

RZ 3953 (#ZUR1906-036) 12/06/2019
Computer Science 11 pages

Research Report

Enhancing multi-threaded sparse matrix multiplication for

knowledge graph oriented algorithms and analytics

Leonidas Georgopoulos, Aleksandros Sobczyk, Dimitrios Christofidellis,

Michele Dolfi, Christoph Auer, Peter W J Staar, Costas Bekas

IBM Research – Zurich
Säumerstrasse 4

CH-8803 Rüschlikon

Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

Enhancing multi-threaded sparse matrix multiplication for
knowledge graph oriented algorithms and analytics

Leonidas Georgopoulos, Aleksandros Sobczyk, Dimitrios Christofidellis,

Michele Dolfi, Christoph Auer, Peter W J Staar, Costas Bekas

{leg,obc,dic,dol,cau,taa,bek}@zurich.ibm.com

IBM Research

Rüschlikon, Switzerland

ABSTRACT
Graph algorithms can be implemented as a sequence of basic

linear algebraic operations (BLAS) on a sparse adjacency ma-

trix. Analytics, e.g. centralities, are computed fast through sto-

chastic approaches employing a few SPMM operations. Edge

traversals is an important operation for knowledge discovery,

which can be implemented as a sequence of (SPMV) opera-

tions. Both, SPMV and SPMM, are notorious for being memory

bound, cache demanding operations, and difficult to parallelize;

(SPMM) suffering the least in terms of operations per byte.

When the graph structure is fully known at runtime we can

address in an off-line manner, memory overhead, and cache

miss ratio by respectively using a smaller type for indexes,

and a cache friendly sorting to reduce cache misses on the

dense input vector. Parallelism is achieved by blocking the

matrix. This work is the core of our HPC Knowledge Graph

(HPC-KG) employed in production settings; among first such

implementations.

1 INTRODUCTION
Representation of domain specific information as a graph en-

ables to capture relational domain knowledge in a multitude

of fields. This fact, has driven the development of several

graph based solutions for relational representation (Knowl-

edge Graph)
1
. Originally, most implementations have been

targeted for web-oriented social-media like graphs, where the
relations are easily extracted simply bymapping acquaintances

to node relations. Queries typically are required to operate on a

small part of the nodes in the graph, mainly through neighbor

retrievals. The dominant approach is a node-centric implemen-

tation of a graph, which can be very successful for first order

retrievals, e.g. to obtain a list of neighbors. However, in knowl-

edge graphs deep-search capabilities and analytics are crucial

for knowledge extraction. Therefore one can divide operations

in three classes, (a) shallow, (b) depth, and (c) wide, depending

on the way the operation interacts with the graph to reach

the required result. For the implementation of a knowledge

graph engine competing constraints are introduced. These are

difficult to achieve in a node-centric approach. However, an

edge-centric approach permits to tackle these simultaneously

by focusing in efficient implementation of pure BLAS prim-

itives; foremost SPMV and SPMM. We present our account

1
Neo4j, IBM Titan, Google KG, Apache Giraph and Amazon Neptune, etc.

Conference’17, July 2017, Washington, DC, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

on the ongoing work of building a High performance com-

puting Knowledge Graph engine (HPC-KG) that permits to

address both depth-type and wide-type of operations while at
the same time maintaining a competitive edge on shallow-type
operations.

Knowledge graphs are created by processing large volumes

of diverse information, such as documents, diagrams, and pic-

tures. First, the data ingestion phase extracts unstructured

information, subsequently a knowledge extraction phase ex-

tracts corpus structure as relational mappings that finally per-

mit to build a graph that encodes the knowledge extracted

between first order terms, e.g. ‘Mary-married-Jonathan’ or

‘copper-isa-metal’. Subsequently, these are augmented by a

number of techniques that are not of interest for the pur-

pose of this paper to higher order constructs, e.g. composites

‘polyampholytes-isa-polyelectrolyte’. Given these, Knowledge

Graphs can grow in size and complexity in an unbounded

manner, depending on the method to populate and curate the

graph.

Making this information available for searching, extracting

dependencies, and hidden knowledge, can be achieved in a

number of ways. Graph traversals, are the foremost opera-

tion to obtain such information. The former is an exemplary

depth-type operation. On the other hand, extracting centrality

information, retrieving the spectrum, or performing clustering,

enables an integral approach to uncover node and subgraph

importance on graphs. These are wide-type operations on the

graph. Finally, shallow-type operations include getting the

neighbors or the degree of a node or a set of nodes.

Given shallow-type operations, a straightforward approach

is to store each vertex along with references to its outgoing

connections; i.e. “node-centric”. However, this does not work

well for knowledge graphs where queries are complex and

need to go in depth and breadth. There the number of traversed

edges can grow in non-linear fashion, which turns out be

difficult to handle in node-centric approach. However, when
storing the graph in its dual form [10], the adjacency matrix,

many standard graph algorithms are straightforward to apply

by application of BLAS routines on a sparse matrix, [8] [4], [9].

Considering wide-type operations, the entire graph is required

to be visited multiple times, e.g. centralities, spectral methods,

etc.. These can be computed efficiently by means of BLAS

operations [15].

Pure performance gains in terms of runtime over node-
centric approach are only one side of the solution. The required
development effort and maintenance are also important. In the

https://doi.org/10.1145/nnnnnnn.nnnnnnn

adjacency-list approach the complexity of maintaining a prod-

uct code base grows exponentially, because performance and

correctness needs to be achieved in every algorithm implemen-

tation. These are known to be hard to implement and software

engineering skills are an important onset of the implementa-

tion effort. In contrary, taking a BLAS based graph approach

operations can be decomposed in a sequence of easily main-

tainable BLAS primitives. Therefore, runtime performance

improvements can be targeted on very specific parts of the

product code base.

In this context, sparse matrix-vector multiplication (SPMV)

and sparse matrix-matrix multiplication (SPMM) are crucial.

The former plays a key role in depth-type and breadth-type
operations, such as deep queries, whereas the latter is impor-

tant wide-type operations, such as analytics employing the

stochastic framework [1], [15] and concurrent processing of

“query-like“ retrievals.

Modern multi-core SMT / SMP architectures with high

speed memory bus, and TB of memory are widely available.

