

RZ 3944 (# ZUR1803-050) 03/22/2018
Electrical Engineering 8 pages

Research Report

Compressed Sensing with Approximate Message Passing using

In-Memory Computing

Manuel Le Gallo, Abu Sebastian, Giovanni Cherubini, Heiner Giefers, Evangelos Eleftheriou

IBM Research – Zurich

8803 Rüschlikon

Switzerland

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for adver-

tising or promotional purposes, creating new collective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in other works.

This is the accepted version of the article published by IEEE: Manuel Le Gallo, Abu Sebastian,

Giovanni Cherubini, Heiner Giefers, Evangelos Eleftheriou,

"Compressed Sensing with Approximate Message Passing using In-Memory Computing,"

in IEEE Transactions on Electron Devices 65(10) (2018) 10.1109/TED.2018.2865352

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some
reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

https://doi.org/10.1109/TED.2018.2865352

1

Compressed sensing with approximate message
passing using in-memory computing

Manuel Le Gallo, Abu Sebastian, Senior Member, IEEE, Giovanni Cherubini, Fellow, IEEE,
Heiner Giefers, Senior Member, IEEE, and Evangelos Eleftheriou, Fellow, IEEE

Abstract—In-memory computing is a promising non-von Neu-
mann approach where certain computational tasks are performed
within resistive memory units by exploiting their physical at-
tributes. In this paper, we propose a new method for fast and
robust compressed sensing of sparse signals with approximate
message passing recovery using in-memory computing. The
measurement matrix for compressed sensing is encoded in the
conductance states of resistive memory devices organized in
a crossbar array. This way, the matrix-vector multiplications
associated with both the compression and recovery tasks can
be performed by the same crossbar array without intermediate
data movements at potential O(1) time complexity. For a signal
of size N, the proposed method achieves a potential O(N)-
fold recovery complexity reduction compared with a standard
software approach. We show the array-level robustness of the
scheme through large-scale experimental demonstrations using
more than 256k phase-change memory devices.

Index Terms—Approximate message passing, Compressed
sensing, In-memory computing, Phase-change memory.

I. INTRODUCTION

In-memory computing is an attractive approach for perform-
ing computationally expensive tasks of a high-level algorithm
in an energy-efficient manner. For instance, crossbar arrays of
resistive memory (memristive) devices can be used to store
a matrix and perform analog matrix-vector multiplications at
constant O(1) time complexity without intermediate move-
ments of data. This capability can be exploited in a wide
range of applications from neural network inference to solving
systems of linear equations [1]–[3].

Another well-suited application domain is that of com-
plex optimization problems such as compressed sensing (CS)
recovery. CS is an active research field in signal process-
ing which attempts to perform sampling and compression
simultaneously via a measurement matrix, and allows the
recovery of a high-dimensional signal from low-dimensional
noisy measurements. CS is used in various applications such
as MRI, facial recognition, holography, audio restoration or
in mobile phone camera sensors. In a camera sensor, the
approach allows to significantly reduce the acquisition energy
per image, or equivalently increase the image frame rate, by
capturing only few measurements, e.g., 10%, instead of the
whole image. However, CS recovery algorithms are usually
complex, and conventional implementations are confronted
with limited scalability owing to the large number of oper-
ations involved and high memory requirements. In-memory

The authors are with IBM Research - Zurich, 8803 Rüschlikon, Switzerland
(e-mail: anu@zurich.ibm.com, ase@zurich.ibm.com, cbi@zurich.ibm.com,
hgiefers@gmail.com, ele@zurich.ibm.com).

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 682675).

computing promises to significantly reduce the memory and
computing resources needed to solve the problem as well as its
computational complexity, at the cost of potentially reducing
solution accuracy.

In Internet of Things (IoT) systems, it may be desirable
to design implementations of CS with reconstruction on the
same device, e.g., a sensor, using very low power, in order
to have energy-efficient signal acquisition while at the same
time not having to send the compressed signal to the cloud
for reconstruction. Moreover, implementations of CS that can
deal with very large measurement matrices may be desirable in
applications where signals are received by large sensor arrays,
as for example envisaged for the Square Kilometre Array [4],
where the signal size may be on the order of 108.

In this paper, we propose an implementation of a CS recov-
ery algorithm, namely Approximate Message Passing (AMP),
based on memristive crossbar arrays, of which we presented a
preliminary version in [5]. We experimentally investigate the
impact of this memristive implementation on the performance
of AMP, in particular on the reconstruction accuracy. The
benefits and limitations of the memristive implementation are
discussed for three use cases of the AMP algorithm, namely
linear estimation, CS with soft-thresholding and compressive
imaging with image denoising.

II. OVERVIEW OF COMPRESSED SENSING

A. Problem setting

The basic idea of CS is to acquire few sampling measure-
ments from a high-dimensional signal, and subsequently to
recover that signal accurately. The compressive measurements
can be thought of as a linear mapping of a signal x0 of length
N to a measurement vector y of length M < N. If this process
is linear, it can be modeled by a M×N measurement matrix
A. The CS reconstruction problem is to determine the signal
x0 from the measurements y when sampled as

y = Ax0 +w, (1)

where w represents the measurement noise. CS asserts that
signals can be recovered from fewer samples than dictated by
the Shannon–Nyquist theorem if they are sparse, that is, if their
information rate is lower than the Nyquist rate. If the signal
x0 is sparse in some transform domain, we can represent it
as x0 = Ψξ , where ξ contains only a few (k) non-negligible
elements. It can be shown that if Ψ is incoherent with A, ξ can
be recovered from y when M < N, as long as k is sufficiently
small. Ψ represents the inverse transform matrix, for example
an inverse Wavelet transform. CS is fundamentally different
from transform coding, which is used for example in JPEG

2

or MPEG compression. In the latter, the signal x0 needs to
be fully acquired, then the transform ξ is computed, and the
largest k transform coefficients and their locations are kept
so that the signal can be reconstructed. In CS, however, only
M < N measurements of x0 are acquired while still being able
to reconstruct the signal accurately. The downside is the cost
of complex CS reconstruction algorithms.

