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Shortened Cyclic Codes for Correcting and
Detecting Burst Errors

Roy D. Cideciyan∗, Simeon Furrer∗, and Mark A. Lantz∗
∗IBM Research-Zurich, 8803 Rüschlikon, Switzerland

Abstract—New optimum binary shortened cyclic codes with
redundancy r = 32 and burst-error correction capability b are
presented. The codes are found by performing an exhaustive com-
puter search using the Kasami algorithm, and their performance
is compared with analytical bounds by Reiger, Abramson and
Campopiano. The true burst-error correction capability of the
[2112, 2080] shortened Fire code selected for 10Gb/s Ethernet
is determined to be b = 11 and [2112, 2080] shortened cyclic
codes with higher burst-error correction capability b = 13 are
given. The double burst-error detection properties of three cyclic
redundancy check codes used in standards are compared.

I. INTRODUCTION

Many of the well-known error-correcting codes, which are
used to correct or detect errors in data transmission and
storage, are cyclic or shortened cyclic codes [1], [2]. These
codes are an attractive subclass of linear block codes because
the operations of encoding and syndrome computation can
be performed using linear feedback shift registers (LFSR)
and various decoding algorithms can be devised by taking
advantage of their rich algebraic structure. Furthermore, while
a linear block code can be specified by a parity check matrix
with n(n − k) entries where n and k are the length and the
dimension of the code, respectively, a shortened cyclic code
is completely determined by its generator polynomial g(x)
of degree (n − k), which significantly simplifies the task of
searching for good codes.

In many communication channels, errors occur in clusters.
Burst errors can be corrected by using block or convolutional
codes [1], [2]. In this paper, binary block codes of cyclic or
shortened cyclic type that correct or detect burst errors are
studied. Encoding and decoding for burst-correcting shortened
cyclic codes can be accomplished by using simple circuits
such as an encoder based on a LFSR and an error-trapping
decoder which is a variation of a Meggitt decoder [1], [2]. The
most important family of cyclic burst-error correcting codes
was developed by Fire [3]. Although it has been known for a
long time that the true burst-correction capability of Fire codes
can exceed their designed burst-correction capability [4], the
true burst-correction capability of various classes of Fire codes
was only recently analyzed [5]. However, the family of Fire
codes is too small to search for good burst-error correcting
codes. In this paper, generator polynomials g(x) of optimum
shortened cyclic codes for burst-error correction are found
by exhaustive computer search using an efficient algorithm
[6] that determines the maximum possible length nmax of a
shortened cyclic code with binary generator polynomial g(x)
that can correct a burst error of length up to b.

The redundancy r = (n− k) of any [n, k] linear code with
burst-error correction capability b is lower bounded by the
Reiger bound [7] and the Abramson bound [8], [9] which
are well-known in the literature. On the other hand, the
Campopiano upper bound on the smallest possible redundancy
r for which an [n, k] linear code with burst-error correction
capability b exists [10], [11] (see also [1]) has not been used
in the search for burst-error correcting codes. In fact, the
Campopiano bound has rarely been mentioned in the literature
[1], [12], [13]. The Reiger and the Abramson lower bounds
in conjunction with the Campopiano upper bound permit the
designer of a communication system to evaluate in a simple
manner the relative efficacy of a burst-error correcting code.
In this paper, the benefits of using all three bounds for the
evaluation of specific burst-error correcting and burst-error
detecting codes is demonstrated.

In 2007, Ethernet standard IEEE 802.3ap adopted an op-
tional burst-error correcting shortened Fire code with n =
2112, k = 2080, and a designed burst-error correction ca-
pability b∗ = 11 for backplane transmission at 10Gb/s in a
printed circuit board [14] (see Section 5, pp. 548-554). One
of the goals of this paper is to determine the true burst-error
correction capability b of the [2112, 2080] shortened Fire code
in IEEE 802.3ap. Another goal of the paper is to determine a
generator polynomial g(x) of a [2112, 2080] shortened cyclic
code that has the highest burst-error correction capability b.
To achieve this, the generator polynomials g(x) of optimum
binary shortened cyclic codes with a redundancy of r = 32
bits are identified by using an exhaustive computer search for
the burst-error correction capabilities b = 10 to 16.