Processing power of these units is in the order of TFlops, and

it is typical for implementations of SPMV and SPMM kernels

to overhaul memory I/O capability. An efficient kernel imple-

mentation needs to tackle, thread contention on the output

vector, cache miss on the input vector, and reduce memory

bandwidth requirement to be efficient. The key observation

that enables this work, is that knowledge graphs are consider-

ably constant over time. That is due to the fact that knowledge

creation phase is lengthy. The current state of the art is a

create-store-n-load, since the load phase can be made efficient.

Therefore, off-line optimizations can be made before loading

the graph into memory.

In this regard, two main directions are of interest, blocking

and reordering. Specifically, in this work, we consider blocked

sparse matrix representations, based on the Coordinates for-

mat (COO). We achieve a 30% memory footprint reduction for

large weighted graphs and up to 50% for unweighted graphs,

both in the order of billion edges . Subsequently, we tune the

structure of the blocked matrices by changing the element lay-

out to reduce the cost of memory fetch per flop, and increase

cache locality. Achieving high performance by targeting the

memory-bound nature of the kernels and optimizing memory

access patterns enables both CPU and GPU architectures to

operate above the order of 10Gf lops and 100Gf lops respec-
tively.

Summarizing, In this paper we take a high performance

computing approach to graph processing and design kernels

for multi-threaded inmemory processing of knowledge graphs.

The SPMM and SPMV kernels serves as an intrinsic building

block for operations on Graph induced sparse matrices. We

present our motivation and justification for making significant

design choices, such as choosing BCOO over BCSC/BSCR. We

contribute our approach to alleviate main performance hurdle

of the SPMM/SPMV kernels, the memory bandwidth. Paral-

lelism is achieved by grinding the matrix in many small blocks

such that it is easily distributed across threads. Moreover, we

tackle in a greedy on-line manner thread contention on the

output vector, and address cache misses by reordering the

sparse matrix in cache-line sized blocks off-line. Performance

results in standard graphs results are presented to show im-

provements achieved by our approach. Our CPU and GPU

kernels achieve at least 2x the performance of industry stan-

dard solutions.

2 DISCUSSION
The basic notions and solutions to the introductory problems

already presented Section 1 are detailed subsequently. The first

four parts of this section introduce graph formalism, group-

ing of operations, and detail the applications of interest. The

rest of this sections is dedicated to presenting our implemen-

tation solutions that lead to the performance detailed in the

subsequent sections.

2.1 Graphs and adjacency matrices
Briefly, a graphG (V ,E) is a tuple of setsV the vertex set , and

E the edge set, formally and an incidence function that we

omit here for simplicity. The former contains a numbering of

nodes vi where i is in {1, 2, ...,n}, whereas the latter is a set
of tuples ei j : (vi ,vj) denoting a connection between vertices

vi and vj . Therefore the adjacent matrix A can represent the

graph by setting the value ofAi j to unity. The latter frequently
is a scalar value assigning weight related to some underlying

represented quantity. In knowledge graphs this results in a

sparse matrix. The latter is well represented in COO format.

Taking advantage of multi-threaded architectures requires

partitioning the matrix; such is blocking the COO format.

2.2 Graph operations
The field of graph algorithms is fundamental to computer sci-

ence, and representation of a graph has always been conceived

either through an adjacency-list or and adjacency-matrix ap-

proach. Glossing over the implementation details the former is

very similar to a list of lists. For each node a list of its connected

neighbors is stored; a node-centric approach. In contrast, the

adjacency-matrix approach encodes the edges, almost as they

are represented in the edge set; an edge-centric way.
In context of knowledge graphs, we can differentiate graph

operations with respect to the portion of the graph that needs

be addressed at each operation. Foremost, and actually what

most graph engines currently provide are shallow-type. Given
a node or a small subset of the graph one is interested to

retrieve first-order information. For example a list of neigh-

bors (get-neighbors) or a list of node-degrees. The second

type of operations wide-type operations concern the class of

algorithms where the entirety of the graph is used at each

step of the algorithm. These are from example centrality al-

gorithms, spectral algorithms, and matrix functions. Finally,

depth-type operations, can be grouped as those that starting

from a specific node or a set of nodes, an operation is applied

incrementally, such as graph-traversals.

All three cases can be effectively be decomposed to se-

quence of matrix product operations, along with some auxil-

iary operations that we gloss over here for sake of brevity. The

first type shallow-type operations be conceived equivalent to

1i1,i2, ...,idj = A1j (1)

2

where 1j is an indicator vector where all elements except the

subscript indices are zero, anddj is the degree of the j-th vertex.
Once, having the appropriate indices, it is straightforward to

obtain associated matrix meta-data by simple lookup. One can

also extend to multi-index operations by using a fat vector on

the right side of equation (1).

For second type of operations, wide-type, we consider com-

putation of centralities as in [15]. There the prevalent opera-

tion is a multiplication of the Chebychev polynomial expan-

sion associated with the matrix functional with a fat matrix of

Hadamard vectors as in [1].

f (A)V =
∑
m

cmPm (A)V (2)

Where f is a matrix function in the Cauchy sense, and V is a

Hadamard matrix, Pm the m-th Chebychev polynomial of the

first kind and cm the associated coefficients. For a detailed de-

scription the reader is referred to [15], [1], [7]. From (2) we can

observe that at each operation requires the entire adjacency

matrix and therefore the entire graph is processed. Finally,

depth-type operations, such as graph traversals can be seen as

a sequence of mappings of the following kind

x(k + 1) = Ax(k) (3)

where now x(k) is the required from the graph traversal opera-

tion k-order neighborhood; evidently x(k) = Akx(0). Summa-

rizing, for wide-type operation the SPMM primitive is crucial,

whereas for the depth-type and shallow-type operations SPMV

is more important.

2.3 Graph algorithms
Between the many graph algorithms and their respectively

high number of applications, we detail here two which are im-

portant for knowledge graphs. Edge traversals in knowledge

graphs are a very frequent to search, given a set of vertices,

for the most related nodes taking into account the edge matrix

weights. One to this is to start from the set of previously se-

lected nodes and accumulate edge weights as one traverses the

graph. The final outcome will be a weighted vector that pro-

vides relative importance. This is a crucial and very frequent

depth-type operation for extracting relational importance be-

tween nodes.