In the case of a sparse signal x0 and w = 0, a reconstruction
of x0 from y is obtained by solving the Basis Pursuit (BP)
L1 minimization problem. An alternative formulation known
as Basis Pursuit Denoising (BPDN) extends BP to the more
realistic noisy measurement case with w 6= 0. The solution of
both BP and BPDN can be obtained by convex optimization
using linear programming (LP) algorithms. However, the high
computational complexity of LP represents an obstacle for the
large problem sizes that occur very often in applications.

An appealing alternative to LP algorithms is offered by
iterative thresholding algorithms, because of their low com-
putational complexity. One particular iterative thresholding
scheme to recover x0 from y is of the form

xt+1 = ηt(A∗zt + xt)

zt = y−Axt . (2)

Here, xt ∈ RN is the current estimate of x0 at iteration
t, zt ∈ RM is the current residual, and ηt(·) is a (typi-
cally nonlinear) function, A∗ denotes the transpose of A and
x0 = 0. However, while offering low-complexity, the sparsity-
undersampling tradeoff achieved by algorithm (2), that is, the
smallest value that M can take given a certain sparsity of x0 to
successfully recover the signal, is usually less favorable than
for LP-based reconstruction.

Recently, Donoho et al. proposed an AMP algorithm which
adds a simple modification to (2) that substantially improves
the sparsity-undersampling tradeoff without significantly in-
creasing the computational complexity [6]. The AMP algo-
rithm is formulated as [7]

xt+1 = ηt(A∗zt + xt)

zt = y−Axt +
N
M

zt−1〈η ′t−1(A
∗zt−1 + xt−1)〉, (3)

where 〈v〉 ≡ N−1
∑

N
n=1 vn denotes the average of a vector v,

η ′t represents the derivative of ηt , xt ∈ RN is the current
estimate of x0 at iteration t, zt ∈ RM is the current residual,
A∗ denotes the transpose of A, and x0 = 0. With respect
to iterative thresholding (2), AMP includes the additional
term N

M zt−1〈η ′t−1(A
∗zt−1 + xt−1)〉 in the computation of the

residual, which is shown to substantially improve the sparsity-
undersampling tradeoff [6]. AMP has the remarkable property
that its solutions are governed by a state evolution whose
fixed points (when unique) yield the true posterior means, in
the limit M,N → ∞, with the ratio M/N fixed, and assum-
ing the elements of A are i.i.d. Gaussian random variables
Amn ∼ N(0,1/M) [7].

B. Compressed sensing hardware implementations

Many works have focused on efficient hardware imple-
mentations for the acquisition of compressed measurements,

such as in a camera sensor [8]–[10]. In an image sensor, the
measurement matrix is typically binary and the measurement
acquisition can be implemented either in the optical domain
[8] or on-chip [9], [10]. Efficient implementations of single-
shot imaging have been demonstrated with scalability up to
256×256 pixels consuming less than 100 mW of power and
showing no loss in SNR compared to normal (not compressed)
capture [10]. In such implementations, the reconstruction
algorithm is typically not implemented on-chip and therefore
reconstruction has to be done offline.

For CS reconstruction, a number of implementations have
been reported on FPGAs and ASICs designs. ASICs im-
plementations of the Orthogonal Matching Pursuit (OMP)
algorithm [11] and of the AMP algorithm [12] have been
presented, as well as FPGA implementations of both [13].
Very recently, an implementation of the second-order cone
program (SOCP) recovery algorithm for CS based on memris-
tive crossbar arrays has been proposed [14], however without
experimental validation.

In this work, we propose an implementation of the AMP
algorithm based on memristive crossbar arrays, whereby the
memristive arrays are used to perform the required matrix-
vector multiplications. We aim to provide a robust set of ex-
perimental results of this implementation using phase-change
memory (PCM) arrays. In comparison to typical high-precision
implementations on GPUs or FPGAs, reconstruction with a
memristive implementation will exhibit lower accuracy. The
expectation is that the energy efficiency and scalability of
a memristive implementation will allow to deal with much
larger signals than in a typical high-precision implementation,
and will yield faster and low-power solutions, at the cost of
a reduced reconstruction accuracy, which may however be
considered acceptable in many applications.

III. REALIZATION USING IN-MEMORY COMPUTING

A. Implementation of compressed sensing with AMP recovery
using resistive memory arrays

The key idea of realizing CS using in-memory computing
relies on the encoding of the elements of A as conductance
values of memristive devices organized in a crossbar array,
as depicted in Fig. 1a. One possible method to program
the conductance values is by an iterative program-and-verify
procedure. The compressed measurements (1) are acquired by
applying x0 as voltages to the crossbar rows via digital-to-
analog conversion, and obtaining y through analog-to-digital
conversion of the resulting output currents at columns. The
positive and negative elements of A can be coded on separate
devices together with a subtraction circuit, whereas negative
vector elements can be applied as negative voltages.

Once the matrix A has been programmed in the crossbar
array and the measurements y have been obtained, the AMP
algorithm can be implemented as illustrated in Fig. 1b. The
AMP algorithm is run in a dedicated processing unit, whereas
the computation of qt = Axt and ut = A∗zt is performed using
the (same) crossbar array. The vector qt is computed by
applying xt as voltages to the rows and reading back the
resulting currents on the columns, and ut by applying zt

3

...
...

...

...

...

...

x01

x02

x0N

yMy2y1

...

...

In
pu

t s
ig

na
l x

0

C
om

pr
es

se
d

 m
e

as
ur

em
en

ts
 y

...

