

RZ 3923 (# ZUR1802-010) 02/06/2018
Computer Science 14 pages

Research Report

Unveiling the Performance of Fast NVM Storage with the uDepot

KV-Store

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas

IBM Research – Zurich

8803 Rüschlikon

Switzerland

{kou, nio, iko}@zurich.ibm.com

© 2019 The authors

The final version of this paper has been published as “Reaping the performance of fast NVM storage
with uDepot,” in: Proc.17th USENIX Conference on File and Storage Technologies (FAST ’19), Boston, MA, pp. 1-15

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some
reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

mailto:iko%7D@zurich.ibm.com

Unveiling the performance of fast NVM storage with the uDepot KV-store

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas
IBM Research

{kou, nio, iko}@zurich.ibm.com

Abstract
Storage devices based on novel NVM technologies, such
as 3D XPoint, have recently become available and dras-
tically improve performance compared to conventional
SSDs. On one hand, these devices present opportunities
to accelerate systems by complementing conventional
(slower) storage and to reduce the costs of systems that
rely on DRAM in order to meet their performance de-
mands. On the other hand, their performance exposes
many inefficiencies in applications and the IO stack, ren-
dering them unable to fully exploit these new devices.

In this paper, we present uDepot, a key-value store
built bottom-up to match the performance of fast NVM
storage devices. uDepot is carefully crafted to avoid
inefficiencies, and employs a novel, task-based IO run-
time system to maximize IO performance, enabling ap-
plications to use fast NVM devices at their full potential.
We show that uDepot’s performance nearly matches the
raw capabilities of the underlying devices, both in terms
of throughput and latency, and is highly scalable across
multiple devices. As an example, uDepot delivers more
than 6 million GET operations per second on a single
server. Moreover, we demonstrate a memcache service
built on top of uDepot that offers similar performance to
DRAM-based implementations at a much lower cost.

1 Introduction

Advancements in memory technologies have enabled
storage devices with unprecedented performance: they
achieve hundreds of thousands of IO operations per sec-
ond (IOPS) with a few microseconds of latency per IO
operation. To give two examples, the Intel Optane SSD,
which is based on 3D XPoint (3DXP) memory, improves
upon the throughput and latency of conventional Flash-
based SSDs by an order of magnitude [75], while Sam-
sung is pioneering new NAND-Flash designs with sig-
nificantly reduced latency, such as the Z-SSD [63]. Case

in point, the latency for reading a single 4KiB block for
a conventional Flash-based SSD is in the order of 80 µs,
while for Z-SSD it is 12 µs, and for Optane it is 7 µs.
Furthermore, the NVM Express (NVMe) [36, 60] proto-
col provides a standardized, low-latency, streamlined and
scalable interface for accessing high-performance stor-
age devices, addressing the performance and efficiency
shortcomings of legacy protocols (e.g., SATA) [80].

The emerging fast storage devices sit between con-
ventional SSDs and DRAM in the memory hier-
archy and constitute a new and discrete point in
the performance/cost-for-capacity tradeoff spectrum.
Hence, we view these devices as a counterweight to the
architectural trend of placing all data in main memory
[23, 30, 61, 62, 66], and aim to use fast NVM storage to
build more cost-effective and scalable data stores.

A prominent example of pervasive data stores that
make heavy use of DRAM is key-value stores, which are
extensively used in modern stacks [21]. Existing key-
value stores are unable to fully exploit the performance
of these emerging fast storage devices. Key-value stores
that place all their data in DRAM [18, 22, 37, 43, 46, 49,
57, 62] either cannot transparently use storage (e.g., sys-
tems using RDMA where memory needs to be pinned),
or have to rely on OS paging, known to degrade perfor-
mance [29]. On the other hand, key-value stores that
place their data in storage [7, 20, 27, 41], even those that
specifically target Flash SSDs [3,15,16,48,50,71,74,78],
are designed with slower storage devices in mind and
cannot fully reap the performance of devices such as
the Optane drive, both in terms of latency and through-
put. For example, most of these systems access storage
via blocking system calls, an IO path that underperforms
when used with fast NVM devices.

In this paper, we present uDepot (pronounced micro-
depo), a key-value store designed from the ground up
for fast NVM devices to fill the gap between existing
DRAM-based and storage-based systems and operate on
the µs scale [6]. By design, uDepot is lean: it provides a

1

streamlined set of functions that enable data access with
low-latency, but is not, at its core, burdened with richer
functionality. It is also scalable as it can nicely scale its
performance as one increases the number of SSDs, the
number of available CPU cores. Importantly, uDepot is
efficient in that it a) supports a high throughput per CPU
core, b) it achieves a high utilization of storage capacity,
c) it carefully enforces low bounds to end-to-end IO am-
plification, for both reads and writes. The core of uDepot
is an embedded store that can be used directly by appli-
cations, which we use to build network services on top.
One such server uses a custom protocol for key-value ac-
cess over the network. Another integrates uDepot as a
cache and implements the Memcache [54] protocol, al-
lowing it to be used as a drop-in replacement for mem-
cached [55], a widely used [4, 59] DRAM-based cache.

The contributions of this paper are summarized below:

• We recognize the potential of novel NVM-based
storage media to replace certain DRAM-hungry ap-
plications, such as caches, without performance
compromises, enabling dramatic cost reduction.
• We present uDepot, a novel key-value store that

targets fast NVM storage, and combines multiple
techniques to overcome performance bottlenecks
and enable key-value storage with low latency, high
CPU and storage efficiency, and high scalability.
• Our experimental evaluation demonstrates that

uDepot matches the performance of fast NVM de-
vices, vastly outperforms existing storage-based
systems by up to ×11.32%, but also matches the
performance of a memory-backed cache; thus, uDe-
pot can be used as a drop-in replacement for
DRAM-based systems to dramatically reduce cost.

The rest of the paper is organized as follows. We pro-
vide background and motivation in §2, present and eval-
uate uDepot in §3 and §4. We discuss related work in §5
and conclude in §6.

2 Background and Motivation

Many storage systems have been architected to store
their data in main memory [30, 47, 61]. This trend
was motivated by performance gains and facilitated by
DRAM scaling economics. With key-value storage be-
coming increasingly popular in modern stacks [17, 26],
researchers have been conducting an “arms race” to
maximize performance for in-memory key-value stores
[8, 18, 37, 43, 46, 57, 62]. As DRAM memory is ap-
proaching physical scaling limits [58] and capacity in-
crease is slowing down, such systems rely on scaling out
to achieve the required storage capacity. Naturally, this is
inefficient and comes at a high cost as the rest of the node

0 100 200 300 400 500 600
Throughput (kops/sec)

0

50

100

150

200

250

300

350

La
te

nc
y

(u
s)

qd=1: 143kops/sec, 6.8us
qd=8: 589kops/sec, 13.0us

qd=1: 14kops/sec, 79.1us

qd=64: 290kops/sec, 181.5us

Optane (spdk perf)
Flash SSD (spdk perf)

Figure 1: Latency and throughput of 4 KiB random reads on
two NVMe devices: a conventional Flash SSD, and an Optane,
as we vary the queue depth (ops in flight) in powers of two.

(CPUs,storage) remains underutilized and resources re-
quired to support the additional nodes need to increase
proportionally as well (space, power supplies, cooling).
In addition, while the performance achieved by these
systems is impressive, they typically depend on high-
performance networking (e.g., RDMA NICs). Thus, they
cannot be deployed in commodity datacenter infrastruc-
tures such as the ones offered by cloud providers.

Recently, a new class of storage devices built off novel
NVM technologies has become available, bridging the
gap between DRAM and conventional Flash SSDs as it
provides low-latency and high-throughput access. Fig. 1
illustrates the performance differences between an Op-
tane drive and a conventional Flash SSD as measured us-
ing SPDK’s perf [73]. A single Optane drive, based on
3DXP, can deliver a throughput close to 600 kops/s, and
achieve read access latencies of 7 µs (see §4.1.1). Fur-
thermore, Samsung announced availability of a new de-
vice [76] that utilizes a new type of Flash (Z-NAND [63])
and has similar performance characteristics to Optane. It
is also worth noting that Optane drives are already avail-
able in the public cloud [52].