For subgraph membership information, breadth first search,

alternatively level-order traversal, can be used. The difference

from edge traversal is that one is interested to obtain the k-th

level set starting from a given root node. One traverses the

graph by visiting all the neighboring nodes and marking them

as visited, continuing iteratively on the child nodes until all the

nodes have been visited up to a specified depth. It can be used

for a multitude of applications, such as finding the shortest

path between two nodes, or to provide a k-th order neighbor-

hood node membership. Most node-centric implementations

exhibit poor performance due to the continuously growing

queue of visited nodes. Executing BFS as a sequence of linear

algebraic operations has constant “level-traversal” cost [9].

Starting from a given vertex, the algorithm runs iteratively

by applying an SPMV operation at each loop to perform a

“get-neighbors” operation. The starting frontier is represented

Algorithm 1 GrB BFS(A, s)

Require: graph A, starting vertex s
Ensure: level vector p

Initialize δ ← 0, p ← 0,ψ ← 1, f (i) ←
{

1, if i = s
0, else

whileψ > 0 do
Update p ← δ × f + p
Update f ← A⊤f
Update f ← f ⊙ ¬p
Setψ ← 1⊤f
Update δ ← δ + 1

return p

as a vector, having all elements equal to infinity except the

element corresponding to the starting vertex index, which is

equal to one. The traversal step is executed for all the vertices

in the frontier simultaneously. This (SPMV) call is the heaviest

computational part per iteration. A filtering step follows to

omit vertices already visited in previous steps, see Algorithm

1.

2.4 Analytics
Having information represented as a graph, one is gener-

ally interested to uncover importance of vertices (these are

mapped to actual data) having taken into account the en-

tire graph structure. This is achieved by computation of cen-

trality measures. There are many different measures, each

baring their importance. We steer away from the discussion

of centrality optimality and detail those that are most com-

monly used, eigenvector-centrality, subgraph-centrality, and
katz-centrality,[3], [5], [14]. Each has its merits, and in the

HPC-KG we have made all them available.

The eigenvector-centrality is used to represent the station-

ary distribution of a randomwalk in the graph. This model has

been very successful in uncovering importance of nodes when

the underlying plant is actually a randomwalk. In large graphs

represented as an adjacency list it is difficult to compute. How-

ever, in the adjacency-matrix format its computation can be

achieved by employing power iteration to get the dominant

eigenvector; thus employing a number of SPMV operations.

Contrasting, subgraph-centrality is difficult to compute in large

graphs. This is achieved by means of stochastic matrix func-

tion estimators based on equation (2), with f (A) = eA. Finally,
katz-centrality (I − cA)−1 is an alternative to degree centrality

and is computed by means of Jacobi iteration [14].

Another important aspect of analytics is obtain quantita-

tive information about a graph, a subgraph, or composition of

graphs. Standard approach for characterization of the irreg-

ular domains represented by graphs, given the graph-matrix

duality [10], is to compute spectral properties of the weighted

adjacency matrix. The spectrum-range can be effectively com-

puted with straightforward sequence of matrix vector multi-

plications, as well. Spectrum density estimation techniques

have also been devised [15]. These and the aforementioned

operations, all three types, are effectively based on efficient

(SPMV) and (SPMM) implementations. We dedicate the rest of

the section to detail our approach in improving them given

the fact that for knowledge graphs graph processing can be

performed in an off-line manner.

3

2.5 Blocked Sparse matrix formats
The three prevalent sparse matrix formats are Coordinate

list (COO), Compressed sparse row (CSR), and Compressed

sparse column (CSC). The COO matrix format stores three

arrays, I , J ,V such that I and J store the row and column

indices respectively of the non zero elements and V stores

the values. In the case of graph adjacency matrices the edge

weights between nodes I and J are stored in V . The memory

requirements for the COO format are linear with respect to the

number of edges in the graph. On the other hand CSR format

uses three arrays to store the nonzero values, the start and

end of rows, and the column indices, requiring as well linear

storage but at a smaller constant factor than COO format.

There are two drawbacks in using CSR in this specific context.

First, when considering blocking as the number of blocks

increases the memory requirement is smaller for blocked COO

(BCOO). The (BCSR) formats space requirement is bounded

from below order of

д(Bn
2Bnnz) ≈ д(M

2) (4)

where M is the vertex set size, Bnnz is the number of (non-zero)

blocks and Bn are non-zero elements per block side. In knowl-

edge graphs it is common that zero blocks are scarce, thus

for simplicity we assume all blocks have non-zero elements.

Furthermore, strong diagonal structures exist, which makes

Bn ≈ M/K. Thus a quadratic growth rate dependency on the

vertex set size for space requirements. For example nearly

(22GB) are required for storing the uk-2005 graph [12] in (BC-

SR/BCSC), compared to (7.5GB) (BCOO) for a grid of 512× 512.

In contrast BCOO requires storage in the order of

O(E + K2) = O(CM + K2) (5)

Where C is a constant factor much smaller than M, E are the

non-elements of the matrix; equal to the edge set cardinality.

Second, (BCSR) is difficult to work during the edge ingestion

phase, because the column index holding array will need to

constantly be updated with insertions at random positions.

Whereas in BCOO new edges can easily be appended directly

at the block. Finally beyond these reasons for choosing BCOO

format as we are going to see below, this choice further facili-

tates memory bandwidth reduction.

Detailing the blocking, the matrix is split in a two dimen-

sional grid; illustrated in Figure 1. Blocking a matrix in COO

format is achieved by storing the blocks as individual COO

matrices. The block coordinates are stored in a pair two dimen-

sional arrays BI and BL which hold respectively the starting

coordinates of each block and their lengths.

• BI: (Block index start) Element i, j holds a pair of co-
ordinates denoting the row-offset and column-offset

respectively of the block i, j in the original matrix.

• BL: (Block length) The pair in position i, j denotes the
number of row and columns of the respective block i, j .

The second array is only needed for the general case of non

square matrices and uneven blocking. Since adjacency matri-

ces are square we do not need to consider lengths explicitly.