In various standards, shortened cyclic codes are pervasively
used for error detection. These codes are often referred to
as cyclic redundancy check (CRC) codes. Currently, many
applications in data transmission and storage use shortened
cyclic codes with a fixed redundancy of r = 32 bits and a
variable information size k, i.e., a variable codeword length
n, to detect errors. Byte reordering, error propagation and
error multiplication in the receiver can change an error burst
into two error bursts. A shortened cyclic code with burst-
correction capability b can be used to detect any two error
bursts in a codeword where each burst is of length up to
b. Fujiwara et al. were first to study the double burst-error
detection properties of a CRC code by using the generator
polynomial g(x) of the Ethernet CRC code [15]. Their results
were extended to determine the double burst-error detection
capability of larger jumbo frames in Ethernet [16]. In this



paper, the double burst-error detection properties of other
CRC codes used in standards are evaluated and compared
to each other. Furthermore, we argue that the double burst-
error detection capability of a shortened cyclic code should be
considered in the selection of a CRC code.

This paper is organized as follows. In Section II, we
give various bounds on redundancy and burst correction
capability of [n, k] linear codes able to correct a single
burst error in a codeword. In Section III, we present new
optimum burst-correcting shortened cyclic codes with 32-bit
redundancy and determine the true burst-correction capability
of the [2112, 2080] shortened Fire code used for 10Gb/s
Ethernet transmission. Furthermore, we determine the best
possible burst-correction capability b that can be achieved by a
[2112, 2080] shortened cyclic code. In Section IV, we compare
the double burst-error detection properties of various CRC
codes used in standards. Section V concludes the paper.

II. BOUNDS ON REDUNDANCY AND BURST CORRECTION

In this paper, we consider single (double) error bursts of
length up to b in a codeword that can be corrected (detected)
by a shortened cyclic code. This type of error bursts is also
referred to as open-loop bursts [3], [4], [11] or non-all-around
bursts [17]. It is well-known that if a cyclic code can correct
all bursts of length up to b in a codeword, it can also correct
all cyclic error bursts of length up to b in a codeword [4].
This does not hold for shortened cyclic codes. In the literature,
cyclic error bursts [9], [18] are also referred to as wrap-around
bursts [19] or closed-loop bursts [3], [4], [11] or all-around
bursts [17].

The Reiger bound [7] for an [n, k] linear code with redun-
dancy r = (n− k) and burst-error correction capability b is

r ≥ 2b ≡ rR. (1)

The Reiger bound is the same for cyclic codes that can also
correct cyclic bursts. In the following, n ≥ 2b is assumed.

The Abramson lower bound on redundancy [8] (see also
[1], [3]) can be tighter than the Reiger bound for a given b
and n. For an [n, k] linear code over GF(2) with burst-error
correction capability b, the Abramson bound

r ≥ db− 1 + log2 (n− b+ 2)e ≡ rA (2)

is a Hamming-type sphere-packing bound for single burst-error
correcting codes. For cyclic codes that can also correct cyclic
bursts, the reader is referred to [3], [9]. The Reiger and the
Abramson bounds can be combined into one lower bound rRA

where rRA = max (rR, rA).
An [n, k] linear code over GF(2) with burst-error correction

capability b exists [10] if it satisfies the inequality

r > 2(b− 1) + log2 (n− 2b+ 2) . (3)

This inequality can be used to show that the smallest possible
value of redundancy r for an [n, k] linear code with burst-error
correction capability b must satisfy the relation

rRA ≤ r ≤ rC, (4)

where the Campopiano upper bound on the smallest possible
value of redundancy is given by

rC ≡ b2(b− 1) + log2 (n− 2b+ 2)c+ 1. (5)

We remark that the Campopiano bound in (5) is tighter
than the bound in Theorem 4.17 in [1]. The Campopiano
bound is a Varshamov-Gilbert-type bound for single burst-
error correcting codes. For cyclic codes that can also correct
cyclic bursts it is given in [11].

Extended Hamming-type and Varshamov-Gilbert-type
bounds for burst-error correcting codes have been derived by
considering the weight of the bursts and the minimum weight
of the code [20].

The bounds on redundancy have been specified as a function
of b and n. For a given r and n, these bounds translate into
corresponding lower and upper bounds bR, bA and bC on the
largest possible burst-correction capability b of an [n, k] linear
code over GF(2). For example, the Reiger upper bound on b is
bR = br/2c. Although bA and bC cannot be expressed using
a closed-form formula, they can readily be computed using
the Abramson and Campopiano bounds on redundancy. The
Reiger and the Abramson bounds on b can be combined into
one upper bound bRA where bRA = min (bR, bA). The largest
possible value of b for which an [n, k] linear code over GF(2)
exists then satisfies

bC ≤ b ≤ bRA. (6)

III. NEW OPTIMUM SHORTENED CYCLIC CODES

There are infinitely many cyclic codes with codeword
length n, redundancy r, and burst-error correction capability
b which meet the Abramson bound [21]. Various algorithms
that determine the burst-error correction capability of cyclic
and shortened cyclic codes have been developed. To determine
the burst-error correction capability b of a given shortened
cyclic code with generator polynomial g(x) and codeword
length n, efficient algorithms based on using LFSR synthesis
[22] and apolarity of binary forms were developed in [4]
and [23], respectively. Furthermore, an efficient and versatile
algorithm for searching optimal shortened cyclic codes, which
can also correct various types of wrap-around bursts, by using
Gray codes to minimize the number of syndrome checks
was presented in [24]. In this paper, the Kasami algorithm
[6] is used to find new optimum burst-correcting shortened
cyclic codes and determine the burst-detection capability of
standardized shortened cyclic codes. Specifically, the Kasami
algorithm determines the maximum codeword length nmax of
a shortened cyclic code for a given b and g(x).

An exhaustive search over all generator polynomials

g(x) = grx
r + ...+ g1x+ g0 (7)

of degree r = 32 and gr = g0 = 1 was performed for a
given burst-error correction capability b where 10 ≤ b ≤ 16.
As shown in Lemma 5 in [6], the maximum codeword length
nmax is identical for two shortened cyclic codes with the same
burst-error correction capability b and generator polynomials



g1(x) and g2(x) = g1(x
−1)xr. Therefore, to speed-up the

search, the reciprocal generator polynomials were excluded.
Table I lists the maximum codeword length nmax and the gen-
erator polynomial g(x) of the optimum shortened cyclic codes
that were found. The generator polynomials are provided using
hexadecimal format in reversed reciprocal notation where
g0 = 1 is dropped. For example, ’A26E7836’ in the fourth
row of Table I represents g(x) = x32+x30+x26+x23+x22+
x20+x19+x18+x15+x14+x13+x12+x6+x5+x3+x2+1.
It can be seen from Table I that all the optimum codes have
a redundancy r that is at least five less than rC, and have a b
that is three more than bC, as guaranteed by the Campopiano
bound. The result for b = 10 was obtained with 16 parallel
threads running on two 3.4GHz 4-core CPUs for four days.

