
RC 21079 (94324) 20 January 1998 Computer Science

IBM Research Report

An Object Implementation of Network Centric Business
Service Applications (NCBSAs) : Conversational Service
Transactions, a Service Monitor and an Application Style

 Asit Dan, Francis Parr
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Object implementation of Network Centric
Business Service Applications (NCBSAs):

Conversational Service Transactions, a Service Monitor
and an Application Style

Asit Dan and Francis Parr
IBM T. J. Watson Research Center

Hawthorne, NY 10532

The Internet stretches traditional strict transaction processing concepts in several directions. First, transactions
spanning multiple independent organizations may need to address enforcement of pairwise legal agreements
rather than global data consistency. Second, a new transaction processing paradigm is required that supports
different views of unit of business for all participants, i.e., service providers as well as end consumers. There
may be several related interactions between any two interacting parties dispersed in time creating a long
running conversation. Hence, persistent records of business actions need to be kept. Additionally, some actions
and groups of actions may be cancellable (however, this may not mean that all effects are undone, e.g., non
refundable payments). Finally, the greater variability in response time for network computing creates a need
for asynchronous and event driven processing, in which correct handling of reissued and cancelled requests is
critical. This paper presents a framework for development of NCBSA using CORBA services while satisfying the
above requirements.

1. Introduction

1.1 Network Centric Computing is a New Context for Transaction Processing
 The Internet and related technology trends (e.g., in end-user presentation interfaces and
networking) have revolutionized the business transaction processing environment.
Business-to-end-user and Business-to-Business interactions are both based on automated processing
of asynchronous messages (i.e., service requests and responses). These interactions need to follow a
long running conversation flow and need to have their effects made persistent. In such a
network-centric business environment, independent business applications are created by autonomous
organizations as Conversational Service Transactions (CST), where the global or complete
knowledge of interactions amongst all applications can not be known. Since transactions and
transaction processing systems lie at the core of business computing, it is important to explore the
extensions required to the classical transaction monitor [8,3,15] for supporting such new types of
applications and how network applications can be developed in this new environment.
(The additional requirements of such applications are summarized in Section 1.2).

 In [10], we advocate a service independence approach to application development and propose an
execution environment for supporting long running conversational applications. We call the proposed
approach COYOTE: for COver Yourself Transaction Environment, to emphasize that when several
organizations participate in a business interaction across a public network, each organization can
manage and be responsible for its own commitments and expectations but there is no party globally
responsible for all activities contributing to the business interaction. In fact different participating
organizations may have
 1

(Presented at the Business Object Workshop, OOPSLA’97)

different views of where the boundaries of this particular business interaction may lie. Localized execution
of an interaction of a service application may well be a classical ACID transaction[15] or may even follow
various extended transaction models already proposed in the literature[12,14,21,4,24,7,1].

In this paper we first briefly summarize the requirements of a BSA , and the framework for development
of a BSA. We then propose extensions to CORBA services for object based implementation of such
business service applications.

1.2 Requirements on Infrastructure for Network Centric Business Service Applications

In addition to the traditional requirements for application development and runtime environment, service
applications in a network centric environment need to have the following additional properties making them
Conversational Service Transactions (CST): [10]

� Service independence: Each CST may be developed by an independent party where the complete
interactions amongst all applications can not be known. Hence, the application development process is
incremental.

� Localized execution environment: The processing of business logic is distributed and each
component (i.e., CST) is run under a local application monitor. This also implies that application
development and execution environments may be heterogeneous, and very little should be assumed of
other execution environments.

� Well known interfaces: The interfaces of each CST as well as their operation semantics need to be
known to other invoking applications. The interfaces are either known universally (e.g., EDI
transactions) or are defined by the interacting parties via service contracts (see below).

� Long running conversation: Between any two parties, there may be many related interactions
dispersed in time (e.g., delayed cancellation or modification of an earlier service request). Hence, the
intermediate computation states of a conversation need to be durable.

