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Abstract— The bit-error-rate (BER) performance of 3-
dimensional (3D) product codes under iterative bounded-distance
decoding of the component codes is considered and a framework
for analyzing the BER-performance is presented. The perfor-
mance analysis of iterative decoding is based on a graphical
model of the underlying 3D product code, which is a tripartite 3-
uniform hypergraph. The BER performance for 3D product codes
shows a threshold behavior. The thresholds can be approximated
by an exit-chart-like technique from the parameters of the
component codes. In the case of a symmetric product code, for
which all three component codes are based on the same linear
t-error correcting code, asymptotically for large code lengths, the
BER-threshold is determined by the threshold for the appearance
of a k-core with k=t+ 1 in the graphical model.

I. INTRODUCTION

An attractive feature of product codes (PC) is the simple
iterative decoding process, which allows one to efficiently de-
code a large code by using simple decoders of the component
codes. The use of 3-dimensional PCs has been considered in
various applications; for instance, in the IEEE 802.16 WiMAX
standard [1] and, very recently, in tape storage applications [2].
Soft turbo decoding of two and three dimensional (2D and 3D)
PCs was proposed shortly after the invention of turbo codes
[3].

Accurate density evolution results for iterative hard-decision
bounded-distance (HDBD) decoding of PCs and generalized
PCs have been obtained for the binary erasure channel [4].
For 2D PCs and more general channels, such as the binary
symmetric channel (BSC), iterative HDBD decoding has been
analyzed by Justesen and Høholdt under the assumption that
the decoders of the component codes do not make miscorrec-
tions [5], [6]. The main goal of this paper is to extend the
approach of Justesen and Høholdt from 2D to 3D PCs, which
was proposed as interesting future work in [4].

II. GRAPHICAL MODELS FOR 3D PRODUCT CODES

A 3D product code (PC) C = C1 ⌦ C2 ⌦ C3 over a
finite field Fq is composed of three linear component codes
C1, C2 and C3 of lengths N1, N2 and N3, resp. A codeword
is represented by a 3D array x = [xi,j,k] 2 FN1⇥N2⇥N3

q ,
such that the components along the first dimension are C1
codewords, the components along the second dimension are
C2 codewords and the components along the third dimension
are C3 codewords.

A 3-uniform hypergraph � = (V,E) consists of a vertex
set V and an edge set E, where every edge e 2 E is a 3-
element subset of V . A 3-uniform hypergraph � is tripartite
if V can be partitioned into 3 classes, V = U1 [ U2 [ U3

such that every edge has exactly one vertex from each class,
i.e., E ⇢ U1 ⇥ U2 ⇥ U3. Recall that a tripartite hypergraph
is complete if the edges consist of all the sets, which contain
one vertex from each class (see Ch. 1.4 in [7]).

Every 3D PC gives rise to two graphical models: a tripartite
3-uniform hypergraph and an associated Tanner graph.

Fig. 1. Finite 27-element subset within the cubic lattice represents the 3D
codewords of the code in Example 1.

Example 1: Let C1 = C2 = C3 be given by the binary
repetition code of length 3. Then, C = C1 ⌦ C2 ⌦ C3
has length 27, dimension 1 and minimum distance 27. Three
graphical models will be presented.

The first model is a tripartite 3-uniform hypergraph. As
illustrated in Fig. 1, the 27 components xi,j,k of the 3D array
correspond to 27 nodes. These 27 nodes are considered as edge
set E = {(i, j, k) : i, j, k = 1, 2, 3} of a complete tripartite
hypergraph with three classes of vertex sets I = {1, 2, 3},
J = {1, 2, 3}, and K = {1, 2, 3}. This model displays well
the 3D feature of the codeword components but it does not
capture the constraints imposed by the component codes.

The second model is another tripartite 3-uniform hyper-
graph, which takes the constraints of the component codes
into account. The vertex set V corresponds to the 27 lines
passing through the lattice points in Fig. 1, which can be



partitioned into 3 classes V1, V2 and V3. Namely, V1 consists
of the 9 dotted lines corresponding to the 9 C1 codes along the
first dimension, V2 consists of the 9 solid lines corresponding
to the 9 C2 codes along the second dimension, and the V3

consists of the 9 dashed lines corresponding to the 9 C3
codes along the third dimension. The edge set E corresponds
to the 27 codeword components xi,j,k, which are checked
by exactly one code in each dimension. More specifically,
each of the 9 C1 codes of V1 checks one of the 9 triples
xI,j,k = [x1,j,k, x2,j,k, x3,j,k], j, k = 1, 2, 3. Similarly, each
of the 9 C2 codes of V2 checks one of the 9 triples xi,J,k,
i, k = 1, 2, 3, and each of the 9 C3 codes of V3 checks one
of the triples xi,j,K , i, j = 1, 2, 3.