Hence, a key-value store that would deliver the perfor-
mance of these devices would be an attractive alternative,
performing better than existing SSDs at a lower cost than
DRAM. Furthermore, in environments with conventional
networking (10 Gbit/s Ethernet) such as most cloud plat-
forms, the full performance of DRAM key-value stores
cannot be obtained, resulting in a small or marginal per-
formance gap between main memory and fast NVM stor-
age systems. Delivering the performance of these de-
vices in a key-value store (or any application), however,
is not easy since existing applications are not built to op-
erate at microsecond scale [6].

2

..Local datastore.

LSA

.

Storage

.

Network

. ..Server ..Client..

.. KV interface .. Partitioning

.

¶

.

·

.

¸

.

¹

.

º

.
»

.

¼

.

½

Figure 2: uDepot architecture

3 uDepot

We start with a discussion of the main (in some cases
competing) design goals of uDepot. First and foremost,
uDepot aims to maximize performance and fully uti-
lize fast NVM devices. To this end, uDepot exposes a
minimal interface: GET, PUT, and DELETE operations on
variable-sized keys and values. uDepot is build around
a hash table allowing fast element access but lacking ef-
ficient range queries. Second, uDepot aims to minimize
the metadata capacity overhead, allow accessing PBs of
storage. This requires having: (a) sufficiently large ad-
dresses to storage, and (b) enough hash entries to fit
the required number of key-value pairs. Third, uDepot
emphasizes efficiently accessing storage using the best
available IO facility. Finally, uDepot aims to be memory
efficient. It does so by supporting online resizing of the
index structure with minimal disruption to operations.

Next, we discuss uDepot in detail. We start with an
architectural overview (§3.1) and dive into: space allo-
cation (§3.2), datastore design, (§3.3, §3.4), uDepot op-
erations (§3.5), persistence (§3.6), IO (§3.7), and imple-
menting uDepot network servers (§3.8, §3.9).

3.1 Architecture
uDepot is a distributed key-value server. It partitions the
key space using a consistent hash that maps keys to the
servers. Each node might act as a client, a server, or
both. Fig. 2 shows uDepot’s architecture. Operations
(e.g., GET) first check the consistent hash (¶) to deter-
mine whether the operation can be executed locally (·).
If not, the system acts as a client (¸) and forwards the
request to one or more uDepot servers (¹). The uDepot
server component receives and decodes requests from the
network (º) and then uses the existing key-value inter-
face to serve them (»). The server and client compo-
nents are responsible for implementing the network pro-
tocol. Currently, uDepot supports a custom uDepot pro-
tocol, and the Memcache protocol [54]. This architecture
allows different configurations, based on how the par-

titioning component is implemented. In this paper, we
use uDepot as an embedded store where all operations
are executed locally (akin to RocksDB [20]), or under a
client-server model where clients do not maintain keys
and always contact a single server that holds all of the
keys (akin to memcahed [55]).

3.2 Space management with SALSA

uDepot manages space using a log-structured approach
[56, 67], i.e., space is allocated sequentially and garbage
collection (GC) deals with fragmentation. Specifically,
we use SALSA [34], running as a user-space library.
We use SALSA for a number of reasons. First, it
enables good performance on commodity Flash-based
SSDs and idiosyncratic storage in general [34]. Sec-
ond, log-structured allocation is more efficient than tradi-
tional allocation methods even for non-idiosyncratic stor-
age like DRAM [68]. Third, a major use case for uDepot
is caching, and there are a number of optimization op-
portunities when co-designing GC and caches [69, 71].

Fully describing SALSA is beyond the scope of this
paper. Instead, we present an overview, focusing on as-
pects that relate to uDepot. SALSA splits the available
storage space into segments, and segments are, in turn,
split into grains. SALSA supports multiple “controllers”
over a single pool of storage, each with its own policy
and allocation streams. A segment can only be owned by
a single controller. uDepot implements two SALSA con-
trollers: one for storing a log of key-value records, and
one for persisting the index hash tables.

alloc grains(ngrains) -> addr

invalidate grains(addr, ngrains)

gc callback(addr, ngrains)

seg md callback(addr, ngrains)

seg iterator()

Table 1: SALSA space management interface

The SALSA API is summarized in Table 1. The
alloc grains call requests space (in granularity of
grains), while invalidate grains is used to inform
SALSA that the specified grains are no longer used.
SALSA tracks the valid grains in segments, and uses this
information to guide GC. To perform relocation, SALSA
uses gc callback to upcall its user to relocate the speci-
fied grains. When a segment is allocated SALSA upcalls
the proper user of the segment using seg md callback

so that they can store their metadata into the segment
reserved grain(s) pointed by (addr, ngrains). During
startup, users can iterate over SALSA segments using the
seg iterator() interface in order to read the segment
metadata and restore the segment data as it sees fit.

3

3.3 Mapping structure
uDepot stores key-value records in NVM storage in a log,
while maintaining an in-memory two-level directory for
mapping keys to record locations. To speed up restor-
ing the mapping structure, in-memory structures are also
saved to persistent storage, but they are not guaranteed
to be up-to-date. The persistent source of truth is the log.
The directory is an atomic pointer to a read-only array
of pointers to hash tables. This structure allows for lock-
free accesses when no resize (§3.4) is running.

..........
NVM space

.........

directory

........

table

..

segment

..

hdr

.

key

.

val

.

KV record

Figure 3: uDepot mapping structure

Each directory entry points to a hash table implement-
ing a modified hopscotch algorithm [32]. We choose
hopscotch because of its high density, cache efficient and
high performance lookup even in high occupancy, and
simple concurrency control [18]. We make three main
modifications to the algorithm. First, our version re-
quires a hash table with a power of two number of entries.
This allows us to calculate the hopscotch bucket with the
least-significant bits (LSB) of the fingerprint; existing
entries are thus not required to store those bits but only
the distance from their bucket; they are implicit based
on the entry location, similarly to the indexing of set-
associative caches [33]. We take this approach to have
the (full) fingerprint at run-time and support efficient on-
line resize (§3.4), without having to read the keys from
storage to recompute their fingerprints. Second, con-
currency control is provided through an array of locks.
These locks operate on different regions of the hash ta-
ble, with a region being strictly larger than the bucket
size. A lock is acquired based on the bucket’s region; if
a bucket spans two regions, a second lock is acquired in
order. To avoid complex ordering schemes for deadlock
prevention, buckets do not wrap-around the hash table.
Moreover, to avoid inserts spanning more than two re-
gions, we do not displace entries further than two regions
apart. Last, we do not maintain a bitmap per bucket, nor
a linked-list of entries per bucket, as in the original vari-
ant [32]. A bitmap per bucket would increase our size
requirements by 50% for the default configuration (8B
entries, and bucket size of 32), and a linked list would at
least double it (assuming 8B pointers and singly or dou-

bly linked list); let alone the increase in complexity. A
linear probe is performed directly on the entries both for
lookup and insert. The raw multi-threaded performance
of the hash table at the default configuration (bucket size
of 32, 1GiB size with 227 entries, and 2048 locks) on
a dual 10-core machine, at 90% occupancy (up-to 90%
for inserts), amounts to 4.3M lookups/sec and 2.7M in-
serts/sec on 1 thread, and 43.4M lookups/sec and 8.9M
inserts/sec on 20 threads.

Each table consists of 8-byte entries:

s t r u c t HashEnt ry {
u64 b u c k e t o f f : 5 ; / / b u c k e t o f f s e t
u64 k e y f p t a g : 8 ; / / f i n g e r p r i n t MSBs
u64 k v s i z e : 1 1 ; / / KV s i z e (g r a i n s)
u64 pba : 4 0 ; / / s t o r a g e o f f s e t (g r a i n s)

} ;

The pba field contains the grain offset on storage
where the key-value pair resides. To allow utilization
of large-capacity devices we use 40 bits for this field,
thus able to index petabytes of storage (4 PiB for 4 KiB
grains, 0.5 PiB for 512b grains). The pba value of all 1s
indicates an invalid (free) entry. We use 11 bits to store
the size, in grains, of the key-value pair (kv size). This
allows issuing a single read for GETs to key-value pairs
of up-to 8 MiB – key-value pairs larger than that require
a second operation. A valid entry with a key-value size
of 0 indicates a deleted entry. The remaining 13 bits are
used for the key fingerprint as follows. The in-memory
structures operate on variable size key fingerprints (up-to
64 bits), computed from the key. A 64 bit hash is gen-
erated using cityhash [10], out of which a fingerprint is
generated using the key f p tag+ idx LSB bits. The idx
bits are equal to the log2(entries) of each table. The off-
set of the entry from its bucket is stored in bucket off

and requires log2(bucket size) bits. The remaining bits
are used to store the MSB bits of the fingerprint tag in
key fp tag (8 bits for default bucket size).