� Asynchronous invocations: individual service action requests (making up the long-running
conversation between client and server) are asynchronous, i.e., response to a request may not arrive
immediately. There are many factors contributing to this requirement. First, since very little can be
assumed of other CSTs and their execution environments, the response time of other CSTs may be
unpredictable. Second, a CST itself may request services of other CSTs, adding to this
unpredictability. Some CSTs may also require inputs from human operators. Finally, network response
time and disconnected operations will also add to this unpredictability.

� Compensation: Since a CST may be long running, and traditional transactional execution of business
logic across multiple organizations can not be assumed (see, further details in subsequent sections),
Compensation of an earlier service request is a strong requirement. In real-world operations, this
translates to refund of an earlier purchased item, cancellation of a reservation, exchanging items or
changing the attributes of a previous request.

� Co-ordinated invocations: In many applications, it is natural to request a set of complementary
services from independent applications in an all-or-nothing manner of execution. An example of this

2

requirement is co-ordinated purchases of items, such as, services of Hotel and Airline. The underlying
runtime environment should ensure this all-or-nothing execution behaviour.

� Service contracts: A service contract between two interacting parties (i.e., CSTs) documents their
expected behaviours. It includes issues such as the interfaces that can be invoked, how long a
conversation needs to be maintained and whether or not a service request can be compensated. The
service contract needs to be enforced during execution time.

� Query of interaction history: A CST may need to query all its durable past interactions with other
CSTs and the current states of interactions.

� Site Autonomy, Privacy and Implementation Hiding: A CST should be able to conceal from its
requesters, whether parts of the service have been subcontracted out into the network; conversely the
identity of the requester may sometimes need to be unavailable to any providers of subcontracted
services.

1.3 Outline of the Paper
The remainder of the paper is organized as follows. In Section 2.1, we outline the Coyote approach: the
conversational service transaction model, the Coyote monitor services and the application development
model. We further illustrate these concepts with an example in Section 2.2. In Section 3, we describe
how an object implementation of NCBSA and service monitor can be realized by extending the
CORBA services. Section 4 contains the summary and conclusions of the paper.

2. An overview of the COYOTE Approach

In this section we explain at a high level our proposed solution to meeting the needs of network centric
service applications in terms of three components:

� Conversational Service Transaction model
� Coyote Monitor services
� Coyote application development model.

We then illustrate the approach with an example.

2.1 Components of the Approach

2.1.1 Conversational Service Transaction Model

We treat requests for services as the fundamental building block for network centric business service
applications and define a simple integrity model for conversational service transactions. Each
organization which wants to provide a network centric business service application (i.e., CST) defines a
set of well defined service access interfaces. The examples of such independent NCBSAs are Hotel
services, Airline services, etc. The interfaces provided by each NCBSA can be invoked by remote
and/or other independent NCBSAs to access services provided by this one (see Figure 2). We further
advocate the use of an extended transaction model and a monitor supporting such pairwise interactions.
The key concepts are:

3

� Clients get service by having a conversation with the application monitor at the server node.
� The service requests which flow on these conversations are encapsulated, i.e., the client sees only a

well defined service interface and does not know whether the implementation of the service involves
subcontracted services potentially at other nodes.

� Valid and allowable service requests are defined in service contracts between interacting parties, and
the service requests are monitored for enforcing this contract.

� A client can request cancellation of a specific service request, a predefined grouping of requests or an
entire conversation. However, there is no guarantee that the identified services will be completely
undone; rather an application defined compensation action will be executed.

� The monitor also provides runtime service interfaces to its local CSTs for co-ordinating their requests
to other CSTs. A set of service requests to other CSTs can be grouped as a compensation group in
which case either all will be executed successfully or any which were executed will be compensated.

� The monitor also provides to its local CSTs a persistent application level log and execution of service
requests reliably in the face of reissued requests. This is required especially when response times (for
the possibly distributed processing) do not meet the clients expectations.

2.2 Transaction Monitors and Specific Features of a Coyote Monitor

Coyote is a transaction monitor and hence, provides all the basic services expected of a transaction
monitor. The basic functions of a standard transaction monitor are well known, e.g. CICS, Encina, Tuxedo
[3,15,9]. We summarize them briefly here in order to highlight the additional properties of a Coyote
monitor.

