
RZ 3965  (# ZUR1907-041)  15/07/2019 
Computer Science  14 pages 
 
 

Research Report 
 
 
Model-Driven Engineering for Multi-Party Interactions 
on a Blockchain – An Example 
 
 
Gero Dittmann, Alessandro Sorniotti, and Hagen Völzer 
 
IBM Research – Zurich  
Säumerstrasse 4 
8803 Rüschlikon 
Switzerland 
 
 

LIMITED DISTRIBUTION NOTICE 
 
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication.  It has 
been issued as a Research Report for early dissemination of its contents.  In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.  After 
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties).  Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home. 
 
 
 
 
 Research 

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich 
 



Model-Driven Engineering for Multi-Party Interactions
on a Blockchain – An Example

Gero Dittmann, Alessandro Sorniotti, and Hagen Völzer

IBM Research – Zurich, Switzerland

Abstract. Multi-party interactions can be a powerful modeling paradigm for
business processes that cross organizational boundaries, but it is typically hard to
implement in a distributed setting. Blockchains, however, make such an imple-
mentation possible. In a small case study, this paper demonstrates three related
approaches how an example taxi dispatcher application involving independent
parties can be modeled for implementation on a blockchain: BPMN with an ex-
tension for multi-party interactions, synchronized state-machines, and high-level
Petri nets, respectively. The three models differ in how well they (a) align with the
code in order to support model-driven engineering and (b) support readability of
the contractual aspects of the chaincode to business stakeholders. We have imple-
mented and tested the example application as chaincode on Hyperledger Fabric.
Our preliminary results suggest that chaincode can be aligned with a high-level
model of synchronized state machines which, in turn, can be easily visualized, for
example, by an extended BPMN notation.

1 Introduction

A blockchain, or distributed-ledger technology (DLT), combines storage in an immutable,
distributed ledger with a smart contract defining the transactions that can be invoked to
update the ledger. The smart contract is agreed upon beforehand by the partners in the
blockchain network. Any update to the distributed ledger, i.e., any transaction must be
approved by consensus among a set of partners. The set is defined such that all partners
trust the resulting state of the ledger.

This combination of storage, transactions and trust makes a blockchain an ideal
platform for automating business processes across organizational boundaries. Business
partners that don’t trust each others’ IT systems can trust a blockchain to execute
processes exactly as defined in the smart contract. The ledger gives each partner perfect
transparency of the process’ progress and history—in some cases subject to privacy
domains.

The blockchain concept was introduced by the Bitcoin cryptocurrency network.
Many business applications of blockchains, however, do not involve any cryptocurrency.
Some employ stable coins for on-chain payments that are backed by fiat currency to
inherit its stability and reliability. Other applications don’t depend on on-chain payments
at all. Instead, they focus on automating business processes to improve operational
efficiency while leaving the financial aspects to established invoicing and funds-transfer
infrastructures.



Smart contracts are commonly developed by business networks or consortia of multi-
ple parties who need to reach a consensus on the “contract terms”. Negotiations of the
exact functionality involve not just engineers but business and legal professionals. Those
stakeholders would be greatly helped by a graphical representation of the implemented
business process, giving parties a more intuitive understanding than source code can.

Existing languages, such as the Business-Process Model and Notation (BPMN) [5],
have been successful within corporations but automation of processes spanning multiple
organizations has proven difficult and adoption slow. A blockchain can be viewed as a
platform on which business processes can run and that is not controlled by an individual
party but trusted by all, removing some of the roadblocks to inter-organizational process
automation.

