSDs with very simple controllers, coarse mappings and 
simple GC schemes. SALSA performs garbage collection at the host level above the 
device, where it not only has plenty of the host resources available (CPU, memory, 
etc.), but also can coordinate GC operations across multiple devices. To facilitate this 
higher-level GC, SALSA reserves a small portion of the SSD capacity as SALSA over-
provisioning. 
 
For host-managed SSDs, the situation is even more favorable: the host-managed 
device exposes an API by which SALSA can explicitly control some of the internal SSD 
functionality. With host-managed SSDs, SALSA can use the entire physical Flash 
capacity, completely disabling the internal SSD GC and data placement decisions. 
 

2.2. Redundancy without performance penalties 

SALSA can be configured to manage multiple devices in an array configuration, adding 
redundancy (parity) to guard against drive failures. SALSA provides RAID5-equivalent 
protection without the Read-Modify-Write penalty of RAID5. In particular, SALSA 
creates stripes out of multiple segments (there are n data segments and 1 parity 
segment per stripe in an array of n + 1 devices) and always performs full stripe writes, 
in which the parity is written only once after the data. Thus, write amplification is 
minimal (1/(n + 1)), in contrast to RAID5, which results in WA = 2 for small random 
writes. Moreover, SALSA performs array-wide wear leveling and load balancing, 
ensuring that workload hot spots and skew do not become performance bottlenecks.  
 

2.3. Heat Segregation 

SALSA continuously monitors the user accesses to logical data and maintains access 
statistics. This information is used to segregate hot data from cold data to reduce write 
amplification even further. In particular, SALSA keeps track of the data heat, that is, it 
classifies data as hot or cold (and various degrees in between), depending on the rate 
at which they get updated (overwritten) by the user. Data-placement decisions entail 
segregating hot data from cold data to ensure that data with a different level of heat do 
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not get mixed up in the same segment. Thereby, we avoid the situation of continuously 
relocating cold data just because it happens to be collocated with hot, frequently 
changing data in the same segment. As a result, a considerable amount of write 
amplification is avoided, especially also because user access patterns tend to be 
skewed. 
 

2.4. Garbage Collection 

SALSA employs state-of-the-art garbage collection, which, together with the data 
placement logic, reduces the probability of encountering invalid data upon a GC 
operation. In deciding which segment to garbage-collect, the GC subsystem takes into 
account a) the logical origin of data blocks, b) their age in the system, and c) their 
frequency of updates to make optimal decisions. 
 
Using a technique called Recurring Pattern Detection, SALSA can detect user write 
patterns that repeat in time or exhibit temporal locality. Because of the log-structured 
writes, temporal locality will translate into spatial locality in the physical domain, 
causing SALSA segments to eventually be invalidated. The GC process then takes 
special care not to interrupt such recurring patterns so that, upon relocation, segments 
will have as many invalid blocks as possible (and therefore incur lower write 
amplification). 
 

2.5. Storage Virtualization 

SALSA can virtualize a device or an array of devices, that is, a user can create logical 
volumes that are backed by an array of physical devices. What is even more important, 
SALSA takes advantage of the logical separation between different volumes to perform 
workload isolation at the physical level, meaning that data belonging to a logical 
volume will never get mixed up with data from other logical volumes. This not only 
results in separation of I/O streams in the data path, but also ensures that the write 
amplification generated by one volume will be isolated and thus will not interfere with 
that of other volumes. In this way, the system achieves an overall lower write ampli-
fication, and the administrator can easily monitor the effects of different workloads and 
find out which workloads generate a high load (because of high write amplification). 
 

2.6. In-memory Caching 

By using buffers in the host memory, SALSA can cache data in the user data path. 
Thereby, it can achieve very low write latency. In addition, SALSA achieves lower CPU 
load by batching write operations together and performing fewer, but larger writes. The 
user can limit the exposure to data loss (due to the volatility of main-memory buffers) 
by using consistency barriers along with the I/O requests. 
 