Transaction monitors are responsible for scheduling transaction invocations. Transaction programs or
applications are registered to the transaction monitor in an administrative operation. Each registered
application has a function name known to clients so that they can request it; associated with this function
name is a registered entry point or program which is scheduled when a request for that function is
received.

Incoming requests to the transaction monitor appear as messages typically from remote clients. An
incoming request is logically queued by the transaction monitor until computing resource is available to
execute it. This occurs when some other transaction completes and frees up a process or thread in a pool
managed by the monitor. When a thread becomes available, the transaction monitor allocates it to the first
queued incoming request, starts on the allocated thread the application program registered to the requested
function, passing it any additional parameter data also in the request.

Having started the transactional application in response to an incoming message, the transaction monitor is
responsible for supervising the execution of the transactional application. In particular it will intercept all
outbound requests (to recoverable resource managers such as databases that may be local or remote) and
to other remote transaction monitors if this transaction monitor can participate in managing a distributed
transactional protocol.

4

Finally the transaction monitor is also responsible for the transactional behaviour of the applications which
it monitors. Definition of standard ACID transactional properties (i.e., atomicity, consistency, isolation and
durability) can be found in [16,15]. A primary function of standard transaction monitors is to provide a

commit/abort protocol. This allows a transactional application to be ABORTED if either a serious error is
detected by the monitor during processing of the transactional application or if the application explicitly
requests it. The transaction monitor will then ensure that all effects of processing on behalf of this
transaction instance are undone in the persistent resources of the participating resource managers (e.g.,
databases).

5

Coyote Monitor

Inbound
Client
requests

 CST
application

 Outbound
 subcontracted
Service requests

Server functions Client functions

Schedule invocation
Enforcement of
service contract
Reliable execution
Maintain conv. log
Compensation

Asynchronous req.
Schedule invocation
Reliable execution
Maintain conv. log
Compensation
Group compensation

CST application
Interfaces
Rules
Methods
Service contracts

 CST
application

Classical TP Monitor
services / resource
management

Figure 1: Diagram of Coyote Monitor

A schematic view of a Coyote monitor is shown in Figure 1. At this level the architectures of a classical
ACID transaction monitor and a Coyote monitor are essentially the same. However, a Coyote monitor
differs from above summary description of standard transaction monitor functions in several respects.

� A server application started by a Coyote monitor is not by default an ACID transaction; rather it is a

durable conversation for which there is no ``system guaranteed'' abort operation to undo all its effects.

� An application level log of all interactions with the client and other remote resources and transaction
managers is maintained by the Coyote monitor.

� A service application registered with the Coyote monitor can have a group of programs or interfaces
associated with it. The interfaces define the primary action, and its associated application defined
compensation and modify actions.

� A logical conversation thread may involve related interactions dispersed in time. Hence, the monitor
maintains persistent conversation states and an interaction history.

� The Coyote monitor has special support for enabling reliable execution of a service request on behalf
of a particular conversation (with a particular user) even if action requests are reissued, and is reliably
compensated (by the application defined compensation action) if the user so requests.

� The Coyote monitor checks validity of invocation sequence as defined by the application during its
registration.

� The monitor also enforces service contract, e.g., checks to see if this user is allowed to invoke this
method at this point in the conversation. Other service contracts may enforce even more general
state validation.

� The Coyote monitor provides additional features to compensate an entire conversation or a defined
group of service requests within the conversation, should compensation of the group be explicitly
requested or automatically if some essential request within the group fails to execute successfully.

In short the novel features of a Coyote monitor is that it shifts the definition of a transactional application
away from the concept of a system guarantee that all persistent effects are removed on failure, towards
supporting the concept of persistent conversations in which it is easy to provide and manage application
defined compensation of actions and provide the end-user with a reliable view of cancelling, reissuing and
modifying particular service requests.

2.3 Coyote application Development model

A network centric service application has to guide a client which may be an end-user or possibly another
unknown program through a unit of business. This is typically a long running interaction, in which there
are short bursts of automated activity at the Coyote server, interspersed with periods of waiting for,
subcontracted servers in the network to respond, the user to decide what to do next or activities to happen
in the real world as part of the service fulfilment, goods to be moved, money to transfer or time between a
reservation and use to elapse.