...

x1
t

x2
t

xN
t

q1
t q2

t qM
t

...
...

...

...

...

...

...

...

z1
t z2

t zM
t

u1
t

u2
t

uN
t ...

...

...

...
...

...

AMP (run for T iterations)

R
ec

on
st

ru
ct

ed
 s

ig
na

l x
T

Measure Reconstruct

y = Ax0 qt = Axt
ut = A*zt

N x M Memristive
array(s),

 Read/Write circuitry,
Decoders

x1
t

xN
t

z1
t zM

t
q1

t qM
t

u1
t

uN
t

Data in/out buffers

D
ig

ita
l c

on
tr

ol
/p

ro
ce

ss
in

g
un

it

M
em

or
y

in
te

rf
ac

e

I/O
 &

 c
om

m
an

d
co

nt
ro

l c
irc

ui
tr

y

xt

qt

zt

ut

...

..
.

..
.

...

A
M

P
 a

lg
or

ith
m

a b

Fig. 1. (a) N×M memristive crossbar encoding the measurement matrix A used to acquire the CS measurements and to realize the matrix-vector computations
of the AMP recovery algorithm, and (b) architecture of the memristive implementation of AMP.

as voltages to the columns and reading back the resulting
currents on the rows. In a memristive crossbar, it has been
argued that matrix-vector multiplications can be performed
with constant time complexity O(γ), where γ is independent
of the crossbar size [3]. The reason is that the computation is
performed in parallel through Kirchhoff’s circuit laws locally
at the same place where the matrix data is stored. Therefore,
the complexity of (3) is potentially reduced from O(MN)
to O(N) if A is dense, as it is the case for A with i.i.d.
Gaussian elements. The precise value of γ will depend on
the read current settling time and the time required to digitize
the current by the peripheral circuitry. Consequently, larger
crossbars may eventually lead to higher γ if some of the
readout circuitry must be shared across columns/rows and
multiplexed.

B. Physical implementation on prototype PCM chip

We implemented CS with AMP recovery using a prototype
multi-level PCM chip that contains 1 million usable PCM
cells. PCM is a resistive memory technology that is based
on the rapid and reversible transition between the crystalline
and amorphous phases of certain materials by application of
suitable electrical pulses. Each PCM cell consists of a PCM
device in series with an access transistor. The PCM devices
are based on doped-Ge2Sb2Te2 (d-GST) and are integrated into
the prototype chip in 90 nm CMOS baseline technology [15].
In addition to the PCM cells, the prototype chip integrates
the circuitry for cell addressing, on-chip analog-to-digital
converter (ADC) for cell readout, and voltage- or current-mode
cell programming. The PCM chip is interfaced to a hardware
platform comprising two FPGA boards and an analog front-
end (AFE) board. The layout, picture, and specifications of
the experimental PCM chip with integrated read/write circuitry
can be found in [5].

The selection of one PCM device is done by serially
addressing a word line (WL) and a bit line (BL). For reading
a PCM device, the selected BL is biased to a constant voltage
(typically 0−300 mV) by a voltage regulator via a voltage gen-
erated off-chip. The sensed current is integrated by a capacitor,
and the resulting voltage is then digitized by the on-chip 8-bit
cyclic ADC. The total time of one read is 1 µs. The readout
characteristic is calibrated via on-chip reference polysilicon

resistors. For programming a PCM device, a voltage generated
off-chip is converted on-chip into a programming current.
This current is then mirrored into the selected BL for the
desired duration of the programming pulse. Each programming
pulse is a box-type rectangular pulse (∼ 1 ns rise/fall times)
with a duration of 400 ns and an amplitude varying between
0 and 500 µA. Iterative programming involving a sequence
of program-and-verify steps is used to program the PCM
devices to the desired conductance values [16]. After each
programming pulse, a verify step is performed and the value of
the device conductance programmed in the previous iteration
is read at a voltage of 0.2 V. The programming current applied
to the PCM device in the subsequent iteration is adapted
according to the sign of the value of the error between the
target level and the read value of the device conductance. The
total time of one program-and-verify step is approximately
2.5 µs. The array can be erased (RESET) using the maximum
amplitude pulse of 500 µA and reprogrammed at will, and
each cell can sustain approximately 109 programming pulses.

In our implementation of CS with AMP recovery, the
element-by-element multiplications of the matrix-vector prod-
ucts were realized in the PCM chip, and the remaining
operations were implemented in software. The elements of
A were mapped to conductance values between 0 and 50 µS
and programmed on 4 PCM devices averaged per element
using iterative programming, with a conductance margin of
1.74 µS per device, that is, the iterative algorithm converges
when the programmed conductance reaches a value within at
most 1.74 µS from the target value. The matrix is programmed
only once before CS is performed. Fig. 2a shows the number
of programming cycles required and Fig. 2b-c show the
conductance distributions for 5 representative levels. Here only
5 levels are shown for clarity, but in our experiments the
conductance may assume any value in the range 0− 50 µS.
We mapped the vector elements to voltage values in the range
0−0.3 V using a nonlinear mapping f (V) to account for the
slight nonlinearity of the current–voltage (I–V) characteristics
of PCM devices [17]. The effect of this mapping is shown in
Fig. 2d-e, where each point corresponds to the current of one
PCM device measured at the applied voltage. The accuracy
of the matrix-vector computation with our PCM chip for a
256×256 matrix with i.i.d. Gaussian elements is comparable
to that of a fixed-point implementation where the matrix and

4

1 1 0 1 0 0 1 0 0 0 1 0 0 0 01 0 - 1

1 0 0

1 0 1

1 0 2

0 2 4 6 8 1 0 1 2 1 40
2
4
6
8

1 0
1 2

0 4 8 1 2 1 6 2 00
2
4
6
8

1 0
1 2

Co
nd

uc
tan

ce
 (µ

S)

T i m e (s)

 L e v . 1 L e v . 2 L e v . 3
 L e v . 4 L e v . 5

c

1 2 3 4 5
0 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

Dr
ift

ex
po

ne
nt

L e v e l

0 5 1 0 1 5 2 00
2 0
4 0
6 0
8 0

1 0 0
Cu

mu
lat

ive
 pe

rce
nt

I t e r a t i o n s

 L e v . 1
 L e v . 2
 L e v . 3
 L e v . 4
 L e v . 5

a

0 1 0 2 0 3 0 4 0 5 00
2 0
4 0
6 0
8 0

1 0 0

Cu
mu

lat
ive

 pe
rce

nt
C o n d u c t a n c e (µ S)

b

 L e v . 1
 L e v . 2
 L e v . 3
 L e v . 4
 L e v . 5

Cu
rre

nt
(µA

)

G T ⋅ V (µ A)

d U n w a n t e d n o n l i n e a r i t y

Cu
rre

nt
(µA

)

G T ⋅ f (V) (a . u .)

e

Fig. 2. Iterative programming of 5 representative conductance levels (vertical
lines in b) on 5,000 devices of the PCM chip. (a) Number of iterations needed
for convergence of the iterative programming algorithm; (b) conductance
distributions at approx. 50 µs after programming; (c) evolution of the mean
conductance values of the 5 programmed levels vs. time; filled areas represent
the standard deviation for each level; the plot on the right shows the calculated
drift exponent ν of the 5 levels computed from G(t) = G(t0)(t/t0)−ν ; (d)
readout current of the 5,000 programmed PCM devices for a voltage range
0− 0.3 V, plotted vs. GT ·V , where V is the applied voltage and GT is the
target conductance of the different levels, and (e) readout current plotted vs.
GT · f (V), where f (V) =V +5V 3.

vector elements are quantized to 4 bits, as shown in Fig. 3.
To prevent errors in the multiplication results due to con-

ductance drift of the PCM devices, we developed a drift
calibration procedure which consists in periodically reading
the summed current of L columns in the array during an
experiment. Those L columns contain devices programmed
to known conductance values Gmn(t0), therefore by reading
them periodically at a constant voltage Vcal we can compensate
for a global conductance shift as illustrated in Fig. 4. This
procedure is especially simple because L can be chosen to
be small, enough to get sufficient statistics, and the sum
∑

N
n=1 ∑

L
m=1 Gmn(t0) needs to be computed only once. The

additional operations for drift calibration can be efficiently im-
plemented and are not expected to incur significant time/power
overhead. Reading the subset of L columns of the crossbar can
be done while the PCM array is idle, i.e., when the digital

- 4 - 3 - 2 - 1 0 1 2 3 4- 4
- 3
- 2
- 1
0
1
2
3
4

 P C M c h i p
 4 x 4 - b i t f i x e d - p o i n t

Co
mp

ute
d y

i va
lue

E x a c t y i v a l u e

^

Fig. 3. Comparison of the precision in the computation of y = Ax0 by
the experimental PCM chip and 4× 4-bit multiplications. A is a 256× 256
Gaussian matrix coded in the PCM chip, x0 is a 256-long Gaussian vector
applied as voltages, and yi is the i-th element of y.

...
...

...

...

...

...

Vcal

ILI2I1

...

...

...

...

...

...

IM...

Vcal

Vcal

Subset of L columns

+

G11

G12

G1N GLN GMN

Read L columns at voltage Vcal → Im

Compute

Scale matrix-vector multiplication
 result by

Fig. 4. Calibration procedure to prevent errors due to conductance drift.

unit performs the additional computations of the recovery
algorithm, and additional means are needed to perform the L
current summations as well as computing and storing α̂ . They
could be implemented either with on-chip digital circuitry
or in the control/processing unit. In our experiments, the
calibration procedure was performed in the control unit on
L = 40 columns after every 5 matrix-vector multiplications.

IV. EXPERIMENTAL RESULTS

A. Linear estimation

First, we study the simple use-case of linear estimation,
where the vector x0 is not sparse and its entries are i.i.d.
Gaussian N(0,1). In this case, the optimal AMP algorithm
uses ηt(x) = λtx with λt =

1
1+τ2

t
, where τ2

t is the variance of
the empirical distribution of A∗zt +xt−x0, which can be seen
as the effective noise of the algorithm at iteration t [7]. τ2

t can
be estimated by τ̂2

t = ‖zt‖2
2/M, which is shown to be a good

approximation of the variance of A∗zt + xt − x0 in the large
system limit [18].

We implemented this algorithm on the PCM chip for a ran-
dom signal x0 of size N = 256 and M = N measurements. The
M×N measurement matrix A was programmed in the PCM
chip with i.i.d. Gaussian elements normalized such that the
norm of its columns is approximately 1 [7]. The measurements
y were obtained by applying x0 as voltages on the PCM chip
after matrix A had been programmed, thus realizing Ax0 in
hardware. Subsequently, x0 was reconstructed with AMP using
the PCM chip to compute the matrix-vector operations Axt

and A∗zt , as shown in Fig. 1a. We performed the experiment
16 times for 16 different realizations of randomly generated
A and x0, and reported the mean and standard deviation of

5

0 1 0 2 0 3 01 0 - 2

1 0 - 1

1 0 0

- 2 . 0 - 1 . 5 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
1 E - 4
0 . 0 1
0 . 52
1 0
3 05 07 0
9 0
9 89 9 . 5

9 9 . 9 9
9 9 . 9 9 9 9b

No
rm

al
Pe

rce
nti

les

(A * z t + x t - x 0) n

 P C M c h i p
 4 x 4 - b i t F i x e d - p o i n t
 F l o a t i n g - p o i n t

NM
SE

I t e r a t i o n s t

 P C M c h i p
 4 x 4 - b i t F i x e d - p o i n t
 F l o a t i n g - p o i n t

a

Fig. 5. (a) Normalized mean square error as a function of the number of
AMP iterations for linear estimation with N = M = 256. The filled areas
represent the standard deviation over 16 different realizations of A and x0. (b)
Empirical distribution of the effective noise A∗zt + xt − x0 at the last AMP
iteration t = 29 for the three implementations. All 16 experiments were used
to build the empirical distributions.

the normalized mean square error (NMSE) ‖xt − x0‖2
2/‖x0‖2

2
over those 16 experiments. The different realizations of A and
x0 chosen were such that proper convergence of the AMP
algorithm was obtained1.