A key aspect for storage requirements of the adjacency ma-

trix is the integral type used for the row and column indexing

arrays. In the pure COO format two thirds are spent on the

A(1,1)︷ ︸︸ ︷ A(1,2)︷ ︸︸ ︷
©«
0 0 1 0 0 2
0 3 0 0 0 4
5 0 0 0 0 0

0 0 6 7 0 0

0 0 0 0 8 0

0 0 0 9 0 0

ª®®®®®¬
©«
0 0 1 0 0 2
0 3 0 0 0 4
5 0 0 0 0 0

0 0 6 7 0 0

0 0 0 0 8 0

0 0 0 9 0 0

ª®®®®®¬︸ ︷︷ ︸
A(1,1)

︸ ︷︷ ︸
A(1,2)

(a) (b)

Figure 1: Different ways of blocking a sparse matrix. (a)
is the original matrix. (b) is the matrix split in a 2 × 2

grid of equal size blocks. Each block is stored as a COO.

indices.Take for example a COO matrix of size n × n and nnz
number of nonzero elements, an index_type of size sibytes
for the elements of I , J and scalar_type of size ss bytes for
elements of V . The memory footprint of this matrix is

nnz × (2si + ss) (6)

For the blocked version of the same matrix we observe that

the size is given by

nnz × (2sbi + ss) + B
2

n (si + sbi) (7)

Where we have assumed a grid of Bn × Bn blocks and intro-

duced a block_index_type of size sbi for the elements of the

blocked I , and J . The blocks hold values in the range of the

2
sbi . The elements of BI are index_type and the elements of

BL are block_index_type.
Memory footprint can be reduced for the blocked case

by choosing a block_index_type of smaller size than the

index_type. This can be achieved by restricting the block di-

mensions to be smaller than the maximum number that can

be represented by the block_index_type. We applied this

blocking strategy on the twitter_rv dataset [11], with dimen-

sionm = 41.7 millions and nnz=1.47 billions. The edges are
not weighted and only the indices need be stored. Thus the

values arrays can be ignored. For I and J , si = 4 bytes per

index are required, i.e. a 32-bit unsigned integer. Then the

total memory footprint of the COO representation would be

roughly 11.76GB. Taking the blocked COO representation, and

enforcing block dimensions no larger than 65535, the range

of a short, enables us to use as a block_index_type a 16-bit
unsigned short integer. This results to a memory footprint of

5.88GB, per equation (7), achieving a 49.98% compression. In

Figure 2 we demonstrate the blocked vs non-blocked versions

of six matrices, all having more than a billion non-zero ele-

ments. Matrices from the LAW [2] graph collection have been

included for comparison. In this plot we assume that edge

weights are stored as float data types to highlight the size com-

pression even for demanding weighted graphs. This enables

to utilize only a fraction of the memory required by industry

standard graph solutions such as Neo4j which requires at least

32GB [17].

2.6 Kernels
Both SPMV and SPMM kernels are known to be memory

bound, since only a few floating point operations are executed

per memory transaction. Consider the description assuming a

4

Figure 2: Matrix memory footprints with (bottom) and without (top) blocking.

COO storage format for the sparse matrix A. SPMV operates

by holding a single counter which iterates over the elements

of the arrays I , J , V and fetches from x indirectly the corre-

sponding J indexed element; made explicit in Algorithm 2.

Evidently, elements are accessed sequentially for the arrays

and exhibit good cache locality as no element will be fetched

more than once. The same, however, does not hold for x and

y. The access pattern on these two vectors heavily depends

not only on the sparsity structure of the input, but also on

the ordering of the arrays. Ordering heavily affects access pat-

terns, and can lead to many redundant transactions between

cache and global memory; a low cache-hit ratio. This impacts

the GPU architectures as well, where un-coalesced memory

accesses impact performance.

Algorithm 2 SPMV-COO

Require: A in COO format (arrays I , J , V)

Ensure: y ← βy + αAx
for i = 1 : M do

y[i] ← βy[i]
for k = 1 : nnz do

y[I[k]] ← y[I[k]] + αV[k]x[J[k]]

Respectively, the SPMM kernel, shown in Algorithm 3, op-

erates in a similar manner but accessing an entire row of the

right hand-side X for each increment of the counter. How-

ever, for each iteration more vectorized computations can be

performed, which increase the operation per fetch ratio. Nev-

ertheless, the same effect as in the SPMV kernel is primarily

at hand.

We are interested in taking advantage of modern SMP/SMT

enabled architectures. In order to distribute work efficiently

among threads a blocking strategy is straightforward. As

shown in Algorithm 4 employing a block-row-wise strategy

Algorithm 3 SPMM-COO

Require: A in COO format (arrays I , J , V)

Ensure: Y ← βY + αAX
for i = 1 : M do

for j = 1 : K do
Y[i, j] ← βY[i, j]

for k = 1 : nnz do
for j = 1 : K do

Y[I[k], j] ← Y[I[k], j] + αV[k]X[J[k], j]

employed avoids synchronization between threads, i.e. every

thread works on a single row of blocks each time (Figure 3).

Once processing of a block row is complete, it can continue

to process another. A single atomic counter suffices to avoid

race condition between threads operating at the same row.

Therefore elements in y are accessed in sequence within the

context of each thread, since the same block ofy is used for the

entire block-row computation ofA. The same does not hold for

x where for every block of the block-row, a new block of x has

to be used. As a consequence, column-wise oriented orderings

tend to improve performance since it improves cache locality

on x , while locality on y is already guaranteed.

Algorithm 4 Block SPMV

Require: Block sparse matrix A,mb number of block-rows, nb number of

block-columns. x, y are block dense vectors.

Ensure: y ← βy + αAx
Spawn p ≤ mb processes. Each process k :
repeat

pick an unvisited block-row index i ∈ [0,mb − 1]

Scale y (i) ⇐ βy (i)
for j = 1...nb do

Update y (i) ⇐ SPMV(α, A(i, j), x (j), 1, y (i))
until all block-rows of y are updated

5

thread_0:

waiting...

waiting...

y

← β×

y

+ α×

A x

Figure 3: Task-based parallel SPMV (in this case having only
a single thread-worker). Matrix A is blocked 3-by-3. thread_0
(red) is assigned to the first block-row, computing y(1) ←
βy(1) +α

∑
3

k=1 A
(1,k)x (k), where y(i) is the i-th block of y , x (i) is

the i-th block of x and A(i, j) is the block of A in row i , column
j . The other two block rows are waiting for a worker to finish
its task and be assigned to them.