6

Thus a Coyote application consists of:

� Interfaces: its service interfaces (specifically service contract) presented to clients; the application
will also depend on the service interface definitions for any services which it uses from other
applications in the network in a subcontracting mode.

� Action methods: the implementations of each short running action which can occur in providing the
service; each action involves responding to a specific event, processing based on this event and the
state of the service conversation, and sending out messages and action requests to the client and other
servers.

� Scheduling rules: the definition of the application's trigger events, i.e., combinations of response
messages, time-outs and user requests, which will trigger execution of an action by the application, and
the rules to determine which action is to be scheduled when events occur.

The developer of a network centric service application is required to provide all of the above information.
The Coyote monitor plays the role of enforcing constraints defined in the service interface, gathering and
saving the event data, interpreting the scheduling rules of the application, and then triggering the execution
of action methods for the application following those rules.

We claim that the Coyote approach provides both a convenient and powerful structure for developing
network centric service applications and a coherent model for characterizing their behaviour.

2.4 An example: conference trip reservation

Consider a typical multi-organization long running business application: Travel planning including
conference registration. 1 Figure 2 shows the participating organizations and their interactions. The
end-users need to make complete travel plans associated with attending this conference. Each may run a
local travel arrangement application on his/her desktop/laptop, but is more likely to contact an intermediary,
Travel Service provider, that co-ordinates various end-user service requests, and maintains special
business relationships with various business service providers (e.g., airlines, hotels). As part of the
conference registration, the conference organizers provide (via the Conference service application) not
only a seat at the conference and conference proceedings, but also arranges hotel accommodations for the
entire duration of the conference. The conference organizers make special arrangements with the hotel
(via the Hotel Service application) to provide this accommodation. They also collect appropriate fee (via
the Acquirer gateways) through the credit service providers (e.g., Amex, Visa, MC). The end-user
provides all the necessary information by processing an HTML form, and is typically unaware of all the
business activities behind the scene.

7

1 Note the multi-organizational, service independence and long running aspects of this example in contrast to the
typical version of this example used in the earlier literature [24,4,12].

An end-user may also require a separate arrangement with the same or another hotel for an extended stay
unrelated to the conference. For example, the end-user may decide to arrive early for some unrelated
business activity (e.g., giving a talk at the local University) and stay a day longer beyond the conference
for some sight-seeing. Additional activities may depend on various factors: availability of suitable flights,
availability of hotel accommodation, and of course, no conflict in schedule. The conference provider is
clearly not interested in providing services beyond what is absolutely required for conference attendance.
The unpredictable schedule of a busy client may also require partial attendance or modification of the
schedule on-the-fly.

8

Travel
service

Acquirer
gateway

Conf.
service

Airline
service

Hotel
service

Acquirer
gateway

Confere
nce

 fee

Late arrival

authorization

Ticket payment

Conference
reservation

Hote
l r

es
v.

1 day early resv.
Flig

ht
res

erv
ati

on

 Travel

booking

 Travelbooking

Figure 2: Conference registration application

The key requirements imposed by this overall application on the participating organizations and their
underlying systems are as follows. Multiple organizations (e.g., Service providers for Travel, Conference,
Hotel, Airline, etc.) need to interact to provide all the required services to the end-user. All the services
demanded by an end-user may not be known in advance, and may change during the course of the
conference. For example, the requested and granted services may be cancelled by (or on-behalf of) the
end-user at a later time. However, each organization is responsible for delivering its services. Each service
provider develops its own application without the a-priori global knowledge of interactions across all
organizations. Finally, the organizations do not need to be in constant communication during the course of
this long running overall application.

An important point is that cross-discounting deals between parties, i.e., 10% rebate at hotel X if
airline Y is used (where half the discount to be paid by airline Y) should be easy to add to an existing set
of service applications. The Coyote monitor and the service contract provide exactly the structure which
facilitates customization of this nature.