2.7. Throttling 

SALSA supports a sophisticated mechanism for throttling read and write I/O requests 
to ensure that a) read requests will not starve while waiting for high-WA write 
operations to complete and b) the garbage collection can advance at a pace that allows 
the device to remain responsive even at high loads. 
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2.8. Data Reduction 

The LSA structure of SALSA enables inline compression of data as data is being 
packed into the LSA segments, but also allows SALSA to store objects efficiently 
without additional overhead other than the processing to compress and decompress 
data blocks. The SALSA architecture makes de-duplication a good fit for SALSA: we 
de-duplicate data in-line, using a fixed-chunk de-duplication scheme based on SHA1 
fingerprints. The data reduction achieved with compression and de-duplication 
increases the effective capacity of the system, resulting in a total system cost similar 
to that of disk or lower, for certain workloads. Data reduction in SALSA is currently an 
experimental feature. 
 

2.9. RDMA Interface 

In addition to the conventional block interface, SALSA exposes an RDMA interface for 
accessing data. Using this interface, the user can use industry-standard RDMA inter-
faces to access data at byte granularity and has a straightforward way of integrating 
Flash-based storage with RDMA-enabled network stacks. 

3. SALSA for host-managed SMR disks 
 
Host-managed SMR disks typically have their storage space divided into a number of 
sequential zones that have no overlap with one another (i.e., they are physically 
separated by guard bands). A typical size of such a zone is on the order of 256 MB. 
Within a given zone, writes have to follow a strict sequential order because there is 
overlap between the tracks that make up a zone. Different sequential zones, in 
contrast, can be written to independently. In some cases, SMR disks also have a 
number of conventional zones, that is, non-shingled regions whose blocks can be 
written to and updated in any order. These zones typically amount to less than 1% of 
the total drive capacity.  
 
SALSA offers the necessary extensions to also manage host-managed SMR disks, in 
addition to Flash SSDs. Although being completely different storage media, both Flash 
and SMR disks require out-of-place writes, which result in a data layout that necessi-
tates space management, reclamation of invalid data and garbage collection. The main 
differences are that a) SMR disks do not need their zones to be erased before they 
can be written to (they only require the resetting of a pointer); they exhibit symmetric 
read and write speeds (for Flash, programming a page takes much longer than reading 
it), and c) having mechanical moving parts, they suffer from high rotational positioning 
and seek latencies. However, if one abstracts both device types as storage spaces 
divided into logical segments that can only be written to sequentially, then the idea and 
the overall goals remain the same. In particular, the most important goal is that data 
placement and garbage collection incur as low a write amplification as possible. 
 
With SMR disks, SALSA reuses the same techniques for space management, data 
placement and garbage collection as for Flash SSDs. For SMR disks, the SALSA 
segment size is aligned to the zone size of the SMR disk. SALSA uses heat-
segregating data placement, efficient parity protection without read-modify-writes, the 
same garbage collection algorithms, and the same schemes for storage virtualization, 
in-memory caching and throttling. In addition, SALSA uses the two techniques 
described below, which are specific to the geometry and characteristics of host-
managed SMR drives. 
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3.1. Geometry-aware Data Placement 

In addition to segregating data across segments based on its heat, SALSA takes into 
account the data heat to decide to which physical zone a particular SALSA segment 
should be written. Specifically, segments that hold data that is frequently read is stored 
in the outer tracks of the disk where the bandwidth is higher and seek times can be 
reduced. Overall, this results in improved read performance, even more so as 
workloads tend to be skewed. 
 

3.2. Acceleration using Conventional Zones 

SALSA can take advantage of the conventional zones in an SMR HDD to accom-
modate small writes efficiently. Small writes can be generated by the system either as 
a result of fine-grained updates to user data or of file-system metadata. By absorbing 
small writes in the conventional zones, SALSA can avoid a significant amount of write 
amplification and improve the overall system performance. 

