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Abstract 

3D Monolithic (3DM) integration can provide both 

density scaling benefits and the possibility to stack inde-

pendently optimized layers at transistor level. However, 

top layer thermal budget poses a considerable challenge 

in such a technology. Due to its inherently low process 

temperature, InGaAs is well-suited to be used as the top 

layer channel material. Therefore, InGaAs has the poten-

tial to enable both low voltage-high performance ad-

vanced CMOS, as well as high-frequency device for 

RF/mixed-signal applications. In this regard, we show 

here our recent progress in InGaAs-on-SiGe 3D Mono-

lithic technology, demonstrating state-of-the art device in-

tegration on both levels, DC and RF characterization top 

layer InGaAs nFETs and integrated inverters with sub-50 

nm Lg down to VDD = 0.25 V.  

 

1. Introduction 

3D Monolithic (3DM) integration is attracting much at-

tention owing to density scaling benefits and the potential to 

stack independently optimized multifunctional layers at tran-

sistor level [1]. Typical Si MOSFET process has high thermal 

budget, requiring development of low temperature top layer 

Si/SiGe process for a 3DM scheme and thus presents chal-

lenges to obtain high-performance MOSFETs. On the other 

hand, the InGaAs MOSFET processing thermal budget is sig-

nificantly lower, making it well-suited to be used as the top 

layer channel material. Moreover, InGaAs also has higher 

mobility which enables high performance at lower voltages 

[2] and is an excellent channel material for high-frequency 

devices enabling very high cut-off frequency. This aspect is 

of great interest as it can enable a truly multifunctional 3D 

monolithic integration scheme. On one hand, InGaAs nFETs 

on top of Si/SiGe FETs can allow higher performance hybrid 

CMOS [3] and on the other, high frequency InGaAs RF-FETs 

can benefit from closely integrated CMOS circuits [4]. As a 

step towards such a multi-functional 3D monolithic integra-

tion, here, we show DC and RF characteristics of InGaAs 

nFETs fabricated with RMG process on top of SiGe-OI fin-

FETs. A cut-off frequency of 16.4 GHz for gate length (Lg) 

of 120 nm is obtained. We also show integrated inverters with 

sub-50 nm Lg down to VDD = 0.25 V in the same stack. Ro-

bustness of the technology is demonstrated by the fact that 

impact on the bottom pFET performance is negligible, despite 

the top nFET RMG process featuring a self-aligned raised 

source drain epitaxy (with relatively high thermal budget).  

 

 

2. Device Integration 

The 3DM process flow is described in detail in ref. (3). 

Firstly, bottom layer SiGe-OI fin pFETs are fabricated with a 

process described in ref [5]. After the silicidation step of 

SiGe-OI finFET process, the inter-layer oxide is deposited 

and CMP planarization is carried out. The InGaAs layer is 

transferred on to this oxide with direct wafer bonding from 

InP donor wafers [6]. InGaAs nFET fabrication is then per-

formed with the RMG process described in [7]. Finally, oxide 

encapsulation is deposited and contact holes are opened and 

metallization is completed. The schematic of the 3DM stack 

is shown in fig 1. 
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3. Electrical Characterization 

DC characteristics and circuits 

Figure 2 shows the DC Id - Vg  characteristics of top layer In-

GaAs nFET with Lg = 70 nm, demonstrating competitive DC per-

formance after the 3DM fabrication. 
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Fig. 1. Schematic the InGaAs-on-SiGe 3DM stack show-

ing nFETs on top of SiGe finFETs. 

 
Fig. 2: Id - Vg of InGaAs planar nFET on the top layer. The 

device features RMG, which yields very good electrostatics 

(SSsat = 96 mV/dec, DIBL = 83 mV/V @ Lg = 70 nm). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows comparison of bottom SiGe-OI pFET Id-Vg 

before and after top nFET fabrication. Nearly identical Idsat is 

obtained post-nFET fabrication, indicating negligible impact 

on pFET silicide. The electrostatics of the device are also 

have very minimal change demonstrating low impact on the 

gate oxide and source/drain doping profile. This shows the 

robustness of the process and demonstrates the potential to 

achieve optimized performance on both, top-nFET and bot-

tom-pFET layers. 

Figure 4 shows the the voltage transfer characteristics (VTC) 

of scaled 3D inverters with nFET Lg = 80 nm (with pFET Lg 

~ 30 nm) and Lg ~ 30 nm (for both nFET and pFET). Well-

behaved transitions are obtained down to VDD = 0.25 V, 

demonstrating that an optimized low-voltage CMOS can be 

achieved with InGaAs-on-SiGe 3DM technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF characteristics of top layer InGaAs nFETs 

The top layer InGaAs nFETs used for RF characterization 

feature multi-finger gate structure [8] and have a gate-contact 

spacing of 100 nm. Multifinger gate layout allows lowering 

the gate-resistance. The measured current gain (after on-chip 

de-embedding) for a nFET with Lg = 120 nm and 10 gate fin-

gers is shown in fig. 5. A cut-off frequency (Ft) of 16.4 GHz 

is obtained. Figure 6 shows cut-off frequency vs. gate length. 

As expected cut-off frequency is observed to increase with 

lower Lg. Further optimization of layout and device design 

would allow for higher Ft.  

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

A robust InGaAs-on-Si(Ge) 3D Monolithic integration 

scheme is demonstrated that allows low voltage high-perfor-

mance CMOS circuits as well RF-over-CMOS circuits. Ow-

ing to inherent benefits of low thermal budget and high mo-

bility InGaAs as top layer enables optimized performance at 

both layers. Thus building blocks for a high performance, 

multi-functional 3D Monolithic technology is demonstrated. 
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Fig. 6. Cut-off frequency vs. gate length (Lg) for top InGaAs 

nFETs for Vds = 600 mV. 

 

Fig. 3: Id - Vg of SiGe-OI fin pFET before and after top nFET 

fabrication. Very similar Idsat is obtained without degradation of 

electrostatics after top nFET fabrication. This highlights the ro-

bustness of InGaAs-on-Si/SiGe 3DM technology. 

 
Fig. 4: Voltage transfer characteristics (VTC) of 3DM inverter. 

Well behaved characteristics are observed down to VDD = 0.25 V 

owing to independent optimization of top InGaAs nFET and bot-

tom SiGe-OI pFET. In (a) Lg ~ 80 nm in nFET and ~30 nm in pFET, 

while in (b) Lg ~ 30 nm in both nFET and pFET. 
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Fig. 5. Measured current gain (|h21|) vs. frequency for a InGaAs 

nFET (top layer) with Lg = 120 nm and 10 parallel gate fingers. 

Cut-off frequency (Ft) of 16.4 GHz is obtained for Vds = 1V. 
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