Multiple interactions between server parties (e.g., Registration and Cancellation) may be related. Note
that implementation of the ``registration at the conference site'' service, results in invocation of services
that atomically perform reservation of a hotel bed and conference registration fee payment, as well as
local book keeping such as updating the number of proceedings to be printed, etc.. Here, each transaction
accesses/modifies its local database(s) in an atomic fashion, and hence, preserves desired integrity
relationships within a site. Each organization is also responsible for managing its own interactions with
other organizations and hence needs its own persistent application log of the interactions between them.
In the above example, the travel server co-ordinates its interactions with conference, hotel and airline
sites. The conference program server is responsible for ensuring all services that come with a conference
registration, and co-ordinates its interactions with the hotel and the acquirer gateway servers. The
end-user or the travel server never gets involved in the conference program server backed activities.

Each site also passes minimal (essential) information about its clients to other servers as well as hides its
implementation of the ways it provides the services, particularly if it is dependent on the services of other
sites. Without such information barriers, all participating sites may be aware of the relationship across all
other (potentially hostile) sites. It may also jeopardize the businesses of intermediate sites since the
end-client may directly contact final service providers. Additionally, the global state maintenance may
impose unduly burden on each service provider.

The proposed Conversational Service Transaction model and runtime services provided by a Coyote
monitor aids in the development of NCBSA. In the next Section, we will explore how these services
can be provided to an oo implemented NCBSA.

3. An Object implementation of Network Centric Business Service
Applications (NCBSAs)

The preceding sections defined the need for NCBSAs and the requirements which must be met by an
infrastructure for them. However, this was done with no reference to objects. In this section we take up
the question of how one would implement both the NCBSAs and their infrastructure using Object
technology and concepts. This adds a level of detail both to the description of NCBSAs and their required
infrastructure; it also raises some interesting questions about ways in which Object standards could be
extended to assist in the evolution of cross enterprise electronic services.

9

3.1 Service Invocations and Service Contracts

Being able to contact, uniquely identify, and interact with service invocations is a key part of the NCBSA
economy. Hence we will need a ServiceInvocation class. Particular services such as:
� combined conference trip booking service
� airline reservation service
� hotel booking service
would be subclassed from this ServiceInvocation class.

It is usually the case that ServiceInvocation objects have to be persistent, e.g., a travel booking has to
survive from the time that the booking is made to the time when it is used, possibly months later. During
this lifetime there will be a number of specific interactions with the client of the service defined as actions
in the preceding section.

These actions are an important part of the interface of the service invocation, but are associated with the
implementation of the service invocation only via a level of indirection. Hence rather than treat these
actions as methods of the ServiceInvocation object directly, we introduce a ServiceContract object
associated with each ServiceInvocation object defining its interface (see Figure 3). The methods of the
ServiceContract object will be the actions by the of the service invocation, i.e., the individual requests the
client can make on this service. To illustrate, in the hotel booking example, creation of booking, upgrade or

10

SSCO:
Server
Service

Contract

ServiceEvent
Handler

BSA in
b

o
u

n
d

re
q

u
es

ts

 o
u

tb
o

u
n

d

req
u

ests

BSA
implementation

B

CA

Replies Rule
 specification

Figure 3: Network Centric Business Service Application

 Method
invocation

CSCO:
Client

Service
Contract

CSCO

Service
requests

 Reply
events

date change of a booking and cancellation are independent actions on the hotel service invocation. These
functions are then the defined methods on the service contract.

3.1.1 Properties of ServiceContracts: sequence checking for reliable execution

Besides defining the set of action interfaces of a service invocation, a ServiceContract contains all
information which defines the responsibilities undertaken by the provider of the service. The
ServiceContract Object (SCO) provides information on the responsiveness committed to by the server.
This may be provided in the form of the mean and some high percentile response times for responses to
action requests which could be used by clients to set reasonable time outs. There could also be a more
general indication of whether processing was interactive or batch oriented.

Another function of the SCO is that it defines sequencing rules for valid sequences of actions within a
service invocation. This is particularly valuable in a network centric environments where there is great
variation both in message delivery time and in processing response time. Service requests and their actions
are uniquely numbered. The ServiceContract object implementation enforces these sequencing rules, thus
eliminating invalid or duