

RZ 3892 (#ZUR1512-013) 12/02/2015
Computer Science 12 pages

Research Report

SoftwAre Log-Structured Array (SALSA) – A unified stack for

SSDs and SMR disks

Ioannis Koltsidas, Nikolas Ioannou, Kornilios Kourtis, and Thomas Weigold

IBM Research – Zurich

8803 Rüschlikon

Switzerland

 Research
 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

SOFTWARE LOG-STRUCTURED ARRAY
(SALSA)

A unified stack for SSDs and SMR disks

Ioannis Koltsidas <iko@zurich.ibm.com>

Nikolas Ioannou <nio@zurich.ibm.com>

Kornilios Kourtis <kou@zurich.ibm.com>

Thomas Weigold <twe@zurich.ibm.com>

1. Introduction

The explosion in data volumes as well as the emergence of new types of workloads
(e.g., NoSQL) have increased the importance of cost-efficient, scale-out storage in
modern data centers. To achieve cost-efficiency, new storage architectures take
advantage of commodity hardware components. To accommodate the new require-
ments, storage device manufacturers are striving to provide higher capacity at a lower
cost, often sacrificing performance as well as backwards compatibility of interfaces and
ease of use to squeeze more capacity out of the storage media.

Low-cost SSDs. In the case of Flash Solid State Drives (SSDs), vendors are
increasingly offering SSDs with higher densities (up to 4 TBs in a 2.5” drive) at lower
prices (as low as $0.3/GB) by using consumer-level Flash and keeping the device
controllers as simple as possible. However, the reduced price comes at the cost of
lower write endurance and lower performance. In addition, traditional storage
architectures are not a good fit for this type of devices: to deal with the low performance
and reliability of disks, system designers have traditionally aggregated them in RAID
arrays, with RAID5 and RAID6 being the most popular schemes in use. For low-cost
SSDs, this approach only makes matters worse: the 2x and 3x write amplification
penalty for small writes due to RAID5 and RAID6 read-modify-write, respectively,
causes performance degradation and further accelerates wear-out. Amplified writes
end up consuming most of the SSD resources, causing read operations to suffer long
latencies: in our experiments with low-cost SSDs, we often observed that read
operations wait for several milliseconds for writes to complete because of the high write
amplification.

Host-Managed SSDs. Recently, SSD vendors have announced host-managed SSDs,
which allow some of the internal operations of the SSD controller to be controlled by
the host through software APIs and access the hidden Flash capacity that regular
SSDs use as over-provisioning space. Although host-managed SSDs promise a higher
potential for application-storage integration and lower cost, they come with a
significantly higher complexity: they can no longer be accessed as regular block
devices. Instead, the user has to access them over a specific interface through which
low-level Flash operations, such as block erasures, are communicated to the device,
meaning that a significant portion of the Flash management needs to be carried out by
the user of the device.

IBM Research – Zurich

SoftwAre Log-Structured Array 2

SMR disks. In the case of magnetic Hard Disk Drives (HDDs), manufacturers started
offering HDDs that use Shingled-Magnetic Recording (SMR). SMR is a technology that
enables a higher grain density by using writes heads with stronger fields. SMR is
particularly appealing as it does not require a dramatic rework of the magnetic media
and can increase the capacity density without compromising the stability of the written
bits. However, with SMR technology, the tracks on a platter overlap like rows of
shingles on a roof, which prevents the user from modifying tracks independently of one
another: modifying a disk sector results in corrupting sectors on overlapping tracks. To
ensure that this never happens, specific access patterns need to be adopted and
enforced, which entails the introduction of additional complexity before the user can
access those drives using the conventional block interface.

