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Performance of Interleaved Block Codes with Burst Errors

Roy D. Cideciyan, Fellow, IEEE, Simeon Furrer, and Mark A. Lantz
IBM Research-Zurich, CH-8803 Rüschlikon, Switzerland

A Gilbert-Elliott channel for symbol errors is considered to analyze the performance of interleaved error correction codes with
fixed block size in the presence of burst errors. The proposed channel model for symbol errors is based on a simplified Gilbert channel
for bit errors, which enables direct comparisons of the performance of block codes with different symbol sizes. The autocorrelation
function between two erroneous symbols within an interleaved codeword is computed. An exact expression for the codeword-error
probability is derived from the symbol-based channel model. A tight lower bound on the codeword-error probability and error
floors, which are observed when the average raw bit-error rate is low, are analyzed using the bit-based channel model.

Index Terms—Error correction code, burst error, Markov chain, Gilbert-Elliott channel, error rate performance, error floor.

I. INTRODUCTION

F INITE state channels that are described by a probabilistic
or a deterministic function of a Markov chain are natural

models for many communication and storage channels with
memory in which the channel condition, characterized by a
state variable, changes with time [1]–[5]. If the input symbol
of the channel at time k is xk and the output symbol of the
channel at time k is yk, the error at time k can be defined as
ek = 0 if xk = yk and ek = 1 if xk 6= yk. Thereby, a channel
input and output symbol is usually an s-bit symbol, e.g., a bit
if s = 1, or a byte if s = 8. Two-state Markov chains with a
good state and a bad or burst state, proposed by Gilbert and
Elliott [1], [2], have been widely used to model channels with
memory that exhibit burst errors.

To evaluate the error rate performance of interleaved error
correction codes (ECC) on channels with burst errors, it is
necessary to express the error weight distribution at the output
of the finite state channel corresponding to the probability
of having m symbol errors, 0 ≤ m ≤ N , in a symbol-
interleaved codeword of length N as a function of channel and
code parameters. The post decoding word error probability of
interleaved block codes with burst errors have been analyzed
for fixed symbol size and raw symbol-error rate [6]–[9].

In this paper, the error rate performance is evaluated using a
Gilbert-Elliott channel for symbol errors that is based on a sim-
plified Gilbert channel for bit errors. The proposed approach
enables direct comparisons of the performance of interleaved
block codes with different symbol sizes. Furthermore, it allows
to evaluate the codeword-error probability as a function of
the average raw bit-error rate. Post-decoding error rate curves
are computed for a two-state burst error channel with a fixed
average burst length. The approach to performance analysis
that is used in this paper does not make use of the partial
fraction technique proposed in [9], but is an extension of the
method in [8]. It was noted in [10] that the approach of [8] is
particularly suitable if the number of channel states is small.

In the presence of additive white Gaussian noise, the error
rate performance of conventional coding schemes (e.g. Reed-
Solomon (RS) codes in conjunction with algebraic decoding or
convolutional codes in conjunction with maximum-likelihood
decoding) exhibits only a waterfall region. However, for it-

erative decoding of low-density parity-check (LDPC) codes
and turbo codes, the waterfall region is followed by an error
floor region in which the error rate performance flattens. Error
floors of iterative decoders have been extensively studied [11],
but error floors of Gilbert-Elliott channels have not been
analyzed. Error floors of interleaved block codes on Gilbert
-Elliott channels were first observed for a simplified Gilbert
channel characterizing bit errors [12]. In this paper, error floors
of Gilbert-Elliott channels are analyzed and a closed-form
expression for the error rate performance in the error floor
region is derived.

The paper is organized as follows. In Section II, a two-
state simplified Gilbert burst channel model for bit errors
is described from which a two-state Gilbert-Elliott channel
model for s-bit symbol errors is derived. Furthermore, the
autocorrelation function between two erroneous symbols at the
output of the Gilbert-Elliott channel is given. In Section III, the
error weight distribution and the codeword-error probability
for an N -symbol codeword, which is symbol-interleaved to
depth I and has ECC capability of t symbols, is computed.
In Section IV, a tight lower bound on the codeword-error
probability is computed by considering all possible single burst
errors within a codeword that exceed the ECC capability of
the code. Moreover, it is shown that in the high signal-to-
noise ratio (SNR) regime of low average raw bit-error rates the
codeword-error probability is proportional to the raw bit-error
rate. A closed-form expression for the error rate performance
in the error floor regime is derived. Finally, Section V contains
a brief summary and conclusions.

II. CHANNEL MODEL

The underlying channel model for evaluating the error rate
performance of block codes in the presence of burst errors is
shown in Fig. 1. The simplified Gilbert channel model for bit
errors is characterized by the state transition probability matrix

C =

[
b 1− b

1− a a

]
, (1)

where b is the probability of staying in the good state G (state
1) and a is the probability of staying in the bad state B (state
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Fig. 1. Bit-based channel model.

2). The bit-error probability at state G is 0 whereas the bit-
error probability at state B is 1. The average raw bit-error rate
(BER) is given by

pb =
1− b

(1− a) + (1− b)
. (2)

The stationary probability row vector π = [πG, πB] is
defined by πC = π, where πG = 1 − pb is the stationary
probability of being at state G and πB = pb is the stationary
probability of being at state B. In a simplified Gilbert model,
the distribution of occupancy times for both states G and B is
geometric with means (1− b)−1 and (1− a)−1, respectively.
In the following, a is a fixed constant for a given channel
with burst errors and b changes as a function of a and pb.
Therefore, the simplified Gilbert channel can be characterized
either by a and b or by a and pb where from (2)

b = 1− (1− a) pb
1− pb

= 1− (1− a)
∞∑
i=1

pib. (3)

From (3), b can be tightly upper bounded by 1− (1− a)pb in
the regime of high SNR as pb → 0.

In magnetic tape storage, burst errors at the input of the
ECC decoder are caused by various mechanisms that include
magnetic media imperfections, head-to-media distance varia-
tions, error events at the output of the maximum-likelihood
sequence detector for the equalized partial-response channel
and error propagation in the modulation decoder. Measure-
ment of the average raw BER pb and the average length of
error bursts (1 − a)−1 at the input of the ECC decoder is
sufficient to characterize the simplified Gilbert channel with
memory. In our channel model, the average error burst length
is fixed whereas the average length of error-free intervals
(1−b)−1 = (1−a)−1(1−pb)/pb increases as the average raw
BER decreases with increasing SNR. The simplified Gilbert
channel model considered in this paper is a special case of the
Gilbert channel model [1] and the Fritchman channel model
with one error state [13], which are examples of renewal
channels as the error-free intervals in both types of channel
are independent from each other and identically distributed.

Figure 2 depicts the Gilbert-Elliott channel model for s-
bit symbol errors that is obtained from the simplified Gilbert
channel model in Fig. 1 by starting at a state and making
s transitions, i.e., each transition in Fig. 2 corresponds to a
set of s-bit error patterns. A symbol error ek = 1 at time k
occurs only if the s-bit error pattern is not the all-zero pattern.

Good Bad

1−B

1−A

B A

ps = 1−B1 ps = 1−A1

1 2

Fig. 2. Symbol-based channel model.

The Markov chain characterizing symbol errors in Fig. 2 is
specified by the s-step state transition probability matrix

T = Cs =

[
B 1−B

1−A A

]
. (4)

The symbol-error probability at state G is ps = (1 − B1)
where B1 = bs. The symbol-error probability at state B is
ps = (1−A1) where A1 = (1− a)bs−1. Clearly, the Gilbert-
Elliott channel in Fig. 2 describing symbol errors is a non-
renewal channel and the average symbol-error probability is

ps = (1− pb)(1−B1) + pb(1−A1). (5)

From the correlation function between erroneous symbols at
the output of a Gilbert-Elliott channel [14] (see Eq. (4.54)), the
autocorrelation R(k) between two symbols spaced k symbols
apart in a codeword interleaved to depth I is computed to be

R(k) =
(1−A1 − ps)(ps − 1 +B1)(A+B − 1)Ik

ps(1− ps)
. (6)

For a = 15/16, s = 8, an average error burst length of
16 bit and symbol interleaving depths I = 1 and I = 4,
Fig. 3 illustrates the autocorrelation of adjacent symbols in a
codeword R(1) vs. raw BER. R(1) for I = 4 is less than 0.1,
which is about four times less than R(1) for I = 1.
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Fig. 3. Autocorrelation of adjacent symbols in a codeword vs. raw BER for
interleaving depths I = 1 and I = 4.

III. ERROR RATE PERFORMANCE

In this section, the error rate performance of block codes
in the presence of burst errors is evaluated based on the
underlying symbol-based channel model in Fig. 2, which was
derived from the bit-based channel model in Fig. 1. In the
following, we assume that the error correction code has N
s-bit symbols and an error correction capability of t symbols.
Furthermore, it is assumed that the symbol interleaving depth
is I and the symbol errors in the interleaved codewords are
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described by the Gilbert-Elliott channel in Fig. 2 introduced
in Section II.

The codeword-error probability pC can be computed by

pC =

N∑
m=t+1

P (m,N) = 1−
t∑

m=0

P (m,N), (7)

where P (m,N) is the probability of having m erroneous
symbols in an N -symbol codeword.

Following a similar approach as in [8], P (m,N) can be
expressed as the coefficient of a polynomial. Specifically,

P (m,N) =
〈
π
(
T I−1E(x)

)N
1
〉
m
, (8)

where the m-th coefficient cm of a polynomial f(x) =∑n
m=0 cmx

m is denoted by cm =
〈
f(x)

〉
m

, π = [1− pb, pb]
is the stationary probability row vector associated with the
Markov chain in Fig. 2, 1 is a 2× 1 column vector of ones, x
is an indeterminate, and E(x) is a 2×2 error matrix that labels
each state transition for counting purposes by the probability
of making no symbol error plus the probability of making a
symbol error multiplied by the counting variable x.

For the Gilbert-Elliott channel in Section II, the error matrix
is given by

E(x) =

[
B1 + (B −B1)x (1−B)x

A1 + (1−A−A1)x Ax

]
. (9)

It can readily be shown that P (m,N) in (8) can be
expressed more generally as

P (m,N) =
〈
π
(
T iE(x)T j

)N
1
〉
m
, (10)

for all pairs (i, j) such that 0 ≤ i ≤ I − 1 and j = I − 1− i.
Therefore, the computation of the codeword-error probability
using the stationary Markov chain in Fig. 2 is independent
of which one of the codewords in a block of I interleaved
codewords is considered.

For a typical error correction code used in magnetic tape
storage with N = 240, s = 8, t = 6 [15], and interleaving
depths I = 1 and I = 4, Fig. 4 depicts the codeword-error
probability pC as a function of the raw BER pb and a = 15/16,
i.e., an average error burst length of 16 bit.
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Fig. 4. Codeword error probability vs. raw BER for N = 240, s = 8, t = 6
and interleaving depths I = 1 and I = 4.

In the high SNR regime of low BER pb, the error rate
performance curve exhibits an error floor, which will be
analyzed in the next section. The error floor for I = 1 is
about four orders higher than for I = 4.