The third model is the associated (bipartite) Tanner graph of
the second model. The 27 components xi,j,k form the set V0

of variable nodes and the set of check nodes is V1 [ V2 [ V3.
The edge set in the Tanner graph has 3 ⇥ 27 elements, as
each of the 27 variable nodes xi,j,k is checked by exactly one
C1 code, one C2 code and one C3 code. Thus, the resulting
Tanner graph is regular with variable node degree of 3 and
check node degree of N1 = N2 = N3 = 3. See [8] for the
illustration of a Tanner graph of a 2D PC with variable node
degree of 2.

To each 3D PC C one can associate a tripartite 3-uniform
hypergraph �C = (V,E), which corresponds to the second
graphical model in Example 1. Namely, there are N1N2N3

edges, which correspond to the codeword components xi,j,k

of C. There are N2N3 vertices V1, which perform C1 checks;
there are N1N3 vertices V2, which perform C2 checks; and
there are N1N2 vertices V3, which perform C3 checks. This
hypergraph has |V | = N1N2+N1N3+N2N3 vertices. �C =
(V,E) will be referred to as the graphical model for a 3D PC.

III. ITERATIVE DECODING ANALYSIS

Iterative HDBD decoding of 2D PCs with two component
codes has been investigated in depth [5], [6]. We extend
this analysis of iterative HDBD decoding to 3D PCs. As
in the 2D case, we make the simplifying assumption that
the bounded distance decoders of the component codes make
no miscorrections. For small values of the error correction
capability of the component codes this assumption is not quite
true (see Section V below).

The performance of iterative HDBD decoding is determined
by the lengths N` and the error correction capabilities t`, ` =
1, 2, 3, of the three linear component codes.

The channel is assumed to be a symmetric discrete mem-
oryless channel (DMC) with equal transition probabilies
P (y|x) = p for all y 6= x.

The codeword components associated with the edge set of
�C = (V,E) represent the codewords of C. By sending a
codeword through the DMC and by considering the received
word, one obtains an error subhypergraph �S = (V,E(S)) of
�C , where the edge set is determined by the error locations
introduced by the DMC, i.e., E(S) consists of all those
components xi0,j0,k0 that have been altered by the DMC. The
error graph is an instance of a random hypergraph in �C .

A. Thresholds for Symmetric 3D Product Codes
We first consider the case of a symmetric 3D PC for which

the three component codes C1, C2, and C3 are identical t-
error correcting linear codes of length N over some finite
field.

As analyzed in [5] for the 2D PC case, the decoder will
stall and will not successfully terminate iterative decoding if
the error patterns form a (t + 1)-core in the error graph. For
3D PCs, an analogue result holds. A k-core in a hypergraph
is defined to be a subhypergraph in which every vertex has a
degree of at least k. Clearly, the t-error correcting decoders
of the component codes will fail if and only if the error
hypergraph is a (t+ 1)-core.

Proposition 1: The iterative decoder will fail if and only if
the error hypergraph contains a (t+ 1)-core.

Molloy [9] has investigated the k-core problem in random r-
uniform hypergraphs and obtained sharpe threshold results for
the appearance of a k-core. These results have been extended
to the model of random r-partite r-uniform hypergraphs [10],
which are relevant in this study. In particular, it is shown that
the same threshold results apply for both random graph mod-
els. In particular, for a random tripartite 3-uniform hypergraph
with n vertices, the critical probability for the appearance of
a k-core is pc = ck/n2, where ck is the threshold.

The graphical model �C of a 3D PC C has an equivalent
edge set E as the model given by the complete tripartite 3-
uniform hypergraph but a different vertex set. �C has 3N2

vertices, whereas the complete tripartite 3-uniform hypergraph
has 3N vertices. In particular, the three classes of vertices
I = {1, . . . , N}, J = {1, . . . , N}, and K = {1, . . . , N}
of the complete tripartite 3-uniform hypergraph, have to be
extended to the three classes of size N2, which correspond to
the constraints of the C1, C2, and C2 codes, respectively.
To extend Theorem 3 in [10] to the graphical model �C ,
one considers, for a fixed parameter c, random hypergraphs
in �C = (V,E) with m = cN2 edges, which are selected at
random out of the N3 potential edges in E. This results in a
symbol error probability p = m/N3 = c/N , which is by a
factor N larger than that for the complete tripartite 3-uniform
hypergraph model. This factor N can be explained as follows:
when generating random graphs in the two models, for each
vertex in the complete tripartite graph, one can associate one
out of N possible vertices in �C , each with equal probability
1/N . Recall the definition of the critical threshold ck ( see
[10]) as

ck = min
x>0

x
⇣
1� exp(x)

Pk�2
i=0

xi

i!

⌘2 . (1)

The first few threshold values c2, c3, . . . , c9 are 2.455, 4.658,
6.523, 8.240, 9.868, 11.435, 12.957, and 14.443.

Proposition 2: The error hypergraph �S within the 3-
uniform hypergraph �C with 3N2 vertices and N3 edges,
asymptotically contains a k-core for k > 1 with high probabil-
ity if p > ck/N ; otherwise, for p < ck/N , there is no k-core
with high probability.



The iterative HDBD decoding threshold of a symmetric 3D
PC with a t-error correcting component code of length N
under HDBD decoding is defined as

pc = ct+1/N. (2)

For large code lengths, iterative decoding succeeds with high
probability if and only if p < pc.

B. Thresholds for general 3D Product Codes
To analyze the HDBD iterative decoding of a 3D PC, we

study the evolution of the number of errors on the error
hypergraph �S under iterative decoding. On the initial error
graph, the error distribution along each component codeword
is binomial and, for the analysis, will be approximated by a
Poisson distribution. The evolution of these distributions under
iterative decoding will be analyzed. We will assume, as in [5],
that the remaining errors after decoding in dimension i are
randomly distributed in the other two dimensions ` 6= i of the
3D-array. One can then argue that the error distributions in
each dimension are truncated Poisson distributions [5].

We will use the following notation and well-known result
on truncated Poisson distributions [5]. Starting from a Pois-
son distribution with parameter m, the remaining mass after
correction of t errors will be denoted by

⇡t+1(m) =
X

j>t

exp(�m)
mj

j!
. (3)

Lemma 1: The mean of the truncated Poisson distribution
with parameter m is

P
j>t j · exp(�m)m

j

j! = m · ⇡t(m).

Initially, there are three Poisson distributions with parame-
ters M` = m`(0) = p · N` along the dimensions ` = 1, 2, 3,
and p denotes error probability of the symmetric DMC. The
total number of errors is W (0) = N1N2N3p. The decoder
will iteratively correct up to t` errors along dimension `. The
first few decoding steps are analyzed below for a schedule of
cyclic C1, C2, and C3 decoding.

After the C1 decoding step: The error distribution along
dimension 1 is a truncated Poisson distribution with parameter
m1(0) = M1 and, by Lemma 1, the average number of
errors per C1 codeword is reduced to m1(0)⇡t1(m1(0)) =
M1⇡t1(M1) and on average the total number of errors is
W (1) = M1⇡t1(M1)·N2N3. Furthermore, the Poisson para-
meter for dimension 2 is reduced to m2(1)=M2⇡t1(M1).

After the C2 decoding step: The error distribution along
dimension 2 is a truncated Poisson distribution with param-
eter m2(1); the average number of errors per C2 codeword
is reduced to m2(1)⇡t2(m2(1)) and on average the total
number of errors is W (2) = m2(1)⇡t2(m2(1)) · N1N3.
Thus, the Poisson parameter for dimension 3 is reduced to
m3(2) = M3⇡t2(m2(1))⇡t1(m1(0)). Note that m3(2) is also
determined by the error reduction factor W (2)/W (0) via
m3(2) = M3W (2)/W (0).

After the C3 decoding step: The error distribution along
dimension 3 is a truncated Poisson distribution with parameter

m3(2) and on average the total number of errors is W (3) =
m3(2)⇡t3(m3(2)) · N1N2. Using the error reduction factor
W (3)/W (1) = M3⇡t2(m2(1))⇡t3(m3(2)) ·N1/(M1N3), the
Poisson parameter along the 1st dimension is obtained as
m1(3)=m1(0)W (3)/W (1) = M1⇡t3(m3(2))⇡t2(m2(1)).