For lookups, a fingerprint is generated, and its LSB
bits are used to index the directory and locate the associ-
ated hash table. Next, the idx LSB bits of the key finger-
print are used to index the bucket in the table. A linear
probe is then performed in the bucket and the entry (en-
tries) for which the fingerprint’s key fp tag matches is
(are) returned (a copy of), otherwise null.

For inserts, the hash table and bucket are indexed
as described for the lookup. Then a linear probe is
performed on the bucket and if no entry matches the
key fp tag, then insert returns the first free entry, if
such exists. The user may then fill the entry. If no free
entry exists, then the hash table performs a series of dis-
place attempts to neighbouring buckets until a free entry
can be brought into the original bucket. If this fails, a no
space error is returned, at which point the user usually
triggers a resize operation. If a matching entry (entries)

4

exists, then insert returns the matching entry (entries):
the user then decides whether to update an entry in-place
or rather the search for a free entry where they left off.

The number of maximum entries dictates how much
of the capacity can be utilized: having enough bits
to index PBs of storage allows addressing the avail-
able capacity, but alone does not guarantee utility. By
having a variable size fingerprint, we allow a vari-
able theoretical maximum of indexable entries equal to
2tag bits+idx bits+bucket bits. For the default configuration,
key-value pairs with an average size of 1 KiB, and hash
table efficiency of 90%, this allows utilizing 0.9 PiB
(0.9 · 28+27+5 · 210) of storage. Based on the expected
workload and available capacity, the user can maximize
utilization by configuring the table size accordingly.

If there is no sufficient DRAM for all the mappings,
individual tables may be paged in and out. Depending on
the IO backend, this can be performed transparently by
the OS (using mmap) or by custom uDepot code. The ta-
bles are flushed to storage in normal shutdown to enable
fast restoration of the mapping structure, but also period-
ically to speed recovery. In case of a crash, the mapping
structure information can be reconstructed by the latest
table and the subsequent KV records that were appended
in the log. Versioning information on each segment al-
lows uDepot to distinguish these KV records and restore
the mapping structure.

3.4 Resizing
The in-memory structure may dynamically grow and
shrink to adjust memory consumption to the number of
items stored. The directory grows in powers of two, so
that at any point it holds 2m−1+n entries (m the number
of hash tables in the directory, and n the number of en-
tries in each hash table). During a grow operation, new
tables are allocated and entries are copied from the old
tables to the new. We only need the fingerprint to deter-
mine the new locations, so no IO operations are required
for growing a table. During resize operations, the data
structure becomes read-only: GETs are served, but PUTs
and DELETEs are blocked until resizing completes.

We use a synchronization primitive similar to a big
reader’s lock [64] at the directory level. There are
three types of threads based on accesses: readers, writ-
ers, and resizers. Each uDepot thread has its own
atomic variable, initialized to a large value called the bias
(0x01000000).1 Readers and writers take the thread-
local lock by decreasing the variable by one. If the value
is positive the lock is taken and the operation returns suc-
cess. Otherwise, the variable is increased by one and

1This variable implements a read-write lock per thread, where uDe-
pot readers and writers take the read lock, and uDepot resizers take the
write lock.

failure is returned, indicating that a resize is in progress.
Hence, non-resize operations execute concurrently, and
because locks are thread-local, there is no contention for
non-resizing operations. Resizers are serialized using a
single lock. After taking the lock, they allocate a new
directory double the size of the existing one, and map
the pages of the tables as read-only using mprotect.
Writers updating pages marked read-only will receive a
SEGFAULT. uDepot sets signal handlers to handle these
signals (if the faults happen on addresses other than the
table’s, the previously defined action is taken, allowing
systems like the JVM to work properly). Before entering
the section where such a page fault might occur, readers
and writers set a rollback point using setjmp [44]. The
uDepot SEGFAULT handler jumps to the rollback code,
where all held locks are released and the thread waits
to be woken up by the resizer. Readers continue unob-
structed as pages are copied. When copying is complete,
the resizer takes all the per-thread locks by decreasing
the atomic variable by the bias value. At this point, no
new readers and writers will be able to enter. The re-
sizer waits until all local-thread variables become zero,
at which point it can release the old pages, atomically
swap the location of the new directory in place of the old
one, free the old directory and continue the execution of
readers and writers that are waiting on it.

3.5 uDepot KV operations

For GET, a 64 bit hash of the key is computed and locking
of the associated hash table region (§3.3) is performed.
A lookup (§3.3) is performed, returning zero or more
matching hash entries. After the lookup, the table’s re-
gion is unlocked. If no matching entry is found, the key
does not exist. Otherwise, the key-value record is fetched
for each matching entry; either a full key match is found
and the value is returned, or the key does exist.

For PUT, we first write a key-value record in the log
(out-of-place). Subsequently, we perform an operation
similar to GET (key hash, lock, etc.) to determine whether
the key already exists, using the insert (§3.3) hash ta-
ble function. If not, we insert a new entry to the hop-
scotch table if a free entry exists – if no free entry ex-
ists, then we trigger a resize operation (§3.4). If a key
already exists, we invalidate the grains of the previous
entry, and update the table entry in-place with the new lo-
cation (pba) and size of the key-value record. Note that,
also like GET, read IOs to matching hash table entries are
performed without holding the table region lock. Un-
like GET, though, PUT re-acquires the lock if the record
is found, and repeats the lookup to detect concurrent mu-
tation(s) on the same key: if that is detected, then the
operation that updated the hash table entry first, wins. If
the PUT fails, then it invalidates the grains it wrote before

5

the lookup, and returns an appropriate message. PUT up-
dates existing entries by default, but provides an optional
argument where the user can choose instead to (i) put
only if key exists, or (ii) put only if key does not exist.
DELETE is almost identical to PUT, other than it writes

a tombstone entry instead of the key-value record, and
that it only proceeds if the key is found in the data store.
Tombstone entries are used to identify deleted entries on
a restore from the log, and are recycled during GC.

3.6 Metadata and persistence
uDepot maintains metadata at three levels, (i) the device,
(ii) the segment, and (iii) the key-value. At the device
level the uDepot configuration is stored together with a
unique seed and a checksum. At each segment’s header,
its configuration is stored (owning controller, segment
geometry, etc.) together with a timestamp and check-
sum that matches the device metadata. uDepot prepends
to each key-value pair 6B of metadata containing the key
size (2B) in bytes, and value size (4B) in bytes, and ap-
pends (to avoid the torn page problem) a 2B checksum
matching the segment metadata (not computed over the
data). The device and segment metadata require 128B
and 64B, respectively, are stored in grain aligned loca-
tions and their overhead is negligible (0.001% for grain
size of 1 KiB and default segment size of 1 GiB). The
main overhead is due to the per key value metadata which
depends on the average key-value size; for a 1 KiB aver-
age size the overhead amounts to 0.8%.

On shutdown, the hash tables(Sec 3.3) are dumped
to storage in their respective (allocated at runtime) seg-
ments (1 segment per hash table). Upon initialization,
we first check whether uDepot was cleanly stopped us-
ing per hash table checksums and unique session identi-
fiers. If a clean shutdown is detected, the whole directory
is restored. Otherwise, uDepot iterates through the valid
segments using SALSA segment iterator(), and re-
stores all key-value entries from valid segments starting
at each segment’s first grain until it reaches the first non-
valid entry (key-value metadata checksum mismatch) or
the end of the segment.