SoftwAre Log-Structured Array (or SALSA for short) is a unified software stack that
enables the use of low-cost SSDs and SMR HDDs in existing systems. SALSA is
targeted at cost-competitive, commodity storage devices and uses software
intelligence to mitigate their limitations. By shifting the complexity from the hardware
controller of the devices to software running on the host, SALSA not only reduces cost,
but also takes advantage of the ample host resources to manage the device resources
more effectively. For Flash-based SSDs, SALSA elevates their performance and
endurance to meet the requirements of modern data centers, and in the case of host-
managed SSDs, it provides a conventional block interface that hides the complexity of
managing the resources of the SSDs. Similarly, for host-managed SMR HDDs, SALSA
offers a conventional block interface and controls the data placement on the devices
to improve their read and write performance. In addition, SALSA offers redundancy,
storage virtualization and data reduction functionality, which allow the user to pool
multiple devices and create storage volumes with improved performance, reliability
and cost. Most importantly, SALSA exposes a standard block interface so that it can
be used by file systems and applications without any modification. Using SALSA, we
have achieved more than 1600% of performance improvement for a cloud database
workload without any modifications to the database or the application.

In what follows, we present a brief overview of SALSA. In Section 2, we present the
core technologies employed by SALSA when used with Flash-based SSDs and in
Section 3 extensions that enable the use of SALSA on host-managed SMR disks. We
provide some details about the implementation of the SALSA software stack in Section
4. In Section 5, we present the promising results of our experimental study with SALSA
under various workloads, and conclude in Section 6.

2. SALSA for low-cost SSDs

SALSA intercepts the user I/O requests and remaps them in ways that transform the
user access pattern to be as efficient as possible for the underlying storage medium.
For instance, for a low-cost SSD, SALSA transforms the user access patterns to be as
Flash-friendly as possible: SALSA is designed from the ground up for low write
amplification. Thereby, the device controller hardly ever needs to relocate data
internally, and is therefore relieved from a significant burden. As a result, the user
experiences significantly improved performance and endurance.

The main benefits of SALSA come from the way data is organized on the SSDs.
SALSA, at its core, follows a Log Structured Array (LSA) architecture: data is packed
into logical segments appended to a global log structure that may span multiple
devices. As data is written out-of-place, a dynamic mapping is maintained to keep track
of the current data placement. Because of the out-of-place writes required for an

IBM Research – Zurich

SoftwAre Log-Structured Array 3

efficient management of the log structure, Garbage Collection (GC) of invalidated data
is required: SALSA uses a holistic data placement and GC scheme that reduces the
probability of encountering invalid data upon a GC operation and thus reduces Write
Amplification (WA). Using intelligent scheduling of foreground and background
operations, SALSA guarantees an excellent read performance that is not disturbed by
write traffic. The various technologies used by SALSA are outlined in the subsections
below.

2.1. Log-Structured Data Placement

The goal of the log-structured data placement is to implicitly ‘force’ the device controller
to not do any garbage collection internally. This is achieved by ensuring that SALSA
will always write data to the SSDs using large sequential I/O operations. In particular,
as write I/O comes down to SALSA from the user, SALSA packs the written data into
large segments. Each segment is typically a multiple of the logical erase block size of
the underlying device. SALSA always writes full segments to storage and, effectively,
overwrites multiple logical erase blocks in the underlying device. As a result, when the
underlying device attempts to perform garbage collection, all the data in a garbage-
collected logical erase block are found to be invalid and no data relocation is required.
In turn, this means that no write amplification is generated in the device.

This enables the use of SSDs with very simple controllers, coarse mappings and
simple GC schemes. SALSA performs garbage collection at the host level above the
device, where it not only has plenty of the host resources available (CPU, memory,
etc.), but also can coordinate GC operations across multiple devices. To facilitate this
higher-level GC, SALSA reserves a small portion of the SSD capacity as SALSA over-
provisioning.

For host-managed SSDs, the situation is even more favorable: the host-managed
device exposes an API by which SALSA can explicitly control some of the internal SSD
functionality. With host-managed SSDs, SALSA can use the entire physical Flash
capacity, completely disabling the internal SSD GC and data placement decisions.