In this paper, we report preliminary results from a study how to adapt existing
process-modeling notations for business processes across independent organizations and
show how to map this notation to a blockchain-based implementation. The approach links
the negotiation of functionality in a consortium to its implementation. We demonstrate
our approach with the example of a taxi dispatcher application that we have implemented
on a permissioned blockchain, Hyperledger Fabric.1

A recent book [8] surveys the existing work on model-driven engineering of block-
chain applications. For a comprehensive list of related work, we refer to [8, Section 8.5].
In particular, Chapter 8 of that book points out the relevance of models for communi-
cating important aspects of chaincode between business participants. Furthermore, the
authors observe that a blockchain can serve as a trusted monitoring facility of all business
transactions specified in the chaincode. The same chapter [8, Chapter 8], which extends
an earlier paper [7], presents an in-depth supply-chain case study based on traditional
BPMN collaboration and choreography diagrams. An implementation in Ethereum is
presented, which shows that the message-passing communication mechanism in BPMN
collaborations can be mapped to Ethereum chaincode.

We propose an extension of BPMN where participants may communicate using
atomic, symmetric multi-party interactions between participants, which is a stronger
communication primitive compared to message passing but still easily maps to block-
chain transactions.

The case study in [8, Chapter 8] considers also other important aspects of a block-
chain application such as privacy, off-chain data storage and non-functional requirements
that are out of scope for this paper. An alternative approach to modeling smart contracts
using artifact-centric models is presented by Hull et al. [3]. They focus on conceptual
modeling and reasoning over the business logic but do not yet address implementation.
Artifacts in artifact-centric models also have an associated state machine, the artifact life
cycle, but they use a more explicit and asymmetric communication style between state
machines in contrast to the implicit and symmetric style in our approach.

The remainder of this paper is structured as follows. We first introduce an example
application in Section 2. In Section 3, we describe and discuss different process mod-
els of our example application. After a brief introduction to Hyperledger Fabric, our

1 As a smart contract for Hyperledger Fabric is also called chaincode we use those terms
interchangeably.

2



implementation platform, in Section 4, we describe our blockchain implementation in
Section 5. We conclude in Section 6.

2 An Example Application: A Taxi Dispatcher

To demonstrate our modeling approach, we introduce taxi dispatching as an example
application. Many cities are serviced by multiple taxi operators. When a passenger
calls a specific operator, an unoccupied taxi might have to be fetched from a distance
while another unoccupied taxi from another operator might be much closer. Therefore, a
common dispatching service that selects the closest available taxi for a given passenger
request, regardless of the operator it belongs to, implements a more efficient allocation
that potentially benefits both the taxi operators and passengers.

For taxi operators to engage in such a common dispatching service, they must agree
on a dispatching rule, the way it is to be used, and trust its implementation. We believe
this makes taxi dispatching a good example of a multi-party application that can benefit
from the distributed trust provided by a blockchain.

We consider two actors: taxi drivers and passengers. The blockchain implements
the dispatcher. Drivers request a fare (passenger) with the dispatcher, announcing their
current location. Likewise, passengers request a ride with the dispatcher, also announcing
their location.

To keep the example simple, the dispatching rule matches a new ride request with the
closest driver, if any, and each new fare request with the closest passenger, if any. If no
match is found, the request is queued. If a match is found, both passenger and driver are
notified and the driver is expected to pick up the passenger. When the ride is completed
the driver can request the next fare.

3 Process Models for the Example Application

This section presents three alternative approaches to modeling taxi dispatching for a
blockchain implementation. The first extends BPMN with multi-party interactions, a
powerful modeling paradigm that is also a better representation of blockchain-mediated
communication than the standard’s message-passing notation. This is followed by propos-
als based on synchronized state machines and Petri nets, respectively, and a discussion
of how the approaches compare.

3.1 BPMN with Multi-Party Interactions

Fig. 1 shows a process model of our taxi dispatching application. This process model
represents the smart contract governing interactions between the participants: taxis and
passengers. Initially, we consider a single passenger, a single taxi, and their interactions.
We discuss later how multiple interacting passengers and taxis can be mapped.