The evolution of the NMSE between the original and
the reconstructed signal is shown in Fig. 5a. The NMSE
decreases as 1/(1+ t) for the floating-point implementation
as dictated by state evolution [7]. For the PCM chip and an
implementation where the multiplications in Axt and A∗zt are
done in 4× 4-bit fixed-point arithmetic, the NMSE floors at
values of approx. 0.15 and 0.12, respectively. However, the
initial convergence rate of AMP is not affected by the inexact
implementations. This finding will be further confirmed in the
next experiments of Sections IV-B and IV-C.

An important feature of AMP is that the effective noise
A∗zt +xt−x0 is approximately Gaussian [18]. This allows the
asymptotically exact analysis of AMP whereby the variance of
this noise can be computed exactly from state evolution for any
t when N→∞ [7]. Moreover, the variance can be used as input
to the function ηt in order to optimally denoise this Gaussian
noise [7]. For iterative thresholding (2), the effective noise is
generally not Gaussian and state evolution does not hold [6],

1Due to the small system size (N = 256), AMP does not converge properly
for all combinations of randomly generated A and x0. In the experiments,
we ensured that for all realizations of A and x0 chosen, the NMSE neither
floors nor starts monotonically increasing in the floating-point implementation
within the number of AMP iterations performed, in this case 29.

0 1 0 2 0 3 01 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

0 6 4 1 2 8 1 9 2 2 5 6- 4
- 3
- 2
- 1
0
1
2
3
4

NM
SE

I t e r a t i o n s t

 P C M c h i p
 4 x 4 - b i t F i x e d - p o i n t
 F l o a t i n g - p o i n t

B l u e : M / N = 1
R e d : M / N = 0 . 7 5

a

Sig
na

l

 O r i g i n a l
 R e c o n s t r u c t e d , P C M c h i p

b

Fig. 6. (a) Normalized mean square error vs. number of AMP iterations
for CS with soft-thresholding; filled areas represent the standard deviation
over 16 different realizations of A and x0, and (b) example of original and
reconstructed signal for the PCM implementation with M/N = 0.75.

[7]. Hence, it is important to verify whether the Gaussianity of
this noise is affected by the PCM implementation. We obtained
the effective noise A∗zt + xt − x0 at the last AMP iteration
for the three implementations. We found no clear departure
from a Gaussian distribution for both the PCM and fixed-point
implementations, see Fig. 5b. The tails which deviate from an
exact Gaussian distribution close to percentiles 0.01 and 99.99
observed in all three implementations are likely a consequence
of the small system size (N = 256).

B. Compressed sensing with soft-thresholding

In this use case, the vector x0 is k-sparse, i.e., it contains k
non-zero elements, and its non-zero elements are i.i.d. Gaus-
sian N(0,1). In order to reconstruct x0 from the measurements
y, we use the AMP algorithm (3) with a sequence of soft-
threshold functions ηt(x) defined as [6]

ηt(x) =

x− τt , if x > τt

0, if − τt ≤ x≤ τt

x+ τt , if x <−τt

(4)

with thresholds τt = ‖zt‖2/
√

M. For the soft-threshold
function (4), the term N

M zt−1〈η ′t−1(A
∗zt−1 + xt−1)〉 in the

AMP algorithm can be calculated explicitly and yields
N
M zt−1〈η ′t−1(A

∗zt−1 + xt−1)〉 = 1
M zt−1‖ηt−1(A∗zt−1 + xt−1)‖0,

where ‖x‖0 denotes the number of non-zero elements of x.
We performed experiments for a random signal x0 of size

N = 256 and k = 64 randomly distributed non-zero elements.

6

We tested cases for sampling rates of M/N = 1 (no compres-
sion) and M/N = 0.75, each with 16 different realizations of
randomly generated A and x0. The evolution of the NMSE
between the original and the reconstructed signal is shown in
Fig. 6a. As in the previous use-case, the initial convergence
rate of AMP is unaffected by the approximate multiplications
done in the PCM chip and the magnitude of the NMSE floor
obtained with the PCM chip is comparable to the 4× 4-bit
fixed-point implementation. When using a lower sampling rate
M/N = 0.75, the convergence rate of AMP decreases and
the NMSE floor increases for the inexact implementations
compared to M/N = 1.

In certain applications, it is sufficient to recover only the
sparsity pattern of x0, without being concerned with the exact
values of the non-zero elements. We show in Fig. 6b the
original and reconstructed signals for one of the experiments
performed with 0.75 sampling rate. We see that the general
shape and the sparsity pattern of the signal are well recovered
in the PCM implementation. Thus, in applications where the
reconstruction accuracy is not of paramount importance, the
accuracy obtained with our current prototype PCM chip may
already be sufficient.

C. Compressive imaging with image denoising

Compressive imaging refers to performing CS on image
signals. The elements of x0 thus represent the pixel intensities
of an image. The goal is to acquire the image with M� N
measurements, and to reconstruct it accurately. A general
methodology for compressive imaging with AMP was recently
introduced by Metzler et al. [18]. They developed an extension
of the AMP algorithm that uses a denoiser within its iterations.
The proposed algorithm is given by

xt+1 = Dτt (A
∗zt + xt)

zt = y−Axt + 1
M zt−1divDτt−1(A

∗zt−1 + xt−1)
τ2

t = ‖zt‖2
2/M,

(5)

where Dτ denotes a denoiser which takes as input a signal
plus Gaussian noise and an estimate of the standard deviation
of that noise τ , and divDτ(x) = ∑

N
n=1

∂Dτ (x)n
∂xn

denotes the
divergence of the denoiser, where Dτ(x)n is the n-th element
of Dτ(x) and xn is the n-th element of x.

We tested this algorithm using the 128×128 pixel “house”
image shown in Fig. 7b as signal x0. We implemented two
different denoisers:
• Wavelet thresholding transforms the signal into a

wavelet basis, thresholds the coefficients, and then inverts
the transform. If W denotes the wavelet transform, this
denoiser is defined as Dτt (x) =W−1ηt(Wx). We used the
soft-threshold function (4) as ηt and 2D Haar wavelet
transform. The divergence of this denoiser can be cal-
culated explicitly and yields divDτt−1(A

∗zt−1 + xt−1) =
‖ηt−1(W (A∗zt−1+xt−1))‖0, which is the number of non-
zero elements of the thresholded sparsified estimate.

• BM3D (block matching 3D collaborative filtering) can be
considered a combination of non-local means (averaging
weighted neighboring pixels) and wavelet thresholding.
The term divDτt−1(A

∗zt−1 + xt−1) cannot be calculated

TABLE I
PSNR (IN DB) OF THE 128×128 “HOUSE” IMAGE RECONSTRUCTIONS.

PCM chip Fixed-point Floating-point
Wavelet thresh. 27.15 27.39 32.50

BM3D 34.58 32.27 45.06

explicitly and thus is estimated using the Monte-Carlo
procedure described in Metzler et al. [18]. The divergence
is estimated with divDτ(x)' b∗

ε
(Dτ(x+ εb)−Dτ(x)) for

small ε and vector b with elements i.i.d. N(0,1). BM3D
performs much better on images than wavelet threshold-
ing because images are not exactly sparse in the wavelet
domain.

The length of x0 in this experiment is N = 16384. For such
a large value of N, it is not possible to code all elements
of a M×N Gaussian matrix in our PCM hardware, which
has only 1 million usable devices. To overcome this difficulty,
we use a block-based compression approach, whereby a small
measurement matrix H of size Ms ×Ns is used, with Ns =
256. We perform measurements on consecutive 16×16 pixel
blocks using the same measurement matrix, H. In order to
obtain uncorrelated measurements and ensure the convergence
of AMP, we perform a (fixed) random permutation P of the
pixel intensities before doing the measurements. The matrix A
can be thus written as A = blkdiag(H)P, where blkdiag(H) is
a M×N matrix with N/Ns main diagonal blocks matrices H,
where it is assumed that N is a multiple of Ns and Ms/Ns =
M/N. The elements of H are i.i.d. ∼ N(0,1/Ms).

We programmed a 128×256 Gaussian measurement matrix
H in the PCM chip (sampling rate M/N = 1/2), divided
the image into 16× 16 pixel blocks, and compressed each
block individually with the PCM chip. Subsequently, the image
was reconstructed with algorithm (5) using the PCM chip to
compute the matrix-vector operations Axt and A∗zt . In Fig. 7a,
we show the NMSE evolution for the PCM, fixed-point, and
floating-point implementations for wavelet thresholding and
BM3D denoisers. The peak signal-to-noise ratio2 (PSNR) at
the last AMP iteration is reported in Table I. It can be seen
that using a better denoiser (e.g. BM3D) results in a lower
final NMSE in the PCM and fixed-point implementations. It
indicates that denoisers can be used effectively to improve the
reconstruction accuracy by mitigating the errors from the PCM
chip. Moreover, the convergence rate of AMP is only affected
by the choice of the denoiser, but not by the approximate
implementations.

V. DISCUSSION

There are several reasons why AMP is well suited for a
memristive implementation. First, matrix A does not change
over iterations, thus only read operations are performed dur-
ing AMP reconstruction. Therefore, matrix A needs to be
programmed only once and will be retained in the array
thanks to the non-volatility of the PCM devices. The read

2PSNR = 10log10

(
2552

‖x̂−x0‖22/N

)
, where x̂ is the estimate of x0.

7

a

b Original Wavelet thresh., PCM chip BM3D, PCM chip

0 10 20 30

10-3

10-2

10-1

100

Blue: Wavelet thresholding
Red: BM3D

N
M

S
E

Iterations t

PCM chip
4x4-bit Fixed-point
Floating-point

Fig. 7. (a) Evolution of the normalized mean square error in image recon-
struction for wavelet thresholding and BM3D denoisers with M/N = 1/2, and
(b) original and reconstructed images with the PCM implementation.

operations that are performed during reconstruction require
significantly less power than programming, and thus can be
heavily parallelized. With the 90-nm PCM technology used
in this work, we estimate the read energy to be between 1
and 100 fJ per device depending on the programmed resistance
state, compared with approximately 100 pJ for programming
(assuming 5 program-and-verify iterations). Moreover, unlike
programming endurance, the read endurance (at least in PCM)
is essentially unlimited, hence this implementation is favorable
with respect to device reliability issues and will not lead to
device degradation due to excessive reprogramming at every
iteration.

The effect of device imperfections and failures on the
final reconstruction NMSE is discussed in [5]. We found that
the AMP recovery can tolerate conductance variations due
to programming errors (up to 20%), and up to 20% stuck-
SET and stuck-RESET device failures. Device imperfections
that have a detrimental effect on the reconstruction accuracy
include device conductance noise (most dominant effect) and
I–V nonlinearity. Finally, the achievable reconstruction NMSE
is ultimately limited by the resolution of the DACs/ADCs used
at the input/output of the crossbar array.

To quantify the potential energy gains of the memristive
implementation over a digital design, based on the figures
currently achieved with our prototype PCM chip, we made
an FPGA design that operates at the same speed and same
precision at which we expect a PCM-based crossbar to per-
form [5]. In (3), matrix-vector multiplications are the most
expensive operations, so we compared the memristive crossbar
analog multiplier with a 4-bit FPGA multiplier design. The
4-bit matrix elements are stored in the FPGA block-RAM,
and 32 dot-product units operate in parallel to compute a
256×256 matrix-vector product in 1.2 µs. The dynamic power

consumption achieved with this design is 800 mW [5]. In a
256×256 PCM-based crossbar, the dynamic power dissipation
in the devices for one read operation would be on the order of
13.1 mW (read current of 1 µA per device at 0.2 V). Thus, a
256×256 PCM-based crossbar in 90-nm technology operating
at 1 µs cycle time plus two 8-bit ADCs operating at 125 MS/s
to convert the current (12 mW/GSps power consumption) is
expected to consume 16.2 mW, which is 50 times less than the
FPGA design. The power advantage arises because only read
operations, which consume little energy, are performed in the
memristive crossbar for multiplications.

While PCM devices were used for the experiments pre-
sented in this work, other memory devices could be considered
to perform the analog matrix-vector multiplications in the
proposed compressed sensing implementation. Potential can-
didates include metal-oxide RRAM [3], NOR Flash [19], and
SRAM [20]. The main advantages of PCM for this application
are its multi-level capability along with fast read/write latency
and non-volatility, however the PCM programming current
is generally higher than other technologies and resistance
drift poses additional challenges that need to be addressed.
Assessing different technologies for in-memory computing
should account for array-level variability, device noise, and
accuracy/ease of device programming in addition to latency
and power consumption.

In the ASIC implementation of AMP reported in [12], the
multiply-accumulate units (MAC) and the matrix generating
unit take most of the chip area and are responsible for most
of the power consumption, which amounts to > 90% in the
proposed AMP-M design for arbitrary matrices. In such an
implementation, matrix A would have to be explicitly stored
(in off-chip DRAM) or its coefficient would have to be
generated on the fly at every AMP iteration. In a memristive
implementation, matrix A is stored in the memristive array(s)
in a non-volatile manner, thus avoiding the need of a unit to
generate its coefficients or using an off-chip DRAM, while
still being able to reprogram it without redesigning the entire
circuit. Moreover, by computing the matrix-vector multiplica-
tions inside the memristive array, the use of MAC units, which
are expensive in both power and area when implemented in
CMOS, is completely avoided.

Furthermore, a remarkable property of AMP is that its
convergence rate is independent of the precision of the matrix-
vector multiplications. This is a highly desirable property for
this type of implementation, as the number of AMP iterations
needed for reconstruction will not be larger than in a floating-
point implementation. We also found that the NMSE floor due
to computational errors can be lowered by using appropriate
denoisers within AMP. Obviously, using a complex denoiser
such as BM3D might not be efficient from an implementation
point of view, because the speedup obtained by performing the
matrix-vector multiplications in the memristive array may be
overcompensated by the time required to apply the denoiser.
However, an interesting avenue would be to design a denoiser
that is specifically aimed at removing the computational errors
from the memristive array.

Regarding the limitations of the memristive implementation,
the computational errors from the memristive array are cur-

8

rently the biggest drawback. Very accurate reconstruction can-
not be currently achieved with our prototype PCM chip, which
performs with a precision similar to that of a matrix-vector
product in 4×4-bit fixed-point implementation. However, the
precision of analog in-memory computation is expected to
improve as the technology matures, e.g., with concepts such
as projected memory to reduce the noise and drift [21]. The
precision could be further increased by mapping a single
column of the matrix across multiple physical columns of an
array encoding different bits and applying the input vector
to the array one or several bits at a time, still performing in-
memory computing, at the expense of area and energy penalty,
and additional support required by the peripheral circuitry.

Another limitation is that, for CS applications, it might be
hard to justify the memristive implementation versus a digital
implementation with a 1-bit measurement matrix, as the latter
shows no loss in SNR for the compressed measurement acqui-
sition and no multipliers are needed for a binary matrix [10].
However, this type of implementation is limited to one specific
application only, i.e., only a binary measurement matrix is
supported, whereas a memristive implementation can be used
for any arbitrary measurement matrix. Moreover, such effi-
cient implementations currently only acquire the compressed
measurements and do not support reconstruction, which has
to be done off-chip. The attractiveness of the memristive
implementation is that both compression and reconstruction
could be done on the same platform.

VI. CONCLUSION

We propose an implementation of CS with AMP recovery
based on memristive crossbar arrays. The measurement matrix
elements are programmed as conductance values of memristive
devices in crossbar arrays, which are used to preform the
matrix-vector multiplications in both the compression and the
recovery algorithm. In this way, the computational complexity
of AMP recovery is potentially reduced from O(MN) to O(N).
We tested this implementation experimentally for three use-
cases of AMP using more than 256k PCM devices in a
prototype multi-level PCM chip to perform the matrix-vector
multiplications. We found that the convergence rate of AMP is
not affected by performing matrix-vector multiplications in the
PCM array. The accuracy achieved with our prototype PCM
chip is comparable to that of a fixed-point implementation
where the matrix and vector elements are quantized to 4 bits.
In applications where the reconstruction accuracy is not of
paramount importance, the memristive implementation could
represent a viable solution to provide more efficient AMP
reconstruction than a full von Neumann implementation.