2.2. Redundancy without performance penalties

SALSA can be configured to manage multiple devices in an array configuration, adding
redundancy (parity) to guard against drive failures. SALSA provides RAID5-equivalent
protection without the Read-Modify-Write penalty of RAID5. In particular, SALSA
creates stripes out of multiple segments (there are n data segments and 1 parity
segment per stripe in an array of n + 1 devices) and always performs full stripe writes,
in which the parity is written only once after the data. Thus, write amplification is
minimal (1/(n + 1)), in contrast to RAID5, which results in WA = 2 for small random
writes. Moreover, SALSA performs array-wide wear leveling and load balancing,
ensuring that workload hot spots and skew do not become performance bottlenecks.

2.3. Heat Segregation

SALSA continuously monitors the user accesses to logical data and maintains access
statistics. This information is used to segregate hot data from cold data to reduce write
amplification even further. In particular, SALSA keeps track of the data heat, that is, it
classifies data as hot or cold (and various degrees in between), depending on the rate
at which they get updated (overwritten) by the user. Data-placement decisions entail
segregating hot data from cold data to ensure that data with a different level of heat do

IBM Research – Zurich

SoftwAre Log-Structured Array 4

not get mixed up in the same segment. Thereby, we avoid the situation of continuously
relocating cold data just because it happens to be collocated with hot, frequently
changing data in the same segment. As a result, a considerable amount of write
amplification is avoided, especially also because user access patterns tend to be
skewed.

2.4. Garbage Collection

SALSA employs state-of-the-art garbage collection, which, together with the data
placement logic, reduces the probability of encountering invalid data upon a GC
operation. In deciding which segment to garbage-collect, the GC subsystem takes into
account a) the logical origin of data blocks, b) their age in the system, and c) their
frequency of updates to make optimal decisions.

Using a technique called Recurring Pattern Detection, SALSA can detect user write
patterns that repeat in time or exhibit temporal locality. Because of the log-structured
writes, temporal locality will translate into spatial locality in the physical domain,
causing SALSA segments to eventually be invalidated. The GC process then takes
special care not to interrupt such recurring patterns so that, upon relocation, segments
will have as many invalid blocks as possible (and therefore incur lower write
amplification).

2.5. Storage Virtualization

SALSA can virtualize a device or an array of devices, that is, a user can create logical
volumes that are backed by an array of physical devices. What is even more important,
SALSA takes advantage of the logical separation between different volumes to perform
workload isolation at the physical level, meaning that data belonging to a logical
volume will never get mixed up with data from other logical volumes. This not only
results in separation of I/O streams in the data path, but also ensures that the write
amplification generated by one volume will be isolated and thus will not interfere with
that of other volumes. In this way, the system achieves an overall lower write ampli-
fication, and the administrator can easily monitor the effects of different workloads and
find out which workloads generate a high load (because of high write amplification).

2.6. In-memory Caching

By using buffers in the host memory, SALSA can cache data in the user data path.
Thereby, it can achieve very low write latency. In addition, SALSA achieves lower CPU
load by batching write operations together and performing fewer, but larger writes. The
user can limit the exposure to data loss (due to the volatility of main-memory buffers)
by using consistency barriers along with the I/O requests.

2.7. Throttling

SALSA supports a sophisticated mechanism for throttling read and write I/O requests
to ensure that a) read requests will not starve while waiting for high-WA write
operations to complete and b) the garbage collection can advance at a pace that allows
the device to remain responsive even at high loads.

IBM Research – Zurich

SoftwAre Log-Structured Array 5

2.8. Data Reduction

The LSA structure of SALSA enables inline compression of data as data is being
packed into the LSA segments, but also allows SALSA to store objects efficiently
without additional overhead other than the processing to compress and decompress
data blocks. The SALSA architecture makes de-duplication a good fit for SALSA: we
de-duplicate data in-line, using a fixed-chunk de-duplication scheme based on SHA1
fingerprints. The data reduction achieved with compression and de-duplication
increases the effective capacity of the system, resulting in a total system cost similar
to that of disk or lower, for certain workloads. Data reduction in SALSA is currently an
experimental feature.