In the low SNR regime of high raw BER pb, the codeword-
error probability pC can be approximated by assuming in-
dependent symbol errors with symbol-error probability given
in (5). The validity of this assumption at high raw BER pb
was demonstrated by using measured data from magnetic tape
[16]–[18]. The approximate codeword-error probability in the
low SNR regime pA is given by

pA =

N∑
m=t+1

(
N

m

)
pms (1− ps)N−m, (11)

Figure 5 shows that the computed error distribution for
N = 240, t = 6, I = 4, s = 8, a = 15/16 and pb = 10−2 can
be approximated by the binomial distribution for N = 240 and
the symbol-error probability ps = 1.4 × 10−2 corresponding
to average BER pb = 10−2, thus providing an analytical
justification for the high-BER approximation, which was based
on the assumption of uncorrelated symbol errors.
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Fig. 5. Error distribution for N = 240, t = 6, I = 4, s = 8, a = 15/16,
pb = 10−2 and binomial distribution.

In Fig. 6, the error rate performance of two RS codes with
symbol size s = 8, codeword length N = 240, interleaving
depth I = 4 and error correction capabilities t = 3 and t = 6
are compared for a channel with a = 15/16, i.e., an average
error burst length of 16 bit. As expected, the codeword-error
probability pC of the (240,228) RS code as a function of the
raw BER pb is lower than that of the (240,234) RS code. The
error floor of the (240,234) RS code with t = 3 is about three
orders higher than the error floor of the (240,228) RS code
with t = 6.

In Fig. 7, the error rate performance of three RS codes
with symbol sizes s = 8 and s = 10 are compared for a
channel with a = 3/4, i.e., an average error burst length of
four bit. In all three cases the encoded and interleaved block of
codewords have the same size. The proposed channel model
in Section II allows a direct comparison of the performance
of interleaved block codes with different symbol sizes. The
(768,728) RS code with 10-bit symbol size and interleaving
depth one performs better than the (384,364) RS code with
10-bit symbol size and interleaving depth two, which in turn
is better than the (240,228) RS code with 8-bit symbol size
and interleaving depth four. The error floors, which will be
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Fig. 6. Codeword error probability vs. raw BER for N = 240, s = 8, I = 4
and ECC capabilities t = 3 and t = 6.
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Fig. 7. Codeword error probability vs. raw BER for three RS codes with
different symbol sizes s and interleaving depths I .

analyzed in the next section, occur in all three cases for a
codeword-error probability pC < 10−20.

IV. LOWER BOUND AND ERROR FLOOR

In this section, a lower bound on the error rate performance
and error floors of block codes in the presence of burst errors
are evaluated based on the underlying bit-based channel model
in Fig. 1.

A tight lower bound pL on the codeword-error probability
pC is first derived for interleaved codewords. The probability
of a codeword error within a block of I symbol-interleaved
codewords is given by

pC = πGpC,G + πBpC,B, (12)

where πG = 1 − pb is the stationary probability of being at
state G, πB = pb is the stationary probability of being at state
B, pC,G is the probability of having at least t + 1 symbol
errors in a codeword starting from the good state G, and pC,B

is the probability of having at least t + 1 symbol errors in a
codeword starting from the bad state B.

From (3) the transition probability from the good state
G to the bad state B approaches (1 − b) = (1 − a)pb as

pb → 0. Since the stationary probability of being at state
B is pb, all dominant error events that exceed the error
correction capability of the code are single error bursts, which
are generated either starting from state B or from state G as
pb → 0. In the following, the index n, 1 ≤ n ≤ NIs, indicates
the first erroneous bit within the encoded and interleaved block
of size NIs bit.

The probability of having at least t+ 1 symbol errors in a
codeword starting from state G is then lower bounded by

pC,G > pLC,G=

s∑
n=1

bn−1(1− b)aIts−(n−1) +

M∑
n=s+1

bn−1(1− b)af(n,s,t,I), (13)

where M = (N − t − 1)Is + s is the total number of single
burst error events of minimum length that exceed the ECC
capability t and are generated by starting from state G, and

f(n, s, t, I) = Ist+ (I − 1)s−mod(n− s− 1, Is) (14)

is the minimum length of a dominant single burst error
generated after transitioning to state B, which depends on the
index n and the code parameters s, t and I .