The passenger may request a ride by initiating a transaction Request Ride on the
blockchain. Such a transaction could be called, for example, from a client on the smart-
phone of the passenger. We represent the passenger on the blockchain as a state machine

3



Ta
xi

Serve 
Ride

Cancel
Serve

[Waiting][Init]

[Init]

[Driving]

[Waiting]

Pa
ss
en
ge
r

Request 
Ride

Cancel 
Request

Start
Ride

[Waiting][Init]

[Init]

End
Ride

[Riding]

[Init]

Fig. 1. A process model in an extended BPMN notation

that is initially in some generic state Init and that moves into the state Waiting, which is
short for Passenger.Init and Passenger.Waiting, respectively. This notation is similar to
the object life-cycle notation for process models, see for instance [4].

The Request Ride transaction registers the passenger ID and location in a waiting list
(not shown in this model). Similarly, a taxi can register its availability using the Serve
Ride transaction. A waiting passenger may cancel her request, and a waiting taxi may
withdraw its availability, moving them back to their respective Init state.

If a passenger and a taxi are both waiting they can engage in a common taxi ride,
provided that they have a match which is specified in the business rule (dispatching rule)
associated with the Start Ride transaction. If the Start Ride transaction succeeds the
passenger state-machine moves to the Riding state and the taxi state-machine proceeds to
the Driving state. Note that BPMN would require drawing an AND-join in front of both
the Start Ride and End Ride transactions, which we have omitted here by convention for
tasks that cross the boundary of pools. The end of a ride is manifested by executing an
End Ride transaction which moves the state machine of the passenger back to the Init
state and the taxi state-machine back to the Waiting state.

Note that Fig. 1 deviates from, or extends, BPMN in that the participants Passenger
and Taxi communicate not by means of message-passing but by means of common
transactions. Such transactions are also known as multi-party interactions or multiway
rendezvous and have been studied in various formal languages such as CSP [2]. This
interaction paradigm is powerful on a descriptive level in that it can yield very concise
system models, but it is typically hard to implement in a distributed setting.

Second generation blockchains, however, make such an implementation possible.
Both Request Ride and Serve Ride invoke the dispatching rule. If the rule finds a match
it invokes Start Ride on both the passenger and the taxi. End Ride is similarly invoked
on both.

4



Passenger.Init Passenger.Waiting Passenger.Riding

Taxi.Init Taxi.Waiting Taxi.Driving

R
ul
e(
x,
y)

ServeRide

RequestRide

TransitionWaitingToRiding

x:

y:

CancelServe

CancelRequest

Fig. 2. A synchronized state-machine model

3.2 Synchronized State Machine

Fig. 2 shows a formal model of two synchronized state machines, one for the passenger
and one for the taxi. As usual, see for instance UML state charts, a state machine is a
connected directed graph that represents a sequential thread of execution. However, the
two state machines shown in Fig. 2 are synchronized in two transitions. Each of these
two transitions represents the synchronization of their respective inbound transactions.
For example, the one labeled TransitionWaitingToRiding synchronizes the Passenger
transition from Waiting to Riding with the Taxi transition from Waiting to Driving.

In comparison with Fig. 1, the state-machine model in Fig. 2 reflects more explicitly
that each of the two state machines has cycles: the passenger returns to its Init state and
the taxi returns to its Waiting state upon completion of the taxi ride. However, the model
in Fig. 2 still refers to two fixed instances of state machines that are synchronized in
the entire model, denoted x and y. Note that we also refer to the business rule Rule(x,y),
which requires that for the transition TransitionWaitingToRiding to be successful the
dispatching rule is satisfied for x and y, e.g., x is the longest waiting passenger and y the
waiting taxi that is closest to x.

3.3 High-Level Petri Net

A process as in Fig. 1 represents only a part of the entire system, namely the interaction
of a given pair (x, y) of a passenger x and a taxi y. In the entire system, a taxi y may
engage in multiple interactions with different or repeated passengers. Although Figs. 1
and 2 indicate that such repeated interactions are possible by referring to the states of
the state machines, the semantics of how multiple such processes may be instantiated
and interact with each other is not fully explicit.