2.7 Element layout

Figure 4: roadNet-CA matrix before (left) and after (right)
Reverse-Cuthill-McKee reordering. Red grid represents cache-
line sized blocks (elements in the same block access elements
from the same cache-line of x, y).

Different ordering of the arrays I , J , V produce different

access patterns to x and y, which in turn heavily affects cache

locality on large graphs. When the size of the node set crosses

the million boundary, most modern processors will not be able

to fit it into the size of the processor cache. Ordering arbitrar-

ily can yield poor cache locality even if the matrix exhibits a

cache-friendly sparsity structure (i.e. diagonal matrices). This

observation becomes crucial in the case of multi-threaded exe-

cution of the kernel onto blocked sparse matrices. There, how

the scheduler selects the thread to execute is unpredictable

which further deteriorates cache locality and introduces thread

contention for the cache. We observe that the more scattered

the non-zeros the larger that effect is. Therefore we devise a

strategy for confining scarcity.

The sparsity structure of a matrix can be restructured by

applying row/column permutations. A standard approach is

the Reverse-Cuthill-McKee algorithm [6]. The latter, produces

a matrix with a smaller band, which makes it appealing as

the graph becomes larger and sparser. Originally employed

for matrix fill-in reduction during decompositions like the LU,

it is natural baseline comparison. Although being far from

providing an optimal band reduction. Specifically, this kind of

reordering forms bands of non-zeros and clustering around the

main diagonal. In principle, this can increase the average num-

ber of elements per cache-block, by reducing the number of

blocks containing non-zeros, effectively leading to a decreased

number of kernel invocations by the Block-SPMV/SPMM al-

gorithm. However, we have observed that obtaining a sparsity

structure that has reduced fill-in is not sufficient to improve

cache-miss ratio per operation. Ideally, elements of the matrix

should be grouped into dense blocks.

Consider Figure 4 presenting the roadNet-CA dataset from

the SNAP matrix collection. A first impression from this “spy-

plot” is thatmost of the non-zeros are nicely concentrated close

to the diagonal, expecting a good cache behavior. Zooming

in the structure of the matrix, specifically around the main

diagonal, structure is arbitrary. The red-colored grid depicts

blocks of 64-byte size (i.e., each row can store up to 8 floats,

which is the size of the cache-line of a POWER8 core). It is

easy to see in this case that sorting by row indices, a different

cache line from x has to be accessed in almost every iteration

during execution of the (SPMV) kernel. A second observation

is that sorting elements based on their “cache-block index” is

preferential. The latter, implies placing elements which belong

to the same block in consequent positions in the arrays I and
J .

2.8 Cache friendly blocking
In one cache line of size L bytes, c = L/scalar_type elements

of x are fetched. We split the matrix in hypothetical cache-

blocks of dimension c × c . Each non-zero element k belongs to

a single cache-block, indexed by ⌊I [k]/c⌋ and ⌊J [k]/c⌋. The
sorting algorithm scans through the arrays I and J and com-

putes the respective cache-block for each element, assigning a

unique index for each block. The arrays I , J are then sorted

based on the block index. As a result elements belonging to the

same cache-block are grouped together in the sorted arrays.

In a second phase, elements within the same cache-block are

ultimately sorted based on their column index, J [i].
This formulation of the problem reduces to a simpler I/O

model. Viewing the cache-blocks as individual elements, we

now need to optimize the ordering of the blocks rather than

individual elements. This is an operation that can be run off-

line and has less cost than operating on the entire matrix.

Recall that each cache block A(ci ,c j) operates with a cache-

block of x andy, namely x (c j) andy(ci). The iterations of SPMV

now perform on a cache-block level, and a new iteration starts

when a new cache-block is executed. Row-wise/column-wise

sorting of the cache-blocks can be expected to boost the block-

cache locality, just like in the element-wise case. We opt for

a hybrid approach: Starting from an arbitrary block, choose

as a next block one of the neighboring blocks, prioritizing

column-wise neighbors rather than row-wise. If no neighbor

is available, pick a new arbitrary block. Proceed until there

are no more blocks to process.

2.9 Graphics Processing Units
Graphics processing units have introduced prevalent paradigm

of parallel computation. Efficient utilization of the available

compute capabilities of such systems beyond simple batch-

ing is not a straightforward task. Herein we detail current

approach for enabling single-GPU and multi-GPU processing

6

for knowledge graph operations. Once more the main task at

hand is to appropriately map the SPMV and SPMM kernels.

2.9.1 CUDA kernels. The key component to enable the

SPMV-BCOO and SPMM-BCOO kernels for the GPU architec-

ture is the ability to directly control the small, fast memory

called shared memory on the GPU. We provide an algorith-

mic description in Algorithm 5 and a visual representation in

Figure 5.

k = 0 k = 1 k = 0 k = 1

block 0 block 1

f f f

t0 t1 t2

f f f

t0 t1 t2

f f f

t0 t1 t2

f f f

t0 t1 t2

V

J

I

Figure 5: SPMV-BCOO-GPU. Kernel with two CUDA blocks
and three threads per block. At iteration k = 0, the threads of
both blocks read consecutive elements from the arrays I , J , V .
In the next iteration k = 1, they stride “block-size”= 3 steps fur-
ther from their original position, ensuring coalesced accesses
on the COO arrays in every step.

In our setup, we fixn the number of threads per CUDAblock,

typically 512, and k the number of nonzero elements of A that

will be processed per thread, typically 16 − 32. Having these

fixed, we invoke the SPMV CUDA kernel with ⌈nnz/(nk)⌉
CUDA blocks. Inside the CUDA kernel, k iterations are per-

formed. During each iteration, each thread fetches the ele-

ments of I , J , V , indexed by its global thread id, g_id =
block_id × threads_per_block + local_thread_id such

that threads belonging to the same warps will access conse-

quent elements in the arrays. As a second step each element

reads the element of x required for themultiplication and atom-

ically adds the result on the appropriate position in y. This
last step is the unavoidable performance bottleneck of this ap-

proach, as the accesses in x and y will not be coalesced in their

majority. Nevertheless this observation, our experimental re-

sults in latter sections indicate roughly 3× speedup compared

to the CPU counterparts for the SPMV, and 2× speedup for the

SPMM. The element layout as discussed in 2.7 is important in

order to reduce the number of un-coalesced memory accesses.