ACKNOWLEDGMENT

We acknowledge N. Papandreou and U. Egger for exper-
imental help, L. Kull and T. Toifl for discussions, and M.
Brightsky for providing the PCM devices used in this work.

REFERENCES

[1] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma,
C. Bekas, A. Curioni, and E. Eleftheriou, “Mixed-precision in-memory
computing,” Nat. Electron., vol. 1, no. 4, pp. 246–253, April 2018, doi:
10.1038/s41928-018-0054-8.

[2] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse
coding with memristor networks,” Nat. Nanotechnol., vol. 12, no. 8, pp.
784–789, May 2017, doi: 10.1038/nnano.2017.83.

[3] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,
H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan,
“Memristor-based analog computation and neural network classification
with a dot product engine,” Adv. Mater., vol. 30, no. 9, p. 1705914, Jan
2018, doi: 10.1002/adma.201705914.

[4] G. Cherubini, P. Hurley, M. Simeoni, and S. Kazemi, “Imaging in
radio interferometry by iterative subset scanning using a modified
AMP algorithm,” in Proc. ICASSP, March 2016, pp. 3326–3330, doi:
10.1109/ICASSP.2016.7472293.

[5] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleft-
heriou, “Compressed sensing recovery using computational mem-
ory,” in IEDM Tech. Dig., Dec 2017, pp. 28.3.1–28.3.4, doi:
10.1109/IEDM.2017.8268469.

[6] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Natl. Acad. Sci. USA, vol. 106,
no. 45, pp. 18 914–18 919, Nov 2009, doi: 10.1073/pnas.0909892106.

[7] M. Bayati and A. Montanari, “The dynamics of message passing
on dense graphs, with applications to compressed sensing,” IEEE
Trans. Inf. Theory, vol. 57, no. 2, pp. 764–785, Feb 2011, doi:
10.1109/TIT.2010.2094817.

[8] M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun,
K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, March
2008, doi: 10.1109/MSP.2007.914730.

[9] L. Jacques, P. Vandergheynst, A. Bibet, V. Majidzadeh, A. Schmid,
and Y. Leblebici, “CMOS compressed imaging by random con-
volution,” in Proc. ICASSP, April 2009, pp. 1113–1116, doi:
10.1109/ICASSP.2009.4959783.

[10] Y. Oike and A. El Gamal, “CMOS image sensor with per-
column σδ ADC and programmable compressed sensing,” IEEE J.
Solid-State Circuits, vol. 48, no. 1, pp. 318–328, Jan 2013, doi:
10.1109/JSSC.2012.2214851.

[11] P. Maechler, P. Greisen, B. Sporrer, S. Steiner, N. Felber, and A. Burg,
“Implementation of greedy algorithms for LTE sparse channel estima-
tion,” in Proc. ASILOMAR, Nov 2010, pp. 400–405, doi: 10.1109/AC-
SSC.2010.5757587.

[12] P. Maechler, C. Studer, D. E. Bellasi, A. Maleki, A. Burg, N. Felber,
H. Kaeslin, and R. G. Baraniuk, “VLSI design of approximate message
passing for signal restoration and compressive sensing,” IEEE Trans.
Emerg. Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 579–590, Sept 2012,
doi: 10.1109/JETCAS.2012.2214636.

[13] L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, “High-speed
compressed sensing reconstruction on FPGA using OMP and AMP,” in
Proc. ICECS, Dec 2012, pp. 53–56, doi: 10.1109/ICECS.2012.6463559.

[14] S. Liu, A. Ren, Y. Wang, and P. K. Varshney, “Ultra-fast robust
compressive sensing based on memristor crossbars,” in Proc. ICASSP,
March 2017, pp. 1133–1137, doi: 10.1109/ICASSP.2017.7952333.

[15] M. Breitwisch, T. Nirschl, C. Chen, Y. Zhu, M. Lee, M. Lamorey,
G. Burr, E. Joseph, A. Schrott, J. Philipp et al., “Novel lithography-
independent pore phase change memory,” in VLSI Symp. Tech. Dig.,
June 2007, pp. 100–101, doi: 10.1109/VLSIT.2007.4339743.

[16] N. Papandreou, H. Pozidis, A. Pantazi, A. Sebastian, M. Breitwisch,
C. Lam, and E. Eleftheriou, “Programming algorithms for multilevel
phase-change memory,” in Proc. ISCAS, May 2011, pp. 329–332, doi:
10.1109/ISCAS.2011.5937569.

[17] M. Le Gallo, M. Kaes, A. Sebastian, and D. Krebs, “Subthresh-
old electrical transport in amorphous phase-change materials,” New
J. Phys., vol. 17, no. 9, p. 093035, Sept 2015, doi: 10.1088/1367-
2630/17/9/093035.

[18] C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denoising to
compressed sensing,” IEEE Trans. Inf. Theory, vol. 62, no. 9, pp. 5117–
5144, Sept 2016, doi: 10.1109/TIT.2016.2556683.

[19] X. Guo, F. M. Bayat, M. Bavandpour, M. Klachko, M. R. Mahmoodi,
M. Prezioso, K. K. Likharev, and D. B. Strukov, “Fast, energy-efficient,
robust, and reproducible mixed-signal neuromorphic classifier based on
embedded NOR flash memory technology,” in IEDM Tech. Dig., Dec
2017, pp. 6.5.1–6.5.4, doi: 10.1109/IEDM.2017.8268341.

[20] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in Proc. ISSCC, Feb 2018, pp.
488–490, doi: 10.1109/ISSCC.2018.8310397.

[21] W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dell-
mann, and E. Eleftheriou, “Projected phase-change memory devices,”
Nat. Commun., vol. 6, no. 8181, Sept 2015, doi: 10.1038/ncomms9181.