To make that semantics explicit, Fig. 3 provides a Petri-net model of the full system
with a complete behavioral specification of the entire system. In Fig. 3, P and T represent
the set of passengers and taxis, respectively, that have permission for the application.
This high-level Petri net has a clear operational semantics—see for instance [6] for
a description. It can serve either as code on an abstract machine implemented on the
blockchain or as a complete functional specification for blockchain code.

5



P
x

y

x x

y y

RequestRide

xx

T
ServeRide

CancelReq

x

CancelServe

y

Rule(x,y)

x

y

yy

Passenger.Init

Taxi.Waiting
Taxi.Init

Passenger.Waiting Passenger.Riding

Taxi.Driving

x

y

Fig. 3. A high-level Petri-net model of the system

Fig. 3 looks similar to both Figs. 1 and 2 but, in contrast to those, Fig. 3 presents
all processes simultaneously. Participant instances are now local to a transaction, not
fixed for the entire model any longer as in Figs. 1 and 2. This is reflected by pools
not being explicit anymore in the Petri-net model. Pools are appealing from a business
perspective and they might be useful to represent identity management and authorization
aspects of the blockchain application, but they also represent a rigid communication
structure—in our example: one instance of a passenger interacts with one instance of a
taxi. In more complex applications the communication structure might be more complex
and dynamic. For example, multiple passengers could share a ride or passengers could
dynamically change from one taxi to another. In such scenarios it becomes difficult to
map all interaction details with a fixed set of pools. The Petri-net model overcomes this
limitation.

3.4 Discussion

The high-level Petri-net model provides a full specification of the system with full
operational semantics that can be directly translated into code. We sketch how such code
is structured in Sect. 5. The code structure will resemble most the intermediate model
in Fig. 2 of synchronized state machines. The formal description of such a translation
is subject of future work. Such a high-level Petri net is not restricted to a fixed set of
pools or pool types and can therefore also be used for more complex communication
structures.

However, high-level Petri nets do not come with the same tool support as industrial
process-modeling languages such as BPMN. Therefore, it is desirable to provide a
language that could benefit from existing industry adoption and that is more appealing
to business stakeholders. We have argued that BPMN can be extended with multi-
party interactions to provide a high-level model of our example that corresponds to the
formal high-level Petri net. Again, a formal definition of the BPMN extension and an
investigation which existing BPMN constructs should be kept for a blockchain-tailored

6



language are out of the scope of this paper. A definition of such a language will be the
subject of future work for which the models in this section can serve as first steps. Such
future work should also study how to overcome the limitation of BPMN that result from
a fixed set of pools or pool types.

4 Introduction to Hyperledger Fabric

This section introduces a blockchain, Hyperledger Fabric, that we have used to implement
the example application. The implementation will be presented in the next section.

Hyperledger Fabric [1], cf. also [8, Sect. 2.3], is a general-purpose distributed
operating system providing an execution environment for externally defined programs
called chaincodes. Its design is based on a set of organisations forming a consortium:
the consortium as a whole defines common rules and policies, e.g. the policy to onboard
a new organisation, and defines the shared business logic, i.e. the chaincodes. The Fabric
network enforces these common rules and policies and maintains the shared world
state—comprising name, version, and value of all the variables that have been created
by all chaincodes—ensuring its consistency.

In order to enforce access-control policies to the functions updating the world state,
Fabric is a permissioned blockchain, i.e. a network that only authorized members can
join. Each organisation in the consortium acts as an identity management domain and
issues identity credentials to its own members.