Algorithm 5 SPMV-COO-GPU

start = t_id + b_id*B*k
for i=1...k do

ind = start + i*B
val = α *V[ind]*x[J[ind]]
atomicAdd(&(y[I[ind]]), val)

2.9.2 Multiple devices and large graphs streaming. Knowl-
edge graphs can grow in an unbounded manner both in size

and complexity. Social graphs, as well, tend to reach the order

Algorithm 6 Block-stream SPMV-GPU

Require: Block sparse matrix A,mb number of block-rows, nb number of

block-columns, p number of devices. x, y are block dense vectors.

Ensure: y ← βy + αAx
1: Spawn p ≤ mb processes, each assigned to a cuda device.

2: for each process k on device k do
3: Allocate Aдpu , xдpu , yдpu
4: Allocate Atmp, xtmp for temp storage

5: Pick a unique block-row i
6: Sync copy yдpu ← y (i) to the device

7: Async execute yдpu ← βyдpu

8: Async copy
{

Aдpu ← A(i,0)

xдpu ← x (0)
9: repeat
10: for j = 1...nb do
11: Synchronize
12: Async execute:
13: yдpu ⇐ SPMV(α, Aдpu , xдpu , 1, yдpu)
14: Copy Atmp ← A(i, j+1)

15: Copy xtmp ← x (j+1)

16: Swap pointers

{
Atmp ↔ Aдpu
xtmp ↔ xдpu

17: Pick a new i
18: until all block-rows of y are updated

of billions of edges and will not fit in the memory of a sin-

gle GPU device. Therefore, we have extended our kernels to

handle this case (see Algorithm 6).

Having allocated enough space to store a single block in the

device, we work in an asynchronous fashion, overlapping cuda

kernel invocations with hosted to device memory copy. Taking

advantage of the thread-safe context switching mechanisms

of the CUDA API it is possible to initialize an ad hoc system

with multiple devices. The algorithm is designed to efficiently

handle this case.

Each CPU thread receives a block-row to execute in a sim-

ilar fashion with the CPU based SPMV-BCOO Algorithm 4.

At the initialization step, the algorithm allocates on the re-

spective devices a COO matrix and two vectors. These will

contain in each iteration’s step the respective blocks of A, x
and y. Additionally, one extra block is allocate for temporary

storage, namely Atmp , xtmp and ytmp . Assuming block row i
is assigned to the thread at some iteration. As a first step, it

copies from host to device the block y(i), and once copied it is

scaled by β with a cuda kernel invocation. Concurrently with

the scale kernel execution, another CUDA stream copies from

host to device the block x (0) and thenA(i,0). Then the iteration

over the block-row ofA begins. At each iteration, the first step

is a synchronization barrier, ensuring all asynchronous calls

have finished. The main part of the iteration consists of three

asynchronous steps:

(1) Execution of SPMV on the current block.

(2) Copy the next block in Atmp , xtmp , ytmp from host to

device.

(3) Swap the pointers between the main and the temporary

variables.

Once all iterations have finished,y(i) is added back to the CPU,
and a new block row is fetched, until all block rows have been

executed.

7

3 RESULTS
We validate our approach on CPU of the IBM POWER archi-

tecture, single-GPU and multi-GPU results are presented as

well. An important focal point of this work is processing large

graph in a single fat-node equipped with memory in the order

of a. Such a configuration can fit a graph nearing the order of a

hundred billion edges when using our blocking strategy. Given

these, a single-fat-node configuration is a fitting test-bed for

the application at hand. Selection between processing on CPU,

single-GPU, and multi-GPU mainly depends on the size of the

graph.

Summarizing our results, the SPMM-BCOO kernel reached

87Gflops running only on a P8-CPU and 251GFlops on the

P100-GPU. The SPMV kernel performed at a peak rate of

12.1Gflops on the P8-CPU, Figure 6; cache-friendly-sorting

performs best. We observe running time is reduced by nearly

half and better scaling is exhibited with respect to the num-

ber of real cores in the system. The kernel reached a rate of

34 Gflops on the P100-GPU. To our knowledge the baseline

state-of-the-art CSR based SPMV provided by cuSPARSE does

not cross above the 60Gflops mark [16], and this seems to

be achieved for small well banded matrices. On average per-

formance is around 30 Gflops. Having performed our own

baseline comparison with cuSPARSE similar results have been

exhibited; Figure 9. Our kernels are on average 10% above the

state-of-the-art GPU mark, especially on larger graphs where

difference is up to an order of magnitude.

In subsequent sections, a baseline comparison of the single-

threaded COO-SPMV implementation versus the graphBlas is

provided [4]. Then we present results for BCOO-SPMV/SPMM

kernel performance. Subsequently, we evaluate on single-GPU

and demonstrate consistent performance across differing sparse

matrices, along with speedup results on large graphs for our

multi-GPU approach. Subsequently, we evaluate the efficiency

of our graph algorithms against the industry standard graph

implementation Neo4j. Specifically, edge-traversals, level-order-
traversal, and analytics (eigenvector-centrality, subgraph-centrality,
katz-centrality, spectrum-range. Finally, linear scaling for our
BFS and edge traversal implementations is achieved. Notably

a graph in the order of billion edges on a single node is used

for the final test.

3.1 Experimental setup
We evaluate on the POWER8 nodes, each with 512 GB of main

memory, 2 CPU sockets with 10 physical cores per socket

and an 8-way Simultaneous-multi-threading (SMT) technol-

ogy. Each core is associated with a segment of 8MB of L3

cache, while being to access other core’s shared L3 cache. Each

POWER8 module has two memory controllers, each with two

memory channels, reaching a total peak memory bandwidth

between L3 and main memory of 105 GBps able to operate

2B reads and 1B write per clock cycle. Finally, each socket is

connected with 2 Nvidia P100 GPU devices, totaling 4 devices

with 16GB of main memory each. The nodes are also powered

with NVLink, NVIDIA’s high-speed interconnect technology

which accelerates both host to device and device to device data

transactions. The compiler used for these tests was g++ 6.4

Figure 6: BCOO-SPMV on the LAW collection of matrices
[2], comparing the effect of different sorting approaches. The
block index type is set to u_int16 and the block dimension is
64K .

version with optimization level -O3. All our tests have been

executed the RHEL-7.5 Linux distribution for POWER.

For our tests we have used (a) synthetic randomly gener-

ated sparse matrices, (b) graphs from SNAP [12], (c) LAW [2]

collections, and (d) graph500 generated graphs [13]. All of the

graphs chosen are in the order tenths of million edges. For

each of the experiments, unless stated otherwise, we execute

ten runs and we present the mean and standard deviation.

For the SPMV, we evaluate the floating point operations per

second (flops) as 2(nnz +m)/t where t is the running time of

the operation, nnz the number of non-zeros in the matrix (

i.e. equal to the number of edges in the graph), andm is the

matrix dimension.

3.2 Kernel evaluation
In order to evaluate our kernels we take a bottom up ap-

proach. First, we demonstrate better performance for the singe-

threaded implementation over the graphBLAS counterpart

[4]. Subsequently, we show strong scaling for for the multi-

threaded CPU based kernels.

3.2.1 Single threaded baseline. We compare with Graph-

BLAS implementation of the (SPMV) operation. The latter

employs sparse vector instead of a dense right vector. To eval-

uate we have generated random sparse matrices and varied

their density structure. Similarly for the right hand side vector.

Figure 7 demonstrates a clear advantage of our implementa-

tion.

3.2.2 Multi-threaded performance. In our experiments a a

maximum block size with 64K elements was chosen, in order

to reduce memory requirements. Gain from each discussed

improvement is depicted in Figure 8 and 8.

Examining results we observe that reducing fill-in by apply-

ing RCM reduces running time. The RCM pre-processing step

is intensive both in memory and time, but for the application

at hand where the graphs are not dynamic, it is a viable choice.

8

Figure 7: Single-threaded SPMV versus GraphBLAS. Our ker-
nel achieves at least two orders of magnitude improvement.

Figure 8: (Top) SPMV kernel on arabic-2005 (m =

22.7M, nnz = 640M) and uk-2002 (m = 18.5M, nnz = 298M)
datasets from the LAW collection. (Bottom) SPMM kernel.
Block dimension is 64K and the number of columns of X and
Y for SPMM is 64.

matrix 1 GPU 2 GPUs 3 GPUs 4 GPUs

com-Orkut

0.132
3.58

0.08
5.94

0.063
7.52

0.060
7.82

soc-LiveJournal1

0.055
2.68

0.036
4.10

0.0311
4.75

0.0314
4.71

Table 1: SPMV scaling with four P100 Nvidia GPU devices
evaluated on com-Orkut and soc-LiveJournal1; SNAP collec-
tion. Results in seconds (top) and estimated Gflops (bottom)
of each line.

Cache-friendly sorting achieves similar performance, while

discounting off-line optimization cost. Inspecting 6, the mini-

mum running time of the kernel is reduced by a factor of two,

reaching below 100ms on graphs in the order of nearly half

a billion edges and a performance of 12.1 Gflops on average.

Peak performance reached 13.8 Gflops on the selected set of

Figure 9: (Top) Comparison with cuSparse exhibiting 10% per-
formance improvement over CSR-SPMV. Initialization time
for cuSparse has been discounted. (Bottom) Performance of
the single-GPU SPMM and SPMV kernels on the LAW collec-
tion.

graphs; Figure 8. Nearly linear speedup is observed up to the

number of physical cores available in the system.

Theoretically for each SPMV operation on a COO matrix

we are required to perform a read of one element from the

I and J arrays and an additional read from the scalar array

V . Considering 32bit long integers and single precision floats,

this results in having to read 12 bytes from memory. Addi-

tionally from the x vector we need to read another float and

write one float on the y result vector. This totals short of 20

bytes that can be performed with 8 read operations and 4write

operations given the specifics of the system; i.e. 8 memory op-

erations. Using our compressed block storage format results in

a total of 16 bytes that can be performed in a total of 6memory

operations. To evaluate the effective bandwidth utilization we

naively assume that for each edge two floating point opera-

tions are executed. The scale operation is ignored, along with

cache locality. We arrive at the following simplified model to

compute the effective bandwidth based on performance for

the SPMV kernel.

be = 3max(⌈br /2⌉,bw)sc/2 (8)

Where be is the effective bandwidth, br are the bytes read
per iteration and bw are the bytes written. Finally, sc is mea-

sured floating point operations per second. Given the observed

12.1 Gflops we arrive at an effective bandwidth of 108.9 GBps.

Taking into account a nominal peak bandwidth of 115GBps,

our kernels achieve full utilization of the peak bandwidth

per memory controller, indicating efficient utilization of the

available resources.

The performance of the SPMM reaches 87Gflops; Figure 8.

Evaluating results from for both SPMM and SPMV we come to

the conclusion that the cache-friendly sorting approach pro-

vides good performance for both SPMM and SPMV operations.

9

3.2.3 single-GPU andMulti-GPU. Evaluation of the kernels
in a single GPU arrives at a maximum performance of 252

Gflops; Figure 9. Results for our multi-GPU implementation

are in Table 1 exhibit performance of 7.82Gflops obtained by

executing our multi-GPU SPMV implementation on two large

graphs. These are graphs under-perform on CPU execution,

and in the multi-GPU implementation exhibiting near double

the CPU performance. Specifically, soc-LiveJournal1 on CPU

reached a maximum of 4.8 Gflops, which results in a 1.5×

speedup when being streamed in a multi-GPU configuration.

3.3 Applications
We present results for applications of graph-operations and

analytics on IBM POWER-8 CPU as described already. We

compare with the industry standard graph database Neo4j;
subject to algorithm availability. Furthermore, we demonstrate

linear scaling for level-order traversals.

3.3.1 Analytics. Four different centralities, detailed in Sec-

tion 2.4 are presented.We comparewith neo4j provided eigenvector-
centrality which runs orders of magnitude slower. Notably,

difficult to compute subgraph-centrality can be evaluated in a

practical time-frame.

Figure 10: (Left) Runtime of eigenvector, subgraph, katz and
spectrum-range, enabling on large analytics on graphs. (Right)
eigenvector centrality for Neo4j (other algorithms not pro-
vided).

3.3.2 Traversals. To evaluate deep-search capabilities in

knowledge graphs with multi-threaded optimized kernels on

CPU we have measured algorithm time on a range of graphs

from the SNAP and graph500 collections. These have been

selected to be representative of different sizes and sparsity.