To generate a dominant error burst starting from state B, it
is necessary to stay at state B for at least Its+ 1 transitions.
Therefore, there is only one dominant single burst error of
minimum length that exceeds the ECC capability of the code,
and the probability of having at least t+1 symbol errors in a
codeword starting from state B is lower bounded by

pC,B > pLC,B = aIts+1. (15)

The lower bound pL on the codeword-error probability pC
is then given by

pC > pL = πGp
L
C,G + πBp

L
C,B, (16)

and pL is a strict lower bound as it is the sum of probabilities
of a subset of error events that exceed the ECC capability of
the code. Summing up the probabilities of all dominant single
burst error events starting from states G and B, we then obtain

pL = pba
Its+1D(pb, a,N, s, t, I), (17)

where

D(pb, a,N, s, t, I) = 1 +
1− a
a

{
σ
(
bIs, N − t

)
σ
(
b
a , s
)
+

bIsσ
(
bIs, N− t−1

) (
σ
(
a
b , Is− s+1

)
−1
)}
, (18)

and

σ(q, n) =

n−1∑
i=0

qi =
1− qn

1− q
(19)

is the sum over the first n terms of a geometric series. Note
that b is a function of a and pb as shown in (3). The tight
lower bound pL depends on the raw BER pb, the fixed channel
parameter a and the fixed code parameters N , s, t, and I .

In the error floor regime of high SNR, there is a linear
relationship between pb and the error floor probability pF.
Specifically, pL → pF as pb → 0, and

pF = pba
Its+1 lim

pb→0
D(pb, a,N, s, t, I). (20)
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From (3), b→ 1 as pb → 0, and

pF = pba
Its−s+1((N − t)(1− aIs) + aIs). (21)

The proportionality factor

h(a,N, s, t, I) = aIts−s+1((N − t)(1− aIs) + aIs) (22)

in the linear relationship between pb and the error floor
probability pF is a constant that depends on the fixed channel
parameter a and the fixed code parameters N , s, t and I . At
low average bit-error rates pb and for two interleaved block
codes with codeword length N , symbol size s, error correction
capability t and two different interleaving depths I1 < I2, the
interleaving gain γ on a channel with average error burst length
(1− a)−1 is then given by

γ =
h(a,N, s, t, I1)

h(a,N, s, t, I2)
. (23)

We remark that on a log(pF) vs. log(pb) scale as in Figs. 4,
6 and 7, the slope of the error floor is one, i.e.,

log(pF) = log(pb) + log(h(a,N, s, t, I)). (24)

Finally, the high-BER approximation in Section III and the
low-BER error floor derived in this Section are very close
to the exact computation based on (7), (8) and (9). This
allows a performance analyst to quickly determine the error
rate performance at low and high BER using the closed-form
expressions in (11) and (21).

V. CONCLUSION

A Gilbert-Elliott channel for symbol errors has been pro-
posed for the performance analysis of interleaved block codes
in the presence of burst errors. The channel model for symbol
errors is based on a simplified Gilbert channel for bit errors
to enable a direct comparison of the performance of block
codes with different symbol sizes. The autocorrelation function
between two erroneous symbols within a codeword interleaved
to depth I has been given.

An exact expression for the codeword-error probability has
been derived and a high-BER approximation of the codeword-
error probability has been presented. A tight lower bound
for the codeword-error probability has been obtained in the
regime of low raw BER. It has been demonstrated that the
error rate performance of interleaved codewords at the output
of the simplified Gilbert channel exhibits an error floor at low
raw BER. The error floor, which is proportional to the raw
BER, has been analyzed and a closed-form expression has
been derived.

The results of the performance evaluation presented in this
paper including the analysis of error floors are valid for binary
and non-binary BCH codes, RS codes, and in general for any
interleaved block code with codeword length N , symbol size s,
ECC capability t, and interleaving depth I .
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