A Hyperledger Fabric instance consists of two types of nodes: peers and orderers.
The peers’ prime responsibility is to manage and execute chaincodes. Peers are also
responsible for maintaining the world state. Chaincodes are invoked by fabric clients. An
invocation, much like a function call, includes a set of arguments; it may read and modify
any variable in the system; and it may produce a return value. Successful invocations
produce messages called transactions that include invocation arguments, return values
and world state changes recorded in read-write sets. The world state exists in two forms:
the ledger, which is an append-only log of all transactions, and the state DB, which is a
snapshot of the current world state. The peer guarantees that the two are kept in sync:
as new transactions are appended to the ledger, the state DB is updated to reflect all the
variables that have been changed.

The principal role of orderers is to deliver the same set of transactions in the same
order to all peers in the system. This is designed to guarantee that ledger and world state
of all peers will be identical.

4.1 The Endorser Transaction Protocol

The Endorser Transaction Protocol is the protocol used in Fabric to invoke the business
logic defined in one ore more chaincodes. The protocol operates between a client, one
ore more endorsers and the ordering service to generate and commit a transaction. The
following steps are required to successfully commit a transaction:

Propose transaction. The application, implemented using a Fabric client SDK, sends
a transaction proposal to a selected number of nodes (peers). The transaction proposal
specifies the smart contract (chaincode) and the arguments for the chaincode invocation.

7



Execute transaction proposal. The peers that receive the proposal execute the chain-
code with the arguments provided in the proposal. They add the outputs of the execution,
the return value and a read-write set to the proposal. The read-write set captures the
updates to, as well as dependencies on the world state. Note that the world state does
not change during the course of a chaincode invocation; proposed changes are merely
described in the read-write set. All peers that execute the chaincode sign the output of the
execution and send it back to the application. These signatures are called endorsements.
We sometimes also refer to this step as simulation, since the chaincode is executed but
state updates are not immediately applied.
Assemble transaction. The application bundles all endorsed transaction proposals into
a transaction and sends it to the ordering service.
Order transaction. The ordering service collects incoming transactions and assembles
them into blocks based on a consensus algorithm between the orderers. Once a block is
complete, the ordering service sends it to the committing peers.
Transaction validation. When the committing peers receive a new block, they append
it to the ledger and validate every transaction in that block. Validation mainly ensures
that the endorsements of a transaction satisfy the endorsement policy for that chaincode,
and that the read-write set does not conflict with concurrent updates that were committed
before. If a transaction is valid, the world state is updated with the read-write set of the
transaction.

4.2 State Machines in Fabric

Fabric lends itself very well to the implementation of state machines owing to its
programming model. The business logic may be conveniently split between private logic
on the application side and shared logic on the chaincode side. The application side is
represented by the client SDK initiating the endorser transaction protocol and invoking
chaincodes. The chaincode side is implemented in the chaincode logic which is directly
invoked by the peer in response to a chaincode invocation.

A state machine can be implemented in Fabric as follows:

State. The current state of the state machine is stored in the ledger; this way the network
as a whole is in agreement about the current state and any node in the network may
handle the request for a state transition. If the state is confidential it is possible to use
either encryption or the private data feature to limit the set of participants who may
access the information.
State transitions may be implemented as chaincode functions. Each function may
inspect the ledger to determine the current state, use identity management and access
control capabilities to determine the identity and entitlement of a requester. With this
information, the chaincode determines whether the transition is allowed and performs
the necessary updates to the ledger to reflect the new state.
Atomicity. The atomic nature of fabric transactions ensures that state transitions across
multiple state machines happen atomically.
Access control. Fabric is a permissioned network and so access control is a built-
in feature. It is possible to use Fabric access control together with chaincode-level

8



access control to identify clients and determine whether they are entitled to perform the
requested action.