3.7 uDepot IO backends (Linux and TRT)
How NVM storage is accessed determines the achieved
performance. uDepot by default bypasses the page cache
and accesses the storage directly (O DIRECT). This pre-
vents uncontrolled memory consumption, but also avoids
scalability problems caused by concurrently accessing
the page cache from multiple cores [82]. Broadly speak-
ing, there are three ways to perform IO: (i) via syn-
chronous system calls (e.g., pread, pwrite), where han-
dling concurrent requests requires one thread for each,

leading to context switches that hurt performance. (ii) us-
ing asynchronous IO (e.g., Linux AIO [35]), which al-
lows multiple IO requests (and their completions) to be
issued (and received) in batches from a single thread.
(iii) directly from user-space using polling [38, 72, 81].
This approach provides the best performance because it
avoids context switches, data copying, and scheduling
overheads, but many environments (e.g., cloud VMs) do
not (yet) support it. uDepot supports all above accesses.

IO via synchronous system calls is implemented by the
uDepot Linux backend (called so because scheduling is
left to Linux). Despite its poor performance, this back-
end allows uDepot to be used by existing applications
without modifications. For example, the uDepot JNI in-
terface uses this backend. Its implementation is simple,
since most operations directly translate to system calls.

Utilizing fast devices requires performing IO asyn-
chronously. For asynchronous IO, uDepot uses TRT,
a task-based run-time system. Next, we provide an
overview of TRT (space limitations prohibit a full treat-
ment) and discuss how is used by uDepot. TRT fol-
lows task-based model, where a task is a collaboratively
scheduled (i.e., no preemption) execution context with
its own stack. TRT spawns a number of threads and ex-
ecutes a user-space scheduler on each. The scheduler
executes in its own stack and uses a round-robin algo-
rithm. Scheduling is collaborative, so tasks need to per-
form calls that switch to the scheduler stack. An exam-
ple of such a call is yield that instructs the scheduler
to schedule the next task. Other calls include spawning
tasks, waiting for events, and notifying tasks. Task syn-
chronization, in particular, is based on calls that imple-
ment an interface resembling Futures.

TRT provides an infrastructure for asynchronous IO.
While many existing systems assume a single point
for interacting with the underlying IO facilities (e.g.,
epoll), TRT does not, and can use different IO backends
at the same time. Each different IO backend implements
a poller task that is responsible for polling for events
and notifying tasks that to handle these events. To avoid
cross-core communication, each core runs its own poller
instance. Poller tasks are scheduled by the scheduler as
any other task. TRT currently supports four backends:
Linux AIO [35], SPDK [72] (single device and RAID-0
multi-device configurations), and epoll.2 Backends pro-
vide a low-level interface that allows tasks to issue re-
quests and wait on pollers for results, and a high-level in-
terface that allows synchronous-looking code. For exam-
ple, a trt::spdk::read() call will issue a read com-
mand to SPDK device queues, and call the TRT sched-
uler to suspend task execution until notified by the poller
that processes SPDK completions.

2 backends for RDMA and DPDK are being developed

6

3.8 uDepot server

uDepot provides two interfaces for users: one where op-
erations take arbitrary (contiguous) user buffers, and one
where operations take uBuffs, a data structure that holds
a linked list of buffers allocated from uDepot. The for-
mer interface, which internally is implemented using the
latter, is simpler but is inherently inefficient. One of
the problems is that for many IO backends it requires
a data copy between IO buffers and the user-provided
buffers. For instance, performing direct IO requires
aligned buffers, while SPDK requires buffers allocated
via its run-time system. The uDepot server uses the sec-
ond interface so that it can perform IO directly from (to)
the received (send) buffers. The server is implemented
using TRT and uses the epoll backend for networking.
First a task for accepting new network connections is
spawned. This tasks registers with the poller, and is no-
tified when a new connection is requested. When this
happens, the task will check if it should accept the new
connection and spawn a new task on a (randomly chosen)
TRT thread. The task will register with the local poller
to be notified when there are incoming data for its con-
nection. The connection task handles incoming request
by issuing IO operations to the storage backend (either
Linux AIO or SPDK). After issuing an IO request, it de-
fers its execution and the scheduler runs another tasks.
The storage poller is responsible for waking up the task
when the IO completion is available. The task will then
send the proper reply and wait for a new request.

3.9 Memcache

uDepot also implements the Memcache (ascii) proto-
col [54], widely used to accelerate object retrieval from
slower data stores (e.g., databases). The standard imple-
mentation of Memcache is in DRAM [55], but imple-
mentations that also use SSDs exist [24, 51].

uDepot Memcache is implemented similarly to the
uDepot server (§3.8): it uses the uBuff KV interface to
avoid copying, the epoll backend for networking, end ei-
ther the AIO or the SPDK backend for access to storage.
Memcache specific key-value metadata (e.g., expiration
time, flags, etc.) are appended at the end of the value. Ex-
piration is implemented in a lazy fashion: it is checked
when a lookup is performed (either for a Memcache GET
or a STORE command).

uDepot memcache exploits synergies in the cache
eviction and the space management ’s GC design space:
a merged cache eviction and GC process is implemented
that reduces the GC cleanup overhead to zero in terms
of IO amplification. Specifically, a GC LRU-policy is
employed at the segment level (§3.2): on a cache hit
the segment containing the key-value is updated as the

most recently accessed; when running low on free seg-
ments the least recently used one is chosen for cleanup,
its valid key-value entries are invalidated (i.e., evicted)
in the uDepot directory, and the segment is now free
to be re-filled, without performing any relocation IO.
This scheme allows us to maintain a steady performance
even in the presence of random updates, and also to
reduce the overprovisioning at the space management
level (SALSA) to a bare minimum (enough spare seg-
ments to accommodate the supported write-streams) thus
maximizing capacity utilization at the space management
level. A drawback of this scheme is potentially reduced
cache hit ratio [69, 79]; we think this is a good tradeoff
to make since the cache hit ratio is amortized by having
a larger caching capacity due to the reduced overprovi-
sioning.

4 Evaluation

We perform our experiments on a machine with two 10-
core Xeon CPUs, configured to operate at their maxi-
mum frequency: 2.2GHz. The machine has 125 GiB
RAM and runs a 4.14 Linux kernel (including support
for KPTI [12] – a mitigation for CPU security problems
that increases context switch overhead). The machine
has 26 NVMe drives: 2 Intel Optanes (P4800X 375GB),
and 24 Intel Flash SSDs (P3600 400GB).

4.1 Embedded uDepot
In this section, we examine the performance of uDepot
when used as an embedded store. Our goal is to evaluate
uDepot’s ability to utilize fast NVM devices, and com-
pare the performance of the different IO backends. We
are interested in two properties: efficiency and scalabil-
ity. For the first, we restrain the application to use 1 core
and 1 drive (§4.1.1). For the second, we use all available
drives and cores in the system (§4.1.2).

We use a custom microbenchmark to generate load for
uDepot. We annotate the microbenchmark to sample the
execution time for the operations performed, which we
use to compute the median latency. In the following ex-
periments, we use random keys of 8-32 bytes and values
of 4000 bytes, which results in key-value entries of 4KiB
on the drive (the logical block size of the drives is 512
bytes). We perform 50M random PUTs, and 50M ran-
dom GETs on the inserted keys.

4.1.1 Embedded uDepot: one drive, one core

We evaluate the efficiency of uDepot and its IO back-
ends by using one core to drive one Optane drive. We
compare uDepot’s performance to the raw performance
achievable by the device.

7

0 100 200 300 400 500 600
Throughput (Kops/s)

0

20

40

60

80

100

m
ed

ia
n

la
te

nc
y

(u
se

c)

qd=8

qd=4

qd=2

trt-spdk
trt-aio
linux-directIO

(a) PUTs

0 100 200 300 400 500 600
Throughput (Kops/s)

0

20

40

60

80

100

m
ed

ia
n

la
te

nc
y

(u
se

c)

qd=8

qd=4

qd=4

trt-spdk
trt-aio
linux-directIO

(b) GETs

Figure 4: uDepot running on a single core/single device setup.
Median latency and throughput for a uniform random work-
load of 4K values for different IO backends and different queue
depths.