4. Implementation 
 
SALSA has been implemented in Linux® as a library that provides interfaces that can 
be used by programs in both user space and the kernel. In the kernel, SALSA provides 
the standard block interface, i.e., users see SALSA volumes as normal block devices 
on top which they can deploy their unmodified file systems and applications. SALSA is 
implemented as a pluggable kernel module that can be loaded dynamically, and has 
been tested on the kernels of most modern Linux distributions, including Red Hat 
Enterprise Linux® 6 & 7, SUSE Linux Enterprise® 11, Ubuntu 14.04 - 15.10, for both 
the Intel® x86_64 and the IBM® Power® (ppc64) architectures. SALSA uses the Device 
Mapper framework of the Linux kernel to intercept requests and remap them to 
appropriate locations. After remapping, a request is forwarded to the device driver to 
be served as a normal I/O request to the device. SALSA does not modify any kernel 
subsystem or device driver. In the user space, SALSA can be linked to any user-space 
storage stack that needs to access low-cost SSDs or host-managed drives (SSDs or 
HDDs) efficiently. 
 
SALSA consumes memory on the host to store its internal data structure and buffers 
during runtime. Its footprint is almost exclusively due to its mapping tables. When high 
performance is required with small I/O operations (e.g., in the case of SSDs), then 
typical SALSA configurations consume 200 MB – 1.5 GB of memory per user TB of 
storage. When not optimizing for small I/O operations (e.g., in the case of SMR HDDs), 
a typical SALSA configuration consumes 64 – 128 MB of memory per user TB of 
storage. 
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Figure 1: SALSA manages SSDs and SMR disks 

Figure 1 shows an example of SALSA in the kernel. In that specific instance, the user 
has created a) a SAID0 (i.e., a RAID0-equivalent SALSA array) of three SSDs and a 
single volume on top of them (V0), which can be accessed by the user as /dev/salsa0; 
b) a SAID5 (i.e., a RAID5-equivalent SALSA array) of four SMR HDDs (i.e., an array 
equivalent in terms of redundancy to a 3+1 RAID5), and three logical volumes, V2, V3 
and V4, on top of it that can be accessed by the user as /dev/salsa1, /dev/salsa2, 
/dev/salsa3, respectively, and c) a JBOD SALSA device, where a single physical SSD 
is exposed by SALSA as a single volume (which the user can access as /dev/jbod0).  
 
Users can directly access the volumes as they would access any other block device, 
for example, to deploy a file system or a database. For instance, we have deployed 
local file-systems, such as ext4 and XFS, on top of SALSA, as well as distributed file-
systems, such as IBM Spectrum ScaleTM and ApacheTM Hadoop® HDFS, and object 
storage systems, like Ceph and OpenStack® Swift. In addition, we have successfully 
deployed and run database systems, such as IBM DB2®, MySQL, and Oracle® 
Database 11g, and key-value stores, like RocksDB. 

5. Experimental Results 
 
We now present some experimental results with SALSA under micro-benchmarks as 
well as real application workloads. For the experiments, we used a standard 
commodity server equipped with two Intel® Xeon® E5-2630v3 CPUs and 128 GB of 
main memory. In all SSD experiments, we used low-cost SSDs made of TLC Flash, 
which were directly attached to the host as JBOD devices over SATA. In the SMR HDD 
experiments, we used a 10-TB host-managed HDD directly attached to the host over 
SATA. 
 

5.1. Micro-benchmarks using SALSA on SSDs 

5.1.1.  Performance 
In the first experiment, we used five identical low-cost SSDs in three different 
configurations: a) in a 5-drive software RAID0, b) in 4+1 software RAID5, and c) in a 
4+1 SALSA SAID5 array, which is equivalent to RAID 5 in terms of redundancy and 
protection. After pre-conditioning the SSDs, we used a standard open-source I/O 
workload generator (fio) to generate a uniformly random read workload across the 
entire array using an I/O block size of 4 kB and doing direct (unbuffered) I/O. We 
increased the offered load by varying the queue depth of outstanding requests from 
QD = 1 to QD = 32. At each queue depth, we measured the IOPS and the average 
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completion latency of the requests. The results are shown in Figure 2. As can be seen, 
all three systems achieved good performance: more than 250 kIOPS at approx. 200 – 
250 µsec of latency. 