While the chaincode implements the rules and persists the state, creating network-
wide enforcement for the state-machine logic, the input for state transitions necessarily
comes from the end users. The client SDK receives a request from end users to perform
a certain action, translates it into a state change request and submits that to peers by
initiating the endorser transaction protocol. The client SDK may perform preliminary
checks to ensure that the request is legitimate and timely, e.g. that no two conflicting
requests have been submitted, or that the same request isn’t submitted twice. While this
step is useful in reducing unnecessary transactions that would be rejected by the network,
it isn’t strictly necessary to guarantee the overall correctness: conflicting or duplicate
requests would be automatically rejected by the system.

In a blockchain system, we have to account for adversarial behaviour. For example,
it may be advantageous for a malicious entity in the system to force a state machine to
transition to a specific state, or to violate the transition rules. Fabric gives the implementer
of the chaincode (the state machine in this case) the security control of endorsement
policies to capture the trust relationships in the network. A Fabric network uses the
endorsement policy to describe the set of entities that are trusted to uphold the business
logic of the associated chaincode. By defining the endorsement policy they ensure that
state changes are allowed only if they are endorsed by the selected peers. In turn, if
the selected peers are chosen to ensure the necessary checks and balances to force an
honest behaviour, ledger correctness is guaranteed and hence the correctness of the state
machine and its transitions.

Finally, the atomicity property ensures that multiple state machines are capable of
jointly transitioning across states, ensuring that business processes that affect multiple
entities are supported by the platform.

4.3 The Chaincode Interface

A chaincode must implement a fixed interface comprised of two functions: an Init
function and an Invoke function. Init is called once when the chaincode is instantiated,
whereas Invoke is called in response to client transactions. Either function is invoked
by a peer and supplied with an implementation of a shim interface through which the
chaincode may interact with the ledger and other chaincodes. Most notably, the shim
gives access to the world state by exposing basic Put and Get operations on key-value
pairs.

5 An Implementation

This section describes our implementation of the sample use-case described in Sections 2
and 3. The implementation is structured in two layers:

State-Machine Management (SMM). This is the lowest layer in the implementation
and makes direct use of the shim interface to implement the general-purpose logic
related to state-transition management.

9



State-Machine Logic (SML). This layer is built on top of the previous and makes use
of it to implement the logic of the actual state machine at hand—in our case, the state
machine related to our use case. The SML includes the definition of the actual states and
transitions as well as the transition logic and access control. This layer defines functions
to request state transitions that are directly exposed to chaincode invokers.

5.1 Entities

We assume that the different entities in our system (drivers and passengers) are transacting
clients in the blockchain network. Since the network is a permissioned one, each entity
has an identity credential that they can use to identify and transact. Credentials may also
certify attributes of their owner, for instance in our case we assume they certify the role
of the entity—driver or passenger. Finally, entities may either transact directly (thus
running the client SDK) or proxy their interaction via a browser or mobile app to an
application server. We assume each entity has a unique identifier, which we will refer to
as the entity’s ID.

5.2 State-Machine Persistence

In our use case, we instantiate multiple state machines, one per participant: each state-
machine instance identifies the current state of the participant it represents.

The current state of each state machine is persisted to the ledger. In the implemen-
tation we make use of composite keys, a well-known feature of key-value stores, that
structures state keys as a lexicographically sorted tree with the ability to efficiently
retrieve groups of keys by prefix. The current state of an entity is stored on a key which
is formed as STATE.{ROLE}.{ID} where {ROLE} is instantiated with the role of the entity
(driver or passenger) and {ID} is instantiated with the ID of each entity whose state the
key refers to. The value associated with the key stores the current state of that entity.
Legal states for entities with the passenger role are INIT, WAITING and RIDING, whereas
legal states for entities with the driver role are INIT, WAITING and DRIVING. The SMM
layer is responsible for creating and updating these keys, on instructions from the SML
layer that requests state transitions.

Each state has some state metadata attached to it which is created, marshalled and
consumed by the SML layer and only stored as an opaque byte blob by the SMM layer.

5.3 State-Machine Transitions

The chaincode exposes four main functions: INIT, REQUESTRIDE, SERVERIDE and
ENDRIDE. When an entity requests a state transition, the chaincode retrieves the entity’s
ID from the request, retrieves the current state of the entity from the ledger and uses
information from the SML layer to determine whether the transition is legal. If so, the
SMM layer performs the necessary transition, possibly updating SML state in the ledger.
We also expose a STATUS function to permit entities to query the current status of their
state machine. This may be required for a web portal or a mobile app to display status
information in the user interface.

The main structure of the Invoke function of the chaincode is the following:

10



func (cc *C) Invoke(shim shim.ChaincodeStubInterface) Response {

fn, args := stub.GetFunctionAndParameters()

switch fn {

case INIT:

// INIT logic

case REQUESTRIDE:

// REQUESTRIDE logic

case SERVERIDE:

// SERVERIDE logic

case ENDRIDE:

// ENDRIDE logic

case STATUS:

// STATUS logic

default:

// error

}

}

In the following we describe the implementation of these functions.

INIT This function is invoked to handle the initial onboarding of each participant and
may thus be invoked by both drivers and passengers. The chaincode logic extracts the
ID of the entity from the request, checks that the entity doesn’t exist in the system and
then sets the entity’s status to the INIT state.

REQUESTRIDE and SERVERIDE These two functions are the passenger and driver ver-
sion, respectively, of the logic required to pair up a driver with a passenger. The function
takes as argument a set of coordinates of the entity and the ID of the requester. The
implementation checks that the entity is in either the INIT or WAITING state, performs
any state-machine transition that may be required (e.g. if the entity was previously in the
INIT state) and sets (or updates) the position of the entity. This information is stored in
the WAITING.{ROLE}.{ID} key, where {ID} is instantiated with the ID of the entity and
{ROLE} with its role.

The function also attempts to match supply with demand as follows: assume REQUEST-
RIDE is invoked. The chaincode logic uses the shim to scan the range of the world state
rooted at WAITING.DRIVER, which will return the IDs of all waiting drivers. The chain-
code logic then reads out all positions and selects the closest driver based on the current
position of the passenger supplied as argument to the invocation. If one is found, both
entities transition from WAITING to DRIVING and RIDING for a driver and a passenger,
respectively.

When a match is found, an ID of the match is also generated and stored in the
RIDING.{ROLE}.{ID} key, where {ID} is instantiated with the ID of the entity and {ROLE}
with its role. This key also stores the identity of both participants, so that by inspecting
one key it is possible to retrieve the other participant. The fact that a match was found
is signalled by the fact that both driver and passenger have the same ride ID stored in

11



this key. The transition to this state deletes the WAITING.{ROLE}.{ID} key from both the
driver and the passenger.

This PoC implementation has ample room for optimisations (which are outside of
the scope of the paper): for instance, position keys may be further sorted to avoid having
to scan the entire range of keys. The matching function may also be improved to avoid
matching a driver–passenger pair if their locations are not within an acceptable distance.
Finally, the REQUESTRIDE function should possibly alert drivers.

ENDRIDE This function signals the end of a ride and may be invoked by either participant
to any given ride. The argument to this function is the the position where the ride ended,
signalling the new position of the driver now in the WAITING state to signal its willingness
to pick up new passengers. The passenger goes back to the INIT state instead because it
may no longer need to make use of the platform.

The implementation at first checks that the transition is allowed (i.e. that the requester
is in the DRIVING or RIDING state), determines the ride identifier and the ID of the other
party to the ride from the RIDING.{ROLE}.{ID} key and transitions both participants to
the new state, with the new information attached to the state wherever appropriate.