We bind all threads on a single core (one that is on the
same NUMA node as the drive). We apply the workload
described in §4.1 for queue depths (qd) of 1,2,4,. . . ,128
and for different IO backends. For linux-directIO

(synchronous IO) we spawn a number of threads equal to
the qd. For TRT backends we spawn a single thread and a
number of tasks equal to the qd. Both linux-directIO

and trt-aio use direct IO to bypass the page cache.
Results are shown in Fig. 4b for GETs and Fig. 4a

for PUTs. The linux-directIO backend performs the
worse. To a large extent, this is because it uses one
thread per in-flight request, resulting in frequent context
switches by the OS to allow all these threads to run on
a single core. trt-aio improves performance by us-
ing TRT’s tasks to perform asynchronous IO and per-
form a single system call for multiple operations. Finally,
trt-spdk exhibits (as expected) the best performance as
it completely avoids switching to the kernel for perform-
ing IO.

We use the better performing GET operations to com-
pare uDepot against the performance available from the
device. We focus on two cases: latency with a sin-

linux-directIO trt-aio trt-spdk
0

2

4

6

8

10

12

La
te

nc
y

(u
se

cs
)

spdk raw
fio raw

(a) Median latency for qd=1
linux-directIO trt-aio trt-spdk
0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

spdk raw
fio raw

(b) Throughput for qd=128

Figure 5: uDepot running on a single core/single device setup
under a uniform random workload of GET operations for 4K
values.

gle request in flight (qd = 1), and throughput at a
high queue depth (qd = 128). Fig. 5a shows the me-
dian latency achieved for qd = 1 for each backend.
The figure includes two lines depicting the raw perfor-
mance of the device under a similar workload. That
is, one core, one device, 4KiB random READ opera-
tions at qd = 1 across the whole device which was ran-
domly written (preconditioned). fio raw shows the la-
tency achieved by fio [19] with the libaio (i.e., Linux
AIO) backend, while for spdk raw we use SPDK’s
perf utility [73]. uDepot under trt-spdk achieves a
latency of 7.2 µs which is very close the latency of the
raw device using SPDK (6.8 µs). The trt-aio back-
end achieves a latency of 9.5 µs with the correspond-
ing raw device number using fio being 9 µs. An ini-
tial implementation of the trt-aio backend that used
the io getevents() system call to receive IO com-
pletions, resulted in a higher latency (close to 12 µs).
We improved performance by implementing this func-
tionality in user-space [13, 25, 65]. fio’s latency re-
mained unchanged when using this technique (fio op-
tion userspace reap). Fig. 5b shows the throughput
achieved by each backend across at high (128) queue
depth. linux-directIO achieves 200 kops/s, trt-aio
272 kops/s, and trt-spdk 585 kops/s. As before, fio
raw and spdk raw show the device performance under
a similar workload (4KiB random READs, qd=128) as re-
ported by fio and SPDK’s perf. Raw device perfor-
mance is virtually the same to uDepot performance.

4.1.2 Embedded uDepot: 24 drives, 20 cores

Next, we examine how well uDepot can scale into using
multiple drives and multiple cores, and how the different
IO backends behave under these circumstances.

To maximize aggregate throughput, the experiment
uses the 24 Flash-based NVMe drives in the system, and
utilizes all of its 20 cores. For the uDepot IO back-

8

0 500 1000 1500 2000 2500
Concurrency (trt:128 × #threads, linux:#threads)

0

1

2

3

4

5

6

7
Th

ro
ug

hp
ut

 (M
op

s/
se

c)

linux-directIO
trt-aio
trt-spdk
spdk raw
fio raw

(a) GETs

0 100 200 300 400 500 600
Concurrency (trt:32 × #threads, linux #threads)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

linux-directIO
trt-aio
trt-spdk
spdk raw
fio raw

(b) PUTs

Figure 6: Aggregate GET/PUT throughput of uDepot backends
when using 24 NVMe drives for different concurrencies.

ends that operate on a block device (linux-directIO
and trt-aio), we create a software RAID-0 device that
combines the 24 drives into one using the Linux md

driver. For the trt-spdk backend we use the RAID-0
uDepot SPDK backend. We use the workload described
in §4.1, and take measurements for different numbers
of concurrent requests. For linux-directIO we use
one thread per request, up to 1024 threads. For TRT
backends, we use 128 (32) TRT tasks per thread for
1,2,4,12,16 for GETs (PUTs), and 20 threads. (We vary
the number of TRT tasks per operation becuse they are
saturated at different queue depths.)

Results are presented in Fig. 6. We also include
two lines depicting the maximum aggregate through-
put achieved on the same drives by SPDK perf and
fio using the libaio (Linux AIO) backend. We fo-
cus on GETs, becuase that’s the most challenging work-
load. The linux-directIO backend initially has bet-
ter throughput as it uses more cores. For example, for
a concurrency of 256, it uses 256 threads, and subse-
quently all the cores of the machine; for the TRT back-

ends, the same concurrency uses 2 threads (256 tasks
per thread), and subsequently 2 out of the 20 cores of
the machine. Its performance, however, is capped at
1.66 Mops/s. The trt-aio backend achieves a maxi-
mum throughput of 3.78 Mops/s, which is very close to
the performance achieved by fio: 3.89 Mops/s. Finally,
trt-spdk achieves 6.17 Mops/s which is about 90% of
the raw SPDK performance (6.87 Mops/s).

Overall, both uDepot backends (trt-aio, trt-spdk)
perform very close in terms of efficiency and scalabil-
ity to what the device can provide for each different
IO facility. In contrast, using blocking system calls
(linux-directIO) and multiple threads has significant
performance limitations both in terms of throughput and
latency.

A B C D F
YCSB workload

0

100

200

300

400

500

600

700

O
ve

ra
ll

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

aerospike scylla udepot-trt-aio udepot-trt-spdk

Figure 7: Overall throughput when using 128 YCSB client
threads for different key-value stores.

4.2 uDepot server / YCSB

In this section we evaluate the performance of the uDe-
pot server against two state-of-the-art NVMe-optimized
NoSQL stores: Aerospike [2] and ScyllaDB [70].

To facilitate a fair comparison, we use the YCSB [11]
benchmark. We configure all servers to use two Optane
drives. We run both the client and the server for the
key-value stores on the same machine using the loop-
back network interface, dedicating 10 cores to the server
and 10 cores to the clients. For uDepot, we develop a
YCSB driver using the uDepot JNI interface. Because
TRT is incompatible with the JVM, clients use the Linux
uDepot backend. For Aerospike and ScyllaDB we use
the available YCSB driver. We use YCSB version 0.14,
Scylla version 2.0.2, and Aerospike version 3.15.1.4.
For Scylla, we set the cassandra-cql driver’s core- and

maxconnections parameters at least equal to the YCSB
client threads, and capped its memory use to 64GiB to
mitigate failing YCSB runs on high client thread counts
due to memory allocation. We run YCSB workloads

9

0 20 40 60 80 100 120
YCSB client threads

0

100

200

300

400

500

600

700

O
ve

ra
ll

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

0 20 40 60 80 100 120
YCSB client threads

0

50

100

150

200

250

300

350

400

R
ea

d
la

te
nc

y
(u

s)

0 20 40 60 80 100 120
YCSB client threads

0

100

200

300

400

500

600

U
pd

at
e

la
te

nc
y

(u
s)

aerospike scylla udepot-trt-aio udepot-trt-spdk

Figure 8: Overall throughput, update and read latency, as reported by the YCSB benchmark for different number of client threads
applying workload A (50/50 reads/writes) to different key-value stores.

A,B,C,D,F, with 10M records, and exclude workload E
because uDepot does not support range queries.

Fig. 7 presents the achieved throughput for 128 client
threads for all workloads. uDepot using the trt-spdk

backend improves YCSB throughput from ×1.9 (work-
load B) up to ×4.2 (workload A) against Aerospike,
and from ×8.3 (workload D) up to ×11.32 (workload
C) against ScyllaDB. 5 Fig. 8 focuses on workload A
(50/50 reads and writes), depicting the reported aggre-
gate throughput, update and read latency for different
number of client threads (up to 128) for all the examined
key-value stores. For 64 clients, uDepot achieves a read
(write) latency of 102.2 µs (116.1 µs), Aerospike 425 µs
(452.6 µs), and ScyllaDB 1018 µs (1024.4 µs). Overall,
uDepot exposes the performance of fast NVMe devices
significantly better than Aerospike and ScyllaDB.