2.9. RDMA Interface

In addition to the conventional block interface, SALSA exposes an RDMA interface for
accessing data. Using this interface, the user can use industry-standard RDMA inter-
faces to access data at byte granularity and has a straightforward way of integrating
Flash-based storage with RDMA-enabled network stacks.

3. SALSA for host-managed SMR disks

Host-managed SMR disks typically have their storage space divided into a number of
sequential zones that have no overlap with one another (i.e., they are physically
separated by guard bands). A typical size of such a zone is on the order of 256 MB.
Within a given zone, writes have to follow a strict sequential order because there is
overlap between the tracks that make up a zone. Different sequential zones, in
contrast, can be written to independently. In some cases, SMR disks also have a
number of conventional zones, that is, non-shingled regions whose blocks can be
written to and updated in any order. These zones typically amount to less than 1% of
the total drive capacity.

SALSA offers the necessary extensions to also manage host-managed SMR disks, in
addition to Flash SSDs. Although being completely different storage media, both Flash
and SMR disks require out-of-place writes, which result in a data layout that necessi-
tates space management, reclamation of invalid data and garbage collection. The main
differences are that a) SMR disks do not need their zones to be erased before they
can be written to (they only require the resetting of a pointer); they exhibit symmetric
read and write speeds (for Flash, programming a page takes much longer than reading
it), and c) having mechanical moving parts, they suffer from high rotational positioning
and seek latencies. However, if one abstracts both device types as storage spaces
divided into logical segments that can only be written to sequentially, then the idea and
the overall goals remain the same. In particular, the most important goal is that data
placement and garbage collection incur as low a write amplification as possible.

With SMR disks, SALSA reuses the same techniques for space management, data
placement and garbage collection as for Flash SSDs. For SMR disks, the SALSA
segment size is aligned to the zone size of the SMR disk. SALSA uses heat-
segregating data placement, efficient parity protection without read-modify-writes, the
same garbage collection algorithms, and the same schemes for storage virtualization,
in-memory caching and throttling. In addition, SALSA uses the two techniques
described below, which are specific to the geometry and characteristics of host-
managed SMR drives.

IBM Research – Zurich

SoftwAre Log-Structured Array 6

3.1. Geometry-aware Data Placement

In addition to segregating data across segments based on its heat, SALSA takes into
account the data heat to decide to which physical zone a particular SALSA segment
should be written. Specifically, segments that hold data that is frequently read is stored
in the outer tracks of the disk where the bandwidth is higher and seek times can be
reduced. Overall, this results in improved read performance, even more so as
workloads tend to be skewed.

3.2. Acceleration using Conventional Zones

SALSA can take advantage of the conventional zones in an SMR HDD to accom-
modate small writes efficiently. Small writes can be generated by the system either as
a result of fine-grained updates to user data or of file-system metadata. By absorbing
small writes in the conventional zones, SALSA can avoid a significant amount of write
amplification and improve the overall system performance.

4. Implementation

SALSA has been implemented in Linux® as a library that provides interfaces that can
be used by programs in both user space and the kernel. In the kernel, SALSA provides
the standard block interface, i.e., users see SALSA volumes as normal block devices
on top which they can deploy their unmodified file systems and applications. SALSA is
implemented as a pluggable kernel module that can be loaded dynamically, and has
been tested on the kernels of most modern Linux distributions, including Red Hat
Enterprise Linux® 6 & 7, SUSE Linux Enterprise® 11, Ubuntu 14.04 - 15.10, for both
the Intel® x86_64 and the IBM® Power® (ppc64) architectures. SALSA uses the Device
Mapper framework of the Linux kernel to intercept requests and remap them to
appropriate locations. After remapping, a request is forwarded to the device driver to
be served as a normal I/O request to the device. SALSA does not modify any kernel
subsystem or device driver. In the user space, SALSA can be linked to any user-space
storage stack that needs to access low-cost SSDs or host-managed drives (SSDs or
HDDs) efficiently.