TABLE I
OPTIMUM SHORTENED CYCLIC CODES FOR r = 32.

b nmax g(x) rRA rC bRA bC
16 108 876CD606 32 37 16 13
15 428 928C9BA5 30 37 16 12
14 1938 C68B3005 28 37 16 11
13 8103 A26E7836 26 37 16 10
12 36505 C39BEE63 27 38 16 9
11 152915 A060FBB9 28 38 15 8
10 596834 A0695362 29 38 13 7

In IEEE 802.3ap, specifically in 10GBASE-KR, an optional
[2112, 2080] shortened Fire code, which provides a 2−2.5 dB
gain in signal-to-noise ratio, is used in conjunction with a
rate-64/65 line code while only a rate-64/66 line code is
used in the absence of the shortened Fire code, i.e., the
total code rate is the same in both cases to simplify the
implementation [25], [26]. A primitive [42987, 42955] Fire
code with designed burst-error correction capability b∗ = 11
and g(x) = (x2b∗−1 + 1)p(x), where p(x) = (x11 + x2 + 1)
is a primitive polynomial of degree m = 11, has been used to
obtain the [2112, 2080] shortened Fire code in Ethernet. It has
been shown that the true burst-error correction capability of a
Fire code b can exceed twice their designed burst-error correc-
tion capability b∗ [5]. However, as gcd(2b∗ − 1, 2m − 1) = 1
and b∗ ≥ 2, Theorem 3 in [5] can be applied to show that
b = b∗ for the [42987, 42955] Fire code.

We now evaluate the true burst-error correction capability
b of the aforementioned [2112, 2080] shortened Fire code.
Table II lists the results of a computer search to find nmax

for 11 ≤ b ≤ 16 and g(x) = x32 + x23 + x21 + x11 + x2 + 1.
Clearly, the shortened Fire code in Ethernet has b = 11.

TABLE II
TRUE BURST-ERROR CORRECTION CAPABILITY OF SHORTENED FIRE

CODES WITH g(x) = (x21 + 1)(x11 + x2 + 1).

b nmax rRA rC bRA bC
16 33 32 32 16 16
15 33 30 31 16 16
14 33 28 29 16 16
13 33 26 28 16 16
12 114 24 29 16 13
11 42987 26 36 16 9

The question that arises at this point is whether a shortened
cyclic code with r = 32, n ≥ 2112, and b > 11 exists.

Table I shows that such a code, e.g. with b = 13 and
nmax = 8103 exists. Its generator polynomial ’A26E7836’ has
17 non-zero coefficients, whereas the generator polynomial of
the [2112, 2080] shortened Fire code has six. Therefore, an
additional search was performed to identify a shortened cyclic
code for r = 32, n ≥ 2112, b = 13, and g(x) with a mini-
mum number of non-zero coefficients. The resulting optimum
generator polynomial is given by g(x) = x32 + x13 + x8 + 1,
with nmax = 2238. Thus we have shown that a [2112, 2080]
shortened cyclic code having b = 13 and g(x) with only four
non-zero coefficients can be constructed.

IV. DOUBLE BURST-ERROR DETECTION

Shortened cyclic codes have been widely used to detect
errors in codewords with variable length n. These codes, which
are typically called CRC codes, have often been designed by
means of a generator polynomial of the form g(x) = p(x) or
g(x) = (1 + x)p(x), where p(x) is a primitive polynomial.
If a CRC code has a burst-error correction capability b, then
it can also detect any two error bursts of length up to b in a
codeword. Next, we compare the double burst-error detection
properties of three r = 32 CRC codes known as CRC-32,
CRC-32C, and CRC-32Q.

The CRC-32 code [27], which is used in Ethernet, SATA,
MPEG-2, PKZIP, Gzip, etc., has a primitive generator polyno-
mial in reversed reciprocal notation ’82608EDB’. Therefore,
it is a cyclic Hamming code for n = 232 − 1 with minimum
distance dmin = 3. By means of the Kasami algorithm, we
first computed the double burst-error detection capability b as
a function of the codeword length n, as depicted in Fig. 1.
The maximum codeword lengths corresponding to specific
values of b in the range 1 ≤ b ≤ 16 are marked by
circles. Furthermore, Fig. 1 illustrates the three bounds bR, bA
and bC by Reiger, Abramson and Campopiano, respectively,
determined by r = 32, b and n, where n has been computed
as a function of b and g(x) of CRC-32.