4.3 uDepot Memcache
Lastly, we evaluate the performance of the Memcache
implementation of uDepot, and investigate if it can pro-
vide comparable performance to DRAM-based services.

We use Memcached [55] (1.5.4), the standard im-
plementation of Memcache that uses DRAM, as the
standard on what applications using Memcache expect,
MemC3 [22] (commit: 84475d1), a state-of-the-art
Memcache implementation, and Fatcache [24] (commit:
512caf3), a Memcache implementation on SSDs.

We use memaslap [53]3, a standard Memcache bench-
mark, to generate workload. We execute memaslap on
a different machine (2 10-core HT CPUs running at
2.3GHz) connected over 10 Gbit/s Ethernet to the server.
The Memcache servers are configured to use all 20 cores
of our machine. DRAM-based memcached, and MemC3
are configured to use enough memory to fit all the work-
ing set, while Fatcache and uDepot are configured to use

3we applied a number of scalability patches [39] to improve perfor-
mance

0 100 200 300 400 500 600
Concurrency

0

200

400

600

800

1000

1200

O
ve

ra
ll

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

fatcache
memc3
memcached
udepot-trt-aio
udepot-trt-spdk

0 100 200 300 400 500 600
Concurrency

0

100

200

300

400

500

Av
er

ag
e

la
te

nc
y

(u
s)

fatcache
memc3
memcached
udepot-trt-aio
udepot-trt-spdk

Figure 9: Memcache performance as reported by memaslap us-
ing the default 10%-PUT, 90%-GET workload for different num-
ber of clients (concurrency).

the two Optane drives in a RAID-0 configuration, using
the Linux md driver when required (other than that, Fat-
cache uses its default options). We run memaslap using
the default workload that generate a 10%-PUT, 90%-GET
workload under different concurrency settings.

The reported latency and throughput is summarized
in Fig. 9. For a single client, the reported latency is
49 µs for MemC3, 51 µs for both memcached and uDe-

10

pot using trt-spdk, 52 µs for Fatcache, and 67 µs for
uDepot using trt-aio. Contrarily to uDepot, Fatcache
caches data in DRAM which leads to the low latency
at low queue depths. As the number of clients in-
crease, however, the performance of Fatcache signif-
icantly diverges, while uDepot’s performance remains
close. Case in point, for 128 clients, MemC3’s latency
is 110 µs, memcached’s 126 µs, uDepot with trt-spdk

achieves 128 µs, uDepot with trt-aio 139 µs, and
Fatcache 2418 µs; The achieved throughputs are:
MemC3:1145 kops/s, memcached:1001 kops/s, uDepot
trt-spdk: 985 kops/s uDepot trt-aio: 911 kops/s,
and Fatcache: 53 kops/s.

Hence, our results show that, for the most common
network infrastructure, memcached on DRAM can be re-
placed with uDepot on NVM without any noticeable per-
formance downgrade, while existing approaches for im-
plementing Memcache on SSDs cannot exploit the per-
formance benefits of fast NVM storage.

5 Related work

Flash key-value stores Two key-value stores targeting
Flash are FAWN [3], a distributed key-value store, built
with low-power CPUs and small amounts of Flash stor-
age, and FlashStore [15], a multi-tiered key-value store
using both DRAM, Flash, and Disks. These systems are
similar to uDepot in that they keep an index in the form of
a hash-table in DRAM, and they use a log-structured ap-
proach. They both use 6-byte entries: 4 bytes to address
Flash, and 2 bytes for they key fingerprint, while subse-
quent evolutions of these works [16, 45] further reduce
the entry size. uDepot is different in that it moves to the
opposite direction: it takes advantage of DRAM scaling
and increases the entry size to 8 bytes, enabling features
not supported by the aforementioned KV-stores: (i) uDe-
pot stores the size of the key-value entry, allowing it to
fetch both key and value with a single read request. That
is, a GET operation requires a single access. (ii) uDe-
pot supports online resizing that does not require reading
anything from NVM storage. (iii) uDepot uses 40 instead
of 32 bits for addressing storage, supporting up to 1 PB
of grains. Moreover, uDepot is designed from the ground
up for efficient access to fast NVM devices (via different
IO backends) and scaling over many devices and cores.

A number of works [50, 78] built Flash key-value
stores or caches [69,71] that rely on non-standard storage
devices, such as open-channel SSDs. uDepot does not
depend on special devices, and using richer interfaces to
NVMe storage to improve uDepot is future work.

High-performance DRAM key-value stores A large
number of works targets to maximize the performance

of DRAM-based key-value stores using RDMA [18, 37,
57, 62], direct access to network hardware [46], or, FP-
GAs [8, 43]. uDepot, on the other hand, assumes a com-
modity network infrastructure, operates over sockets and
TCP/IP, and places data in NVM storage. Nevertheless,
many of these systems use a hash-table to maintain their
mapping, and access it with one-sided RDMA operations
from the client when possible. FaRM [18], for example,
identifies the problems of cuckoo hashing, and, similarly
to uDepot, uses a variant of hopscotch hashing. To avoid
the cost of RDMA operations, FaRM uses a bucket of
8 entries, while uDepot uses 32. The main difference,
however, is that uDepot supports an efficient, online re-
sizing scheme. FaRM avoids resizing by using an over-
flow chain per bucket which leads to an increased cost
for GET misses because the chain needs to be checked.

Memcache Memcache is a extensively used service
[4, 5, 28, 55, 59]. MemC3 [22] redesigns memcached us-
ing a concurrent cuckoo hashing table. Similarly to the
original memcached, the hash table cannot be dynami-
cally resized and the amount of used memory must be
defined when the service starts. uDepot supports on-
line resizing of the hash table, while also allowing for
faster warm-up times if the service restarts since the data
are stored in persistent storage. Memshare [9] describes
techniques for dynamic sharing across multiple tenants
of a memcache service. Currently, multi-tenancy in uDe-
pot is implemented via multiple uDepot services that
have a vertical slice of the server. Supporting multiple
tenants within uDepot is part of ongoing work.

Task-based asynchronous IO A long-standing debate
exists on programming asynchronous IO using threads
versus events [1, 14, 40, 42, 77]. uDepot is built on TRT
that uses a task-based approach, where each task has its
own stack. A useful extension to TRT would be to pro-
vide a composable interface for asynchronous IO [31].
Flashgraph [83] uses an asynchronous task-based IO sys-
tem to process graphs stored on Flash.

6 Conclusion

We presented uDepot, a key-value store that aims to fully
utilize the performance of fast NVM storage devices like
Intel Optane. We showed that uDepot reaches the per-
formance available from the underlying IO facility it
uses, and can better utilize these new devices compared
to existing systems. Moreover, we showed that uDepot
can use these devices to implement a cache service that
achieves a similar performance to DRAM implementa-
tions, at a much lower cost.

11

References
[1] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W. J., AND

DOUCEUR, J. R. Cooperative task management without manual
stack management. Usenix ATC ’02.

[2] Aerospike — high performance NoSQL database. https://

www.aerospike.com/.

[3] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHAN-
ISHAYEE, A., TAN, L., AND VASUDEVAN, V. FAWN: A fast
array of wimpy nodes. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (2009), SOSP ’09.

[4] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value
store. In Proceedings of the 12th ACM SIGMETRICS/PERFOR-
MANCE Joint International Conference on Measurement and
Modeling of Computer Systems (2012), SIGMETRICS ’12.

[5] Amazon elasticache. https://aws.amazon.com/

elasticache/.

[6] BARROSO, L., MARTY, M., PATTERSON, D., AND RAN-
GANATHAN, P. Attack of the killer microseconds. Commun.
ACM 60, 4 (Mar. 2017).

[7] Oracle berkeley db. http://www.oracle.com/

technetwork/database/database-technologies/

berkeleydb/overview/index.html.