SALSA consumes memory on the host to store its internal data structure and buffers
during runtime. Its footprint is almost exclusively due to its mapping tables. When high
performance is required with small I/O operations (e.g., in the case of SSDs), then
typical SALSA configurations consume 200 MB – 1.5 GB of memory per user TB of
storage. When not optimizing for small I/O operations (e.g., in the case of SMR HDDs),
a typical SALSA configuration consumes 64 – 128 MB of memory per user TB of
storage.

IBM Research – Zurich

SoftwAre Log-Structured Array 7

Figure 1: SALSA manages SSDs and SMR disks

Figure 1 shows an example of SALSA in the kernel. In that specific instance, the user
has created a) a SAID0 (i.e., a RAID0-equivalent SALSA array) of three SSDs and a
single volume on top of them (V0), which can be accessed by the user as /dev/salsa0;
b) a SAID5 (i.e., a RAID5-equivalent SALSA array) of four SMR HDDs (i.e., an array
equivalent in terms of redundancy to a 3+1 RAID5), and three logical volumes, V2, V3
and V4, on top of it that can be accessed by the user as /dev/salsa1, /dev/salsa2,
/dev/salsa3, respectively, and c) a JBOD SALSA device, where a single physical SSD
is exposed by SALSA as a single volume (which the user can access as /dev/jbod0).

Users can directly access the volumes as they would access any other block device,
for example, to deploy a file system or a database. For instance, we have deployed
local file-systems, such as ext4 and XFS, on top of SALSA, as well as distributed file-
systems, such as IBM Spectrum ScaleTM and ApacheTM Hadoop® HDFS, and object
storage systems, like Ceph and OpenStack® Swift. In addition, we have successfully
deployed and run database systems, such as IBM DB2®, MySQL, and Oracle®
Database 11g, and key-value stores, like RocksDB.

5. Experimental Results

We now present some experimental results with SALSA under micro-benchmarks as
well as real application workloads. For the experiments, we used a standard
commodity server equipped with two Intel® Xeon® E5-2630v3 CPUs and 128 GB of
main memory. In all SSD experiments, we used low-cost SSDs made of TLC Flash,
which were directly attached to the host as JBOD devices over SATA. In the SMR HDD
experiments, we used a 10-TB host-managed HDD directly attached to the host over
SATA.

5.1. Micro-benchmarks using SALSA on SSDs

5.1.1. Performance
In the first experiment, we used five identical low-cost SSDs in three different
configurations: a) in a 5-drive software RAID0, b) in 4+1 software RAID5, and c) in a
4+1 SALSA SAID5 array, which is equivalent to RAID 5 in terms of redundancy and
protection. After pre-conditioning the SSDs, we used a standard open-source I/O
workload generator (fio) to generate a uniformly random read workload across the
entire array using an I/O block size of 4 kB and doing direct (unbuffered) I/O. We
increased the offered load by varying the queue depth of outstanding requests from
QD = 1 to QD = 32. At each queue depth, we measured the IOPS and the average

S
S

D

S
S

D

S
S

D

S
M

R

H
D

D

S
M

R

H
D

D

S
M

R

H
D

D

S
M

R

H
D

D

S
S

D

SAID5

V2 V3 V4

SAID0

V0

JBOD

DD DD DD DD DD DD DD DD

L
in

u
x
 K

e
rn

e
l

V
F

S

/dev/salsa0 /dev/salsa1 /dev/salsa2 /dev/salsa3 /dev/jbod0

IBM Research – Zurich

SoftwAre Log-Structured Array 8

completion latency of the requests. The results are shown in Figure 2. As can be seen,
all three systems achieved good performance: more than 250 kIOPS at approx. 200 –
250 µsec of latency.