For CRC-32, Fig. 2 shows the bounds on r by Reiger
(1), Abramson (2) and Campopiano (5) as a function of the
codeword length n, computed in the same way as in Fig. 1.

The CRC-32C code [28], which is used in iSCSI, Btrfs,
ext4, Ceph, etc., has a generator polynomial in reversed recip-
rocal notation ’8F6E37A0’. Since the generator polynomial is
of the form g(x) = (1 + x)p(x), it is an extended cyclic
Hamming code for n = 231 − 1 with minimum distance
dmin = 4. By means of the Kasami algorithm, we first
computed the double burst-error detection capability b as a
function of the codeword length n, as depicted in Fig. 3.
The maximum codeword lengths corresponding to specific
values of b in the range 1 ≤ b ≤ 16 are marked by
circles. Furthermore, Fig. 3 illustrates the three bounds bR, bA
and bC by Reiger, Abramson and Campopiano, respectively,
determined by r = 32, b and n, where n has been computed
as a function of b and g(x) of CRC-32C.

For CRC-32C, Fig. 4 shows the bounds on r by Reiger,
Abramson and Campopiano as a function of the codeword
length n, computed in the same way as in Fig. 3.
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Fig. 2. Redundancy r as a function of length n for CRC-32.

The CRC-32Q code [29], used in the Aeronautical Informa-
tion Exchange Model, has a generator polynomial in reversed
reciprocal notation ’C0A0A0D5’ and is also an extended
cyclic Hamming code for n = 231−1 with minimum distance
dmin = 4. The double burst-error detection properties of CRC-
32Q and corresponding bounds by Reiger, Abramson and
Campopiano are depicted in Fig. 5 and Fig. 6 as a function
of the codeword length n. Note that for all three CRC codes
considered the Abramson bound becomes significantly tighter
than the Reiger bound as n increases and b decreases.

Table III compares the double burst-error detection capabil-
ity of the three CRC codes discussed above. For jumbo frames
of size n ≤ 72144 used in Ethernet, CRC-32 has double burst-
error detection capability b = 8 [16]. Note that CRC-32C and
CRC-32Q would achieve b = 9 for Ethernet jumbo frames. A
maximum double burst-error detection capability of b = 11 in
jumbo frames with r= 32 can be achieved, for example, by the
CRC code with generator polynomial ’A060FBB9’ in Table I.

V. CONCLUSION

New optimum binary shortened cyclic codes with redun-
dancy r = 32, codeword length n ≤ 596834, and single
burst-error correction capability b in the range 10 ≤ b ≤ 16
have been given. The codes have been found by means
of the Kasami algorithm in an exhaustive computer search.
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Fig. 3. Error-burst length b as a function of length n for CRC-32C.
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Fig. 4. Redundancy r as a function of length n for CRC-32C.

Their performance has been compared with the Reiger, the
Abramson and the Campopiano bounds on the redundancy r
and the single burst-error correction capability b depending on
the codeword length n.

The true burst-error correction capability of the [2112, 2080]
shortened Fire code selected for transmission at 10Gb/s in
Ethernet has been determined to be b = 11. Shortened cyclic
codes with higher burst-error correction capability b = 13,
r = 32, and n ≥ 2112 have been given. A new [2112, 2080]
shortened cyclic code with b = 13 and a generator polynomial
g(x) = x32 + x13 + x8 + 1 has been presented. This code
improves upon the shortened Fire code in Ethernet that has
b = 11 and six non-zero generator polynomial coefficients.

The double burst-error detection properties of three cyclic
redundancy check codes CRC-32, CRC-32C and CRC-32Q
used in standards have been analyzed and compared to each
other using bounds by Reiger, Abramson and Campopiano.
In all three cases, the Abramson bound becomes significantly
tighter than the Reiger bound as n increases and b decreases.
Finally, double burst-error detection properties should be con-
sidered in the selection of a CRC code.
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