[8] CHALAMALASETTI, S. R., LIM, K., WRIGHT, M., AUYOUNG,
A., RANGANATHAN, P., AND MARGALA, M. An fpga mem-
cached appliance. In Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (2013),
FPGA ’13.

[9] CIDON, A., RUSHTON, D., RUMBLE, S. M., AND STUTSMAN,
R. Memshare: a dynamic multi-tenant key-value cache. In
2017 USENIX Annual Technical Conference (USENIX ATC 17)
(2017).

[10] CityHash, a family of hash functions for strings. https://

github.com/google/cityhash.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud
Computing (2010), SoCC ’10.

[12] CORBET, J. The current state of kernel page-table isolation.
https://lwn.net/Articles/741878/, Dec. 2017.

[13] CORBET, J. A new kernel polling interface. https://lwn.

net/Articles/743714/, Jan. 2018.

[14] DABEK, F., ZELDOVICH, N., KAASHOEK, F., MAZIERES, D.,
AND MORRIS, R. Event-driven programming for robust soft-
ware. In Proceedings of the 10th workshop on ACM SIGOPS
European workshop (2002).

[15] DEBNATH, B., SENGUPTA, S., AND LI, J. Flashstore: High
throughput persistent key-value store. Proc. VLDB Endow. 3,
1-2 (Sept. 2010).

[16] DEBNATH, B., SENGUPTA, S., AND LI, J. Skimpystash: Ram
space skimpy key-value store on flash-based storage. In Pro-
ceedings of the 2011 ACM SIGMOD International Conference
on Management of Data (2011), SIGMOD ’11.

[17] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. In ACM SIGOPS operating systems
review (2007), vol. 41.

[18] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. Farm: Fast remote memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
14) (2014).

[19] Flexible I/O tester, https://linux.die.net/man/1/fio.

[20] FACEBOOK. RocksDB — a persistent key-value store. http:

//rocksdb.org.

[21] FACEBOOK. RocksDB users. https://github.com/

facebook/rocksdb/blob/master/USERS.md.

[22] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3:
Compact and concurrent memcache with dumber caching and
smarter hashing. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 13) (2013).

[23] FÄRBER, F., CHA, S. K., PRIMSCH, J., BORNHÖVD, C., SIGG,
S., AND LEHNER, W. Sap hana database: Data management for
modern business applications. SIGMOD Rec. 40, 4 (Jan. 2012).

[24] fatcache. https://github.com/twitter/fatcache.

[25] fio user io getevents() implementation. https:

//github.com/axboe/fio/blob/fio-3.3/engines/

libaio.c#L120.

[26] FITZPATRICK, B. Distributed caching with memcached. Linux
journal 2004, 124 (2004).

[27] GOOGLE. LevelDB. https://github.com/google/

leveldb.

[28] App engine memcache service. https://cloud.google.com/
appengine/docs/standard/python/memcache/.

[29] GRAEFE, G., VOLOS, H., KIMURA, H., KUNO, H., TUCEK, J.,
LILLIBRIDGE, M., AND VEITCH, A. In-memory performance
for big data. Proc. VLDB Endow. 8, 1 (Sept. 2014).

[30] HARIZOPOULOS, S., ABADI, D. J., MADDEN, S., AND
STONEBRAKER, M. Oltp through the looking glass, and what we
found there. In Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data (2008), SIGMOD
’08.

[31] HARRIS, T., ABADI, M., ISAACS, R., AND MCILROY, R.
Ac: Composable asynchronous io for native languages. In Pro-
ceedings of the 2011 ACM International Conference on Ob-
ject Oriented Programming Systems Languages and Applications
(2011), OOPSLA ’11.

[32] HERLIHY, M., SHAVIT, N., AND TZAFRIR, M. Hopscotch hash-
ing. In Proceedings of the 22Nd International Symposium on
Distributed Computing (2008), DISC ’08.

[33] HILL, M. D., AND SMITH, A. J. Evaluating associativity in cpu
caches. IEEE Trans. Comput. 38, 12 (Dec. 1989).

[34] IOANNOU, N., KOURTIS, K., AND KOLTSIDAS, I. Elevating
commodity storage with the SALSA host translation layer. ArXiv
e-prints (Jan. 2018). https://arxiv.org/abs/1801.05637.

[35] io submit(5) - submit asynchronous I/O blocks for pro-
cessing. http://man7.org/linux/man-pages/man2/io_

submit.2.html.

[36] JUENEMANN, D., AND HUFFMAN, A. The nonvolatile memory
transformation of client storage. Computer 46 (2013).

[37] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. De-
sign guidelines for high performance RDMA systems. In
2016 USENIX Annual Technical Conference (USENIX ATC 16)
(2016).

[38] KIM, H.-J., LEE, Y.-S., AND KIM, J.-S. Nvmedirect: A
user-space i/o framework for application-specific optimization on
nvme ssds. In 8th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 16) (2016).

[39] KOURTIS, K. Scalability issues with memaslap client. https:

//bugs.launchpad.net/libmemcached/+bug/1721048.

12

https://www.aerospike.com/
https://www.aerospike.com/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://github.com/google/cityhash
https://github.com/google/cityhash
https://lwn.net/Articles/741878/
https://lwn.net/Articles/743714/
https://lwn.net/Articles/743714/
https://linux.die.net/man/1/fio
http://rocksdb.org
http://rocksdb.org
https://github.com/facebook/rocksdb/blob/master/USERS.md
https://github.com/facebook/rocksdb/blob/master/USERS.md
https://github.com/twitter/fatcache
https://github.com/axboe/fio/blob/fio-3.3/engines/libaio.c#L120
https://github.com/axboe/fio/blob/fio-3.3/engines/libaio.c#L120
https://github.com/axboe/fio/blob/fio-3.3/engines/libaio.c#L120
https://github.com/google/leveldb
https://github.com/google/leveldb
https://cloud.google.com/appengine/docs/standard/python/memcache/
https://cloud.google.com/appengine/docs/standard/python/memcache/
https://arxiv.org/abs/1801.05637
http://man7.org/linux/man-pages/man2/io_submit.2.html
http://man7.org/linux/man-pages/man2/io_submit.2.html
https://bugs.launchpad.net/libmemcached/+bug/1721048
https://bugs.launchpad.net/libmemcached/+bug/1721048

[40] KROHN, M., KOHLER, E., AND KAASHOEK, M. F. Events can
make sense. Usenix ATC ’07.

[41] Kyoto cabinet: a straightforward implementation of dbm. http:
//fallabs.com/kyotocabinet/, 2011.

[42] LAUER, H. C., AND NEEDHAM, R. M. On the duality of op-
erating system structures. SIGOPS Oper. Syst. Rev. 13, 2 (Apr.
1979).

[43] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM, A.,
CHEN, E., AND ZHANG, L. Kv-direct: High-performance in-
memory key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles (2017),
ACM.

[44] Glibc manual: Non-local exits. https://www.gnu.org/

software/libc/manual/html_node/Non_002dLocal-

Exits.html.

[45] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
SILT: A memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011), SOSP ’11.

[46] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
MICA: A holistic approach to fast in-memory key-value storage.
In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14) (2014).

[47] LOMET, D., ET AL. Bulletin of the technical committee on
data engineering. Special Issue on Main-Memory Database
Systems 32 (June 2013). http://sites.computer.org/

debull/A13june/issue1.htm.

[48] LU, L., PILLAI, T. S., GOPALAKRISHNAN, H., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Wisckey:
Separating keys from values in ssd-conscious storage. Trans.
Storage 13, 1 (Mar. 2017).

[49] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th
ACM European Conference on Computer Systems (2012), Eu-
roSys ’12.

[50] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., RAN-
GASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR, B., AND
GANESAN, S. NVMKV: A scalable and lightweight flash aware
key-value store. In 6th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage 14) (June 2014).

[51] Mcdipper: A key-value cache for flash storage.
https://www.facebook.com/notes/facebook-

engineering/mcdipper-a-key-value-cache-for-

flash-storage/10151347090423920/, 2013.

[52] MCNABB, D. Intel Optane SSD DC P4800X available now
on IBM cloud. https://www.ibm.com/blogs/bluemix/

2017/08/intel-optane-ssd-dc-p4800x-available-

now-ibm-cloud/, July 2017.