Figure 2: Performance for 100% reads (random I/O)

Next, we repeated the same experiment with the same uniform random access pattern,
but doing 80% reads and 20% writes instead of 100% reads. The results are shown in
Figure 3. In this case, the picture is very different for the three systems. The
performance for RAID0 and RAID5 dropped down to 8.5 kIOPS and 4 kIOPS
respectively: adding 20% of writes in the I/O mix resulted in the performance dropping
by more than an order of magnitude! The reason for this drop is the significant write
amplification that the random writes incur, which consumes most of the SSD internal
bandwidth, leaving only very little resources to serve the reads. Thus, read operations
are stuck waiting behind time-consuming writes, and the overall performance suffers
severely. For RAID5, the random writes incur read-modify-write operations for the
parity at the array level, which double the write amplification and therefore halve the
performance of the system. In contrast, by shifting the burden of garbage collection to
the host software, using the host resources for throttling and scheduling, and avoiding
the read-modify-write penalty due to the log-structured data layout, SALSA was able
to maintain a performance of more than 110 kIOPS, that is, about 13 times better than
RAID0 and 28 times better than RAID5.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0 50 100 150 200 250 300 350

R
e

a
d

 L
a

te
n

c
y
 (

m
s

e
c

)

Read Throughput (kIOPS)

100% Reads

RAID0

RAID5

SALSA

IBM Research – Zurich

SoftwAre Log-Structured Array 9

Figure 3: Performance for 80% reads and 20 writes (random I/O)

5.1.2. Endurance
Next, we experimented with SALSA in JBOD mode to measure its effect on the device
endurance. After low-level formatting the device, we exercised one full device worth of
random writes and measured the wear on the device, as reported by the relevant
counter in the device’s S.M.A.R.T attributes (the counter increases linearly with the
number of Program-Erase cycles performed to the device’s Flash cells). We then
repeated the procedure 10 times with SALSA and 10 times on the raw device (without
SALSA), and plotted the results in Figure 4. As expected, the lower end-to-end write
amplification of SALSA translated into less wear to the device. Specifically, after the
10 iterations, SALSA had incurred 4.6 times less wear to the device, which would
translate into a 4.6 times longer device lifetime.

Figure 4: Device wear for 10 full-device writes

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0 20 40 60 80 100 120

L
a
te

n
c

y
 (

m
s

e
c

)

Throughput (kIOPS)

80% Reads / 20% Writes

RAID0

RAID5

SALSA

0

20

40

60

80

100

120

140

0 2 4 6 8 10

D
e
v
ic

e
 W

e
a

r

Full Device Writes

Device Wear
Raw

IBM Research – Zurich

SoftwAre Log-Structured Array 10

5.1.3. CPU utilization
We measured the CPU overhead of SALSA to assess to whether it can scale with the
number of SSDs. For this, we ran SALSA in a server with 14 SSDs, creating an
individual SALSA volume for each SSD. We ran a random write workload, as under
random writes, SALSA consumes the most CPU cycles compared with reads or
sequential writes: this is due to the high write amplification incurred by random writes,
which in turn means heavy garbage collection and additional I/O for relocations. We
ran the same workload with and without SALSA and measured the system CPU
utilization. As the throughput of the two systems was different, we normalized the CPU
utilization measured by the number of user IOPS served in the two cases and plotted
the results in Figure 5. On average, SALSA only consumed ~7% more CPU cycles
than the raw device per I/O operation.

Figure 5: Normalized CPU Utilization

5.2. Cloud Database Workload using SALSA on SSDs

In the next experiment, we tested SALSA under a typical cloud workload: multiple
database servers running in cloud VMs that share the same hardware resources.
Specifically, we deployed multiple VMs that run the MySQL database on Ubuntu Linux
14.04, and created database load using the Sysbench benchmarking suite. Multiple
database users submit queries to the database servers: the query processing stresses
the storage and, as a result, the end-to-end performance is primarily determined by
the storage performance. We ran the benchmark in two different configurations: one
(‘baseline’) in which four low-cost 1-TB SSDs were used in software RAID5 and one
(‘SALSA’) in which we created a SALSA SAID5 array (which is equivalent to RAID5 in
terms of redundancy and protection). In each case, we measured the application-level
transaction response time as well as the total throughput of the system (i.e., the total
number of transactions executed per second). We increased the load by adding more
VMs and more database users per VM. The results are shown in Figure 6. As evident,
the system was able to realize the I/O performance improvement offered by SALSA all
the way up to the application. With SALSA running on top of the SSDs, the system
achieved a 16 times higher throughput at ~100 msec of transaction response time
and a 42 times lower transaction response time for a constant throughput of ~50
transactions per second.