 
Figure 2: Performance for 100% reads (random I/O) 

Next, we repeated the same experiment with the same uniform random access pattern, 
but doing 80% reads and 20% writes instead of 100% reads. The results are shown in 
Figure 3. In this case, the picture is very different for the three systems. The 
performance for RAID0 and RAID5 dropped down to 8.5 kIOPS and 4 kIOPS 
respectively: adding 20% of writes in the I/O mix resulted in the performance dropping 
by more than an order of magnitude! The reason for this drop is the significant write 
amplification that the random writes incur, which consumes most of the SSD internal 
bandwidth, leaving only very little resources to serve the reads. Thus, read operations 
are stuck waiting behind time-consuming writes, and the overall performance suffers 
severely. For RAID5, the random writes incur read-modify-write operations for the 
parity at the array level, which double the write amplification and therefore halve the 
performance of the system. In contrast, by shifting the burden of garbage collection to 
the host software, using the host resources for throttling and scheduling, and avoiding 
the read-modify-write penalty due to the log-structured data layout, SALSA was able 
to maintain a performance of more than 110 kIOPS, that is, about 13 times better than 
RAID0 and 28 times better than RAID5. 
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Figure 3: Performance for 80% reads and 20 writes (random I/O) 

5.1.2.  Endurance 
Next, we experimented with SALSA in JBOD mode to measure its effect on the device 
endurance. After low-level formatting the device, we exercised one full device worth of 
random writes and measured the wear on the device, as reported by the relevant 
counter in the device’s S.M.A.R.T attributes (the counter increases linearly with the 
number of Program-Erase cycles performed to the device’s Flash cells). We then 
repeated the procedure 10 times with SALSA and 10 times on the raw device (without 
SALSA), and plotted the results in Figure 4. As expected, the lower end-to-end write 
amplification of SALSA translated into less wear to the device. Specifically, after the 
10 iterations, SALSA had incurred 4.6 times less wear to the device, which would 
translate into a 4.6 times longer device lifetime. 

 

Figure 4: Device wear for 10 full-device writes 
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5.1.3.  CPU utilization 
We measured the CPU overhead of SALSA to assess to whether it can scale with the 
number of SSDs. For this, we ran SALSA in a server with 14 SSDs, creating an 
individual SALSA volume for each SSD. We ran a random write workload, as under 
random writes, SALSA consumes the most CPU cycles compared with reads or 
sequential writes: this is due to the high write amplification incurred by random writes, 
which in turn means heavy garbage collection and additional I/O for relocations. We 
ran the same workload with and without SALSA and measured the system CPU 
utilization. As the throughput of the two systems was different, we normalized the CPU 
utilization measured by the number of user IOPS served in the two cases and plotted 
the results in Figure 5. On average, SALSA only consumed ~7% more CPU cycles 
than the raw device per I/O operation. 