[53] memaslap - Load testing and benchmarking a server. http://

docs.libmemcached.org/bin/memaslap.html.

[54] Memcache protocol. https://github.com/memcached/

memcached/wiki/Protocols. Retrieved Oct 2017.

[55] memcached – a distributed memory object caching system.
http://www.memcached.org/.

[56] MENON, J. A performance comparison of raid-5 and log-
structured arrays. In High Performance Distributed Computing,
1995., Proceedings of the Fourth IEEE International Symposium
on (1995).

[57] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided RDMA
reads to build a fast, cpu-efficient key-value store. In Pre-
sented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13) (2013).

[58] MUTLU, O., AND SUBRAMANIAN, L. Research problems and
opportunities in memory systems. Supercomput. Front. Innov.:
Int. J. 1, 3 (Oct. 2014).

[59] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcache at facebook. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13)
(2013).

[60] NVM EXPRESS WORKGROUP. NVM Express, May 2017. Rev.
1.3.

[61] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,
A., PARULKAR, G., ROSENBLUM, M., RUMBLE, S. M.,
STRATMANN, E., AND STUTSMAN, R. The case for RAM-
Clouds: scalable high-performance storage entirely in dram.
SIGOPS Oper. Syst. Rev. 43, 4 (Jan. 2010).

[62] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A.,
LEE, C., MONTAZERI, B., ONGARO, D., PARK, S. J., QIN, H.,
ROSENBLUM, M., RUMBLE, S., STUTSMAN, R., AND YANG,
S. The ramcloud storage system. ACM Trans. Comput. Syst. 33,
3 (Aug. 2015).

[63] PAIK, Y. Developing extremely low-latency nvme ssds. Flash
Memory Summit, 2017. https://www.flashmemorysummit.
com/English/Collaterals/Proceedings/2017/

20170809_FA21_Paik.pdf.

[64] PIGGIN, N. kernel: introduce brlock. https://lwn.net/

Articles/378781/, Mar. 2010.

[65] qemu io getevents peek() and io getevents commit()

implementation. https://git.qemu.org/?p=

qemu.git;a=blob;f=block/linux-aio.c;h=

88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=

HEAD#l131.

[66] Redis. http://redis.io/.

[67] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Transac-
tions on Computer Systems (TOCS) 10, 1 (1992).

[68] RUMBLE, S. M., KEJRIWAL, A., AND OUSTERHOUT, J. Log-
structured memory for dram-based storage. In Proceedings of
the 12th USENIX Conference on File and Storage Technologies
(FAST 14) (2014).

[69] SAXENA, M., SWIFT, M. M., AND ZHANG, Y. Flashtier: A
lightweight, consistent and durable storage cache. In Proceed-
ings of the 7th ACM European Conference on Computer Systems
(2012), EuroSys ’12.

[70] ScyllaDB. http://www.scylladb.com/.

[71] SHEN, Z., CHEN, F., JIA, Y., AND SHAO, Z. DIDACache: A
deep integration of device and application for flash based key-
value caching. In 15th USENIX Conference on File and Storage
Technologies (FAST 17) (2017).

[72] Storage performance development kit. http://www.spdk.io/.

[73] Spdk perf. https://github.com/spdk/spdk/blob/

master/examples/nvme/perf/perf.c.

[74] SRINIVASAN, V., BULKOWSKI, B., CHU, W.-L., SAYYA-
PARAJU, S., GOODING, A., IYER, R., SHINDE, A., AND
LOPATIC, T. Aerospike: Architecture of a real-time operational
dbms. Proc. VLDB Endow. (2016).

[75] TALLIS, B. The intel Optane SSD DC P4800X
(375GB) review: Testing 3D XPoint performance.
http://www.anandtech.com/show/11209/intel-

optane-ssd-dc-p4800x-review-a-deep-dive-into-

3d-xpoint-enterprise-performance, 2017.

13

http://fallabs.com/kyotocabinet/
http://fallabs.com/kyotocabinet/
https://www.gnu.org/software/libc/manual/html_node/Non_002dLocal-Exits.html
https://www.gnu.org/software/libc/manual/html_node/Non_002dLocal-Exits.html
https://www.gnu.org/software/libc/manual/html_node/Non_002dLocal-Exits.html
http://sites.computer.org/debull/A13june/issue1.htm
http://sites.computer.org/debull/A13june/issue1.htm
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.ibm.com/blogs/bluemix/2017/08/intel-optane-ssd-dc-p4800x-available-now-ibm-cloud/
https://www.ibm.com/blogs/bluemix/2017/08/intel-optane-ssd-dc-p4800x-available-now-ibm-cloud/
https://www.ibm.com/blogs/bluemix/2017/08/intel-optane-ssd-dc-p4800x-available-now-ibm-cloud/
http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html
https://github.com/memcached/memcached/wiki/Protocols
https://github.com/memcached/memcached/wiki/Protocols
http://www.memcached.org/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FA21_Paik.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FA21_Paik.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FA21_Paik.pdf
https://lwn.net/Articles/378781/
https://lwn.net/Articles/378781/
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
http://redis.io/
http://www.scylladb.com/
http://www.spdk.io/
https://github.com/spdk/spdk/blob/master/examples/nvme/perf/perf.c
https://github.com/spdk/spdk/blob/master/examples/nvme/perf/perf.c
http://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
http://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
http://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance

[76] TALLIS, B. Samsung launches Z-SSD SZ985: Up to 800gb
of Z-NAND. https://www.anandtech.com/show/12376/

samsung-launches-zssd-sz985-up-to-800gb-of-

znand, Jan. 2018.

[77] VON BEHREN, R., CONDIT, J., AND BREWER, E. Why events
are a bad idea (for high-concurrency servers). HOTOS ’03.

[78] WANG, P., SUN, G., JIANG, S., OUYANG, J., LIN, S., ZHANG,
C., AND CONG, J. An efficient design and implementation of
lsm-tree based key-value store on open-channel ssd. In Proceed-
ings of the Ninth European Conference on Computer Systems
(2014), EuroSys ’14.

[79] XIA, Q., AND XIAO, W. High-performance and endurable cache
management for flash-based read caching. IEEE Transactions on
Parallel and Distributed Systems 27, 12 (Dec 2016).

[80] XU, Q., SIYAMWALA, H., GHOSH, M., SURI, T., AWASTHI,
M., GUZ, Z., SHAYESTEH, A., AND BALAKRISHNAN, V. Per-
formance analysis of nvme ssds and their implication on real
world databases. In Proceedings of the 8th ACM International
Systems and Storage Conference (2015), SYSTOR ’15.

[81] YANG, J., MINTURN, D. B., AND HADY, F. When poll is better
than interrupt. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies (2012), FAST’12.

[82] ZHENG, D., BURNS, R., AND SZALAY, A. S. A parallel page
cache: Iops and caching for multicore systems. In Presented as
part of the 4th USENIX Workshop on Hot Topics in Storage and
File Systems (2012).

[83] ZHENG, D., MHEMBERE, D., BURNS, R., VOGELSTEIN, J.,
PRIEBE, C. E., AND SZALAY, A. S. Flashgraph: Processing
billion-node graphs on an array of commodity ssds. In 13th
USENIX Conference on File and Storage Technologies (FAST
15) (Feb. 2015).

Notes: IBM is a trademark of International Business
Machines Corporation, registered in many jurisdictions
worldwide. Intel and Intel Xeon are trademarks or regis-
tered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries. Linux is a regis-
tered trademark of Linus Torvalds in the United States,
other countries, or both. Other products and service
names might be trademarks of IBM or other companies.

14

https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand

	Insert from: "uDepot.pdf"
	Introduction
	Background and Motivation
	uDepot
	Architecture
	Space management with SALSA
	Mapping structure
	Resizing
	uDepot KV operations
	Metadata and persistence
	uDepot IO backends (Linux and TRT)
	uDepot server
	Memcache

	Evaluation
	Embedded uDepot
	Embedded uDepot: one drive, one core
	Embedded uDepot: 24 drives, 20 cores

	uDepot server / YCSB
	uDepot Memcache

	Related work
	Conclusion