0.000%

0.010%

0.020%

0.030%

0.040%

0.050%

0.060%

0.070%

Raw SALSA

N
o

rm
a

li
z
e

d
 C

P
U

 U
ti

li
z
a

ti
o

n

IBM Research – Zurich

SoftwAre Log-Structured Array 11

Figure 6: Database performance in a cloud environment

5.3. Micro-benchmarks using SALSA on SMR HDDs

Next, we experimented with SALSA on a host-managed SMR HDD (‘SALSA on HM’)
and compared its performance with that of a drive-managed SMR HDD (‘DM’), that is,
one in which the indirection layer that manages the space on the drive, reclamation
and garbage collection is implemented on the drive controller. As both SALSA and the
drive-managed SMR HDD expose a block interface, we used the same I/O workload
generator as in the previous experiments to generate I/O load to the device. Note that
in this experiment we only used the sequential zones of the HDD; the optimizations
involving the conventional zones are therefore not used, and the same holds for the
geometry-aware data placement optimizations.

In the first experiment, we performed 64 kB sequential writes to the host-managed
SMR HDD with SALSA (‘SALSA on HM – Sequential’) and measured the bandwidth.
The results are shown in Figure 7, where we have also included the maximum
performance of the formatted drive (which corresponds to the drive performance before
it fills up and garbage collection is needed). As shown, SALSA on the host-managed
HDD achieves a write performance that is within 90% of the ‘ideal’ drive performance
(when no GC would be required). Next, we performed 64 kB random writes to both the
host-managed HDD with SALSA (‘SALSA on HM – Random’) and to the drive-
managed HDD (‘DM – Random’) and measured the total throughput. The results are
also shown in Figure 7: SALSA achieved a steady-state performance of about ~9 MB/s,
whereas the write performance of the drive-managed SMR disk dropped to almost 0,
averaging at less than 150 kB/s at steady state. The SALSA performance was 64
times higher than the performance of the drive-managed SMR drive.

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

T
ra

n
s
a

c
ti

o
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

)

Transactions Per Second (TPS)

Database Performance

Baseline

SALSA

IBM Research – Zurich

SoftwAre Log-Structured Array 12

Figure 7: Write I/O Bandwidth with SALSA on SMR HDDs

6. Conclusion

SoftwAre Log-Structured Array (or SALSA for short) is a unified storage stack for low-
cost SSDs and SMR disks. Being a pure software technology that runs on Linux,
SALSA can take advantage of commodity server hardware and commodity storage
devices. By exploiting the software intelligence on the host, SALSA moves the
complexity of managing Flash and SMR disks from hardware to software. SALSA
elevates the performance and endurance of commodity Flash-based SSDs to meet
the requirements of modern data centers.

For host-managed SMR disks, SALSA provides a traditional block interface that hides
the complexities of SMR technology from the user, and dramatically improves write
performance. Our results using commodity SSDs suggest that SALSA is a promising
approach that, for certain workloads, could yield order-of-magnitude improvements,
thereby enabling the use of commodity SSDs and SMR disks in modern data centers.

Trademark Notes

IBM, Power, IBM Spectrum Scale, GPFS and DB2 are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Linux is the registered trademark of Linus Torvalds in the U.S. and other
countries. Intel and Intel Xeon are registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries. Other product and service names might be trademarks of IBM or other companies.

0

10

20

30

40

50

60

-200 300 800 1300 1800

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Time (sec)

SALSA on HM - Random

SALSA on HM - Sequential

DM - Random

Maximum performance of formatted HM HDD