 
Figure 5: Normalized CPU Utilization 

5.2. Cloud Database Workload using SALSA on SSDs 

In the next experiment, we tested SALSA under a typical cloud workload: multiple 
database servers running in cloud VMs that share the same hardware resources. 
Specifically, we deployed multiple VMs that run the MySQL database on Ubuntu Linux 
14.04, and created database load using the Sysbench benchmarking suite. Multiple 
database users submit queries to the database servers: the query processing stresses 
the storage and, as a result, the end-to-end performance is primarily determined by 
the storage performance. We ran the benchmark in two different configurations: one 
(‘baseline’) in which four low-cost 1-TB SSDs were used in software RAID5 and one 
(‘SALSA’) in which we created a SALSA SAID5 array (which is equivalent to RAID5 in 
terms of redundancy and protection). In each case, we measured the application-level 
transaction response time as well as the total throughput of the system (i.e., the total 
number of transactions executed per second). We increased the load by adding more 
VMs and more database users per VM. The results are shown in Figure 6. As evident, 
the system was able to realize the I/O performance improvement offered by SALSA all 
the way up to the application. With SALSA running on top of the SSDs, the system 
achieved a 16 times higher throughput at ~100 msec of transaction response time 
and a 42 times lower transaction response time for a constant throughput of ~50 
transactions per second. 
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Figure 6: Database performance in a cloud environment 

5.3. Micro-benchmarks using SALSA on SMR HDDs 

Next, we experimented with SALSA on a host-managed SMR HDD (‘SALSA on HM’) 
and compared its performance with that of a drive-managed SMR HDD (‘DM’), that is, 
one in which the indirection layer that manages the space on the drive, reclamation 
and garbage collection is implemented on the drive controller. As both SALSA and the 
drive-managed SMR HDD expose a block interface, we used the same I/O workload 
generator as in the previous experiments to generate I/O load to the device. Note that 
in this experiment we only used the sequential zones of the HDD; the optimizations 
involving the conventional zones are therefore not used, and the same holds for the 
geometry-aware data placement optimizations. 
 
In the first experiment, we performed 64 kB sequential writes to the host-managed 
SMR HDD with SALSA (‘SALSA on HM – Sequential’) and measured the bandwidth. 
The results are shown in Figure 7, where we have also included the maximum 
performance of the formatted drive (which corresponds to the drive performance before 
it fills up and garbage collection is needed). As shown, SALSA on the host-managed 
HDD achieves a write performance that is within 90% of the ‘ideal’ drive performance 
(when no GC would be required). Next, we performed 64 kB random writes to both the 
host-managed HDD with SALSA (‘SALSA on HM – Random’) and to the drive-
managed HDD (‘DM – Random’) and measured the total throughput. The results are 
also shown in Figure 7: SALSA achieved a steady-state performance of about ~9 MB/s, 
whereas the write performance of the drive-managed SMR disk dropped to almost 0, 
averaging at less than 150 kB/s at steady state. The SALSA performance was 64 
times higher than the performance of the drive-managed SMR drive.  
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Figure 7: Write I/O Bandwidth with SALSA on SMR HDDs 

6. Conclusion 
 
SoftwAre Log-Structured Array (or SALSA for short) is a unified storage stack for low-
cost SSDs and SMR disks. Being a pure software technology that runs on Linux, 
SALSA can take advantage of commodity server hardware and commodity storage 
devices. By exploiting the software intelligence on the host, SALSA moves the 
complexity of managing Flash and SMR disks from hardware to software. SALSA 
elevates the performance and endurance of commodity Flash-based SSDs to meet 
the requirements of modern data centers.  
 
For host-managed SMR disks, SALSA provides a traditional block interface that hides 
the complexities of SMR technology from the user, and dramatically improves write 
performance. Our results using commodity SSDs suggest that SALSA is a promising 
approach that, for certain workloads, could yield order-of-magnitude improvements, 
thereby enabling the use of commodity SSDs and SMR disks in modern data centers.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Trademark Notes 

IBM, Power, IBM Spectrum Scale, GPFS and DB2 are trademarks of International Business Machines Corporation, 
registered in many jurisdictions worldwide. Linux is the registered trademark of Linus Torvalds in the U.S. and other 
countries. Intel and Intel Xeon are registered trademarks of Intel Corporation or its subsidiaries in the United States 
and other countries. Other product and service names might be trademarks of IBM or other companies. 

0

10

20

30

40

50

60

-200 300 800 1300 1800

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Time (sec)

SALSA on HM - Random

SALSA on HM - Sequential

DM - Random

Maximum performance of formatted HM HDD