We used a sampling policy to select the starting node for the

traversal among the top thousand central nodes. This setup

was executed multiple times (10) to achieve statistical impor-

tance. Comparing edge traversals with Neo4j it is evident how
node-centric implementation impacts deep-search capabilities.

Further demonstrating level-order traversal with near constant
time traversal per level further justifies our approach.

BFS traversal has been evaluated on (uk-2005) which is

in the order of billion edges and tenths of million of vertices.

Figure 11. Average running time per level is 0.22 seconds. This

graph is not a fully connected graph, therefore obtaining a

good measurement can be achieved only by a statistical ap-

proach. Specifically, root was chosen randomly and measured

Figure 11: (Left) Runtime of edge-traversals for HPC-KG, de-
picted with dashed-lines, versus industry standard Neo4j. The
former enables deep queries. (Right) Level-order traversal
(BFS) time for 2, 3 and 4 levels of BFS for the datasets uk-2005
(m = 39.5M, nnz = 936M), showing an average traversal time
of 0.22seconds for the first three levels.

time only until a depth four was reached. Here only results

after the algorithm had converged before reaching max depth

are reported.

4 SUMMARY
We enable fast-deep-n-wide graph operations and analytics on

a fat-n-fast single node. That is achieved by selecting a com-

bination of techniques to enhance SPMV and SPMM kernels

for graph operations. Mainly, our approach favors a highly

blocked matrix COO, along with row-oriented multi-threaded

operations. Cache-friendly sorting on the actual blocks fur-

ther improves performance in the SMT region. We achieved

from 1.5× memory footprint compression rate for medium

sized weighted graphs, up to 4× for huge un-weighted (binary)

graphs. From a performance perspective, we demonstrate near

linear speedup up to the number of cores available in the sys-

tem, and memory bandwidth saturation. Our improvements

shows a 1.2 factor improvement when compared to a naive ap-

proach. We have also extended to single-GPU and multi-GPU

cases, where we show similar speedup results versus state-of-

the-art comparison. Finally, we exhibit our techniques or real

application problems such as graph-operations and analytics.

There we achieve double the performance compared to in-

dustry standard adjacency-list oriented implementations. The

HPC-KG, among the first BLAS based graph engines, enables

deep-search single node in memory processing. Our big next

step is to extend to distributed memory processing for HPC

cluster processing, to tackle huge knowledge graphs which

are becoming available.

REFERENCES
[1] Bekas, C., Kokiopoulou, E., and Saad, Y. An estimator for the diagonal

of a matrix. Applied numerical mathematics 57, 11-12 (2007), 1214–1229.
[2] Boldi, P., and Vigna, S. The WebGraph framework I: Compression tech-

niques. In Proc. of the Thirteenth International World Wide Web Conference
(WWW 2004) (Manhattan, USA, 2004), ACM Press, pp. 595–601.

[3] Bonacich, P. Some unique properties of eigenvector centrality. Social
networks 29, 4 (2007), 555–564.

[4] Buluc, A., Mattson, T., McMillan, S., Moreira, J., and Yang, C. De-

sign of the GraphBLAS API for C. In Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017 IEEE International (2017), IEEE,
pp. 643–652.

10

[5] Estrada, E., and Rodriguez-Velazqez, J. A. Subgraph centrality in

complex networks. Physical Review E 71, 5 (2005), 056103.
[6] George, A., and Liu, J. W. Computer solution of large sparse positive

definite.

[7] Hutchinson, M. F. A stochastic estimator of the trace of the influence

matrix for laplacian smoothing splines. Communications in Statistics-
Simulation and Computation 19, 2 (1990), 433–450.

[8] Kepner, J., Aaltonen, P., Bader, D., Buluç, A., Franchetti, F., Gilbert, J.,

Hutchison, D., Kumar, M., Lumsdaine, A., Meyerhenke, H., et al. Math-

ematical foundations of the GraphBLAS. arXiv preprint arXiv:1606.05790
(2016).

[9] Kepner, J., and Gilbert, J. Graph algorithms in the language of linear
algebra. SIAM, 2011.

[10] Konig, D. Graphen und matrizen (graphs and matrices). Matematekai
Lapok 38 (1931), 116–119.

[11] Kwak, H., Lee, C., Park, H., andMoon, S.What is Twitter, a social network

or a news media? In WWW ’10: Proceedings of the 19th international
conference on World wide web (New York, NY, USA, 2010), ACM, pp. 591–

600.

[12] Leskovec, J., and Krevl, A. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

[13] Murphy, R. C., Wheeler, K. B., Barrett, B.W., and Ang, J. A. Introducing

the graph 500. Cray User’s Group (CUG) 19 (2010), 45–74.
[14] Nathan, E., and Bader, D. A. A dynamic algorithm for updating katz

centrality in graphs. In Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2017 (2017),

ACM, pp. 149–154.

[15] Staar, P. W., Barkoutsos, P. K., Istrate, R., Malossi, A. C. I., Tavernelli,

I., Moll, N., Giefers, H., Hagleitner, C., Bekas, C., and Curioni, A.

Stochastic matrix-function estimators: Scalable big-data kernels with high

performance. In Parallel and Distributed Processing Symposium, 2016 IEEE
International (2016), IEEE, pp. 812–821.

[16] Steinberger, M., Zayer, R., and Seidel, H.-P. Globally homogeneous,

locally adaptive sparse matrix-vector multiplication on the gpu. In Pro-
ceedings of the International Conference on Supercomputing (New York, NY,

USA, 2017), ICS ’17, ACM, pp. 13:1–13:11.

[17] TigerGraph. Real-time deep link analytics, 2018.

11

http://snap.stanford.edu/data

	RZ3953_header
	RZ3953_body
	Abstract
	1 Introduction
	2 Discussion
	2.1 Graphs and adjacency matrices
	2.2 Graph operations
	2.3 Graph algorithms
	2.4 Analytics
	2.5 Blocked Sparse matrix formats
	2.6 Kernels
	2.7 Element layout
	2.8 Cache friendly blocking
	2.9 Graphics Processing Units

	3 Results
	3.1 Experimental setup
	3.2 Kernel evaluation
	3.3 Applications

	4 Summary
	References