After the C1 decoding step: The error distribution along
dimension 1 is a truncated Poisson distribution with parameter
m1(3) and on average the total number of errors is W (4) =
m1(3)⇡t1(m1(3)) · N2N3. Using the error reduction factor
W (4)/W (2) = M2⇡t1(m1(3))⇡t3(m3(2)) · N1/m2(1), the
Poisson parameter along the 2nd dimension is obtained as
m2(4) = m2(1)W (4)/W (2) = M2⇡t1(m1(3))⇡t3(m3(2)).

By induction on the number of steps j, one obtains the
following result.

Theorem 1: For step j � 2, the parameters of the truncated
Poisson distributions are given as

m1(j + 1) = M1⇡t3(m3(j))⇡t2(m2(j � 1))

m2(j + 1) = M2⇡t1(m1(j))⇡t3(m3(j � 1))

m3(j + 1) = M3⇡t2(m2(j))⇡t1(m1(j � 1)).

Fig. 2 illustrates the evolution of the parameters of the
truncated Poisson distributions for iterative decoding of the
symmetric 3D PC with a binary 2-error-correcting BCH code
of length N = 26 as a component code. The channel BER
p was chosen to be slightly smaller than the iterative HDBD
decoding threshold pc = c3/N . It takes about 160 iterations
to pass through the HDBD “tunnel” and converge to 0. An
alternative way to approximate the iterative HDBD decoding
threshold is to search for the largest p for which this exit-chart-
like evolution process converges to zero. With this approach,
one can also determine the iterative HDBD decoding threshold
pc for non-symmetric product codes.
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Fig. 2. Evolution of normalized Poisson parameters m`/M`, ` = 1, 2, 3
under iterative HDBD decoding of 3D PC with binary BCH(26, 16, 5) code
as component codes at channel BER p ⇡ pc = 0.1792.

IV. ANALYTICAL PERFORMANCE ANALYSIS

A length-N codeword that was sent over the symmetric
DMC with symbol error probability p has an error distribution



fobs,p(s) of the observed errors, which is binomial with mean
Np and variance Np(1 � p). Here s denotes the actual
observed error rate within a codeword. For large N , this is
well approximated by the normal distribution with the same
mean and variance. Following the argument in Section 4.1.1
of [11], we write the frame error rate as

FER(p) =
Z 1

0
fobs,p(s)Pr[Frame error |s]ds. (4)

The threshold property of iterative decoding of long product
codes implies that Pr[Frame error |s] is well approximated by
a step function that jumps from 0 to 1 at the iterative HDBD
decoding threshold pc, which leads to

FER(p) ⇡
Z 1

pc

fobs,p(s)ds =
1

2
erfc

 
(pc � p)

p
Np

2p(1� p)

!
. (5)

Here erfc denotes the complementary error function. When
decoding fails, we assume that the number of symbol errors
is N max{pc, p}, and thus the output symbol error rate (SER)
is approximated by

SER(p) ⇡ 1

2
max{pc, p}erfc

 
(pc � p)

p
Np

2p(1� p)

!
. (6)

The formula for SER(p) applies to the waterfall region of
the SER curve. To obtain the performance in the error-floor
region, we study stopping sets, i.e., error patterns that make
the decoder fail. In terms of graphical models, a stopping set
is an error (hyper)graph �S on which the iterative decoder
fails to make progress.

For a 3D product code of length N = N1N2N3, which
is based on three component codes with error-correction
parameters t`, ` = 1, 2, 3, the stopping sets of minimum
weight are easy to characterize: the minimum weight patterns
have weight w = (t1 +1)(t2 +2)(t3 +1), and - after suitable
relabeling of the codeword components - consist of a cuboid
of size (t1+1)⇥ (t2+1)⇥ (t3+1). The corresponding error
hypergraph �S is a complete tripartite 3-uniform hypergraph
with three vertex classes of size t1, t2 and t3, respectively.
The number of these stopping patterns is given by

µ =

✓
N1

t1 + 1

◆✓
N2

t2 + 1

◆✓
N3

t3 + 1

◆
.

The error-floor performance is approximated similarly to the
2D case [6], [12] as

SERfloor ⇡ µpww/N. (7)

V. SIMULATION RESULTS

To assess the accuracy of the analytical performance anal-
ysis, we compare the theoretical results to simulation results
from some selected 3D PCs with component codes with t` = 2
and 3, for which fast decoders exist.