5.4 Testing

We have developed the chaincode logic in golang and tested it against Hyperledger
Fabric version 2.0.0 alpha. Instead of deploying a full network we have tested the
chaincode using the unit test environment with the mock version of the shim interface2.
In our test runs we exercised the entire functionality of the state machine with the
following scenarios: i) passenger requests a ride, no taxi available; driver later concludes
previous ride and now offers a ride to the passenger; ii) driver is ready to serve a ride at a
location but no passenger requires it; later a passenger requests a ride and gets one from
the waiting driver; iii) multiple drivers compete for a passenger, the nearest one serves
the passenger; iv) after concluding a ride, the driver picks up a new passenger that was
previously waiting. Our implementation passes all tests.

6 Conclusion and Future Work

We have presented an implementation of a blockchain application whose code is struc-
tured along a model of synchronized state machines. Each blockchain transaction moves
one or more state machines from one state to one of their potential successor states. Such
a set of synchronized state machines can be fully specified by a high-level Petri net.
Abstractions that are easier to read are state-machine diagrams and an extended BPMN
diagram. We have argued that a useful extension to BPMN are multi-party interactions
between participants that can be mapped to blockchain transactions that synchronize
multiple state machines.

2 Available at https://github.com/hyperledger/fabric/blob/v2.0.0-alpha/core/
chaincode/shim/mockstub.go

12



Note that equally important is an easily readable specification of the business rules—
in our example the one that defines how taxis are matched to passenger requests. As
with traditional BPMN implementations we propose to specify such business rules in a
dedicated rule language such as DMN and encapsulate the corresponding code.

Future work should establish a tighter relationship between model and code in
general blockchain applications. This could be achieved either by formal code generation
from the process model or by implementing a process engine in chaincode that executes
the process model as high-level code. The Petri-net model can serve as a guiding
intermediate model between the code and the extended BPMN model. Likewise, code
could be generated from a business-rule description or a dedicated rule engine could be
implemented on the blockchain.

Furthermore, it is worth studying how the extended BPMN model can be generalized
to express communication patterns between process participants that are more complex
than just two static pools. Model-driven engineering also needs extensions, i.e., integrated
high-level models, for additional aspects of a blockchain application such as role-based
access control and privacy domains.

References
1. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,

Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,
Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and
Jason Yellick. Hyperledger fabric: a distributed operating system for permissioned blockchains.
In Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors, Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018, pages 30:1–30:15.
ACM, 2018.

2. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
3. Richard Hull, Vishal S. Batra, Yi-Min Chen, Alin Deutsch, Fenno F. Terry Heath III, and Victor

Vianu. Towards a shared ledger business collaboration language based on data-aware processes.
In Quan Z. Sheng, Eleni Stroulia, Samir Tata, and Sami Bhiri, editors, Service-Oriented
Computing - 14th International Conference, ICSOC 2016, Banff, AB, Canada, October 10-13,
2016, Proceedings, volume 9936 of Lecture Notes in Computer Science, pages 18–36. Springer,
2016.

4. Jochen Malte Küster, Ksenia Ryndina, and Harald C. Gall. Generation of business process
models for object life cycle compliance. In Gustavo Alonso, Peter Dadam, and Michael
Rosemann, editors, Business Process Management, 5th International Conference, BPM 2007,
Brisbane, Australia, September 24-28, 2007, Proceedings, volume 4714 of Lecture Notes in
Computer Science, pages 165–181. Springer, 2007.

5. OMG. Business process model and notation (BPMN) version 2.0, OMG document number
dtc/2010-05-03. Technical report, 2010.

6. Wolfgang Reisig. Elements of distributed algorithms: modeling and analysis with Petri nets.
Springer, 1998.

7. Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Ponomarev, and Jan
Mendling. Untrusted business process monitoring and execution using blockchain. In Mar-
cello La Rosa, Peter Loos, and Oscar Pastor, editors, Business Process Management - 14th
International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016. Pro-
ceedings, volume 9850 of Lecture Notes in Computer Science, pages 329–347. Springer,
2016.

13



8. Xiwei Xu, Ingo Weber, and Mark Staples. Architecture for Blockchain Applications. Springer,
2019.

14


	RZ3965header
	main