The first code example is a symmetric 3D PC C(1) based
on the 2-error-correcting binary BCH(26, 16, 5) code as a
component code and its BER-performance is shown in Fig. 3.
The analytical estimates (5) and (6) for the FER and BER
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Fig. 3. Performance of symmetric rate-0.233 3D PC with binary
BCH(26, 16, 5) code as component codes.

are shown as dotted and solid lines, and labeled by “FER
(estimate)” and “BER (estimate)”, respectively. As expected,
the performance shows a steep waterfall behavior starting at
the iterative HDBD decoding threshold pc = 0.1792. The two
left-most curves show the FER and BER performance of the
(true) decoder, for which the number of iterations is limited
to 100. They are shifted by an amount of about 4p = 0.02
in BER compared to the analytical performance curves but
they have essentially the same waterfall behavior. We have
also run an iterative pseudo-decoder with component code
decoders, which have knowledge of the errors, and thus make
no miscorrections. The FER and BER performance of the
pseudo-decoder agrees well with the analytical estimates.
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Fig. 4. Performance of rate-0.2369 3D PC with binary length-31 BCH codes
with error-correction parameters 3, 2, and 2 as component codes.

The second example is a binary PC C(2) with three binary
BCH component codes of length 31 and error-correcting



capabilities t1 = 3 and t2 = 2 = t3. The performance
is illustrated in Fig. 4 and similar comments apply to the
performance of this non-symmetric 3D PC as made for Fig. 3.
In addition, the true-decoder performance of the symmetric PC
C(1) above, labeled as “FER (n26t2)3” and “BER (n26t2)3”
is also shown. Both codes have very similar BER-performance.
The second code C(2) has a slightly higher rate than C(1),
a slightly smaller iterative HDBD decoding threshold but
a steeper waterfall curve. Most importantly, by including a
component code with t1 = 3, the error floor of C(2) has been
substantially lowered compared to the one of C(1).
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Fig. 5. Performance of symmetric rate-0.3356 3D PC with binary
BCH(59, 41, 7) code as component codes.

The third example is a symmetric 3D PC C(3) of rate
0.3356 and length 205, 379 with the 3-error-correcting binary
BCH(59, 41, 7) code as a component code. Its performance is
shown in Fig. 5. Compared to the first code C(1), it has a
much lower error floor and the offset between the analytical
estimate and the true-decoder performance is only about half
that of C(1). By extrapolating the BER curve in Fig. 5, the
code would achieve a target output BER of 10�15 at a channel
BER of about 0.095, which should be compared to the capacity
limit of pcap = 0.1729 and the limit from the random coding
(Gallager) bound pgal = 0.1662.

VI. CONCLUSIONS AND OUTLOOK

We have developed a framework to obtain analytical esti-
mates of the BER performance of 3-dimensional product codes
under iterative hard-decision bounded-distance decoding of the
component codes. A key aspect is the graphical model for the
underlying 3D PC, namely, a tripartite 3-uniform hypergraph
�C , which is an extension of the well-known bipartite graph
associated to a 2D PC [5], is assigned to each code C .

The performance of iterative HDBD decoding was analyzed
by studying the evolution of the number of errors on the
error hypergraph, which is a subhypergraph of �C . It was

shown that the BER performance has a threshold behavior
and, for channel error probabilities below the threshold, de-
coding succeeds with high probability. These thresholds can
be determined from the code parameters of the component
codes using an exit-chart-like technique. In the special case of
symmetric 3D PCs, the thresholds are related to the thresholds
for the appearance of k-cores in random tripartite 3-uniform
hypergraphs.

For three selected 3D PCs, the analytical BER performance
estimates have been compared to simulation results: The
performance of the pseudo-decoder with no miscorrection
within the decoders of the component codes achieves a very
tight match, whereas the performance of the true decoder
has a slight offset, which is due to the choice of the small
error correction parameters t = 2 and 3 of the component
codes. Typically, the error floors of 3D PCs are very low,
which makes these codes attractive for applications with
BER requirements of 10�20 or lower, as e.g. in tape storage
applications.

Similar techniques can be applied to extend the results to
r-dimensional product codes with r > 3. However, analysing
iterative HDBD decoding for the BSC based on the graphical
model of regular Tanner graphs with variable node degree
r � 3 and no assumption on miscorrections appears to be
a challenging open problem [4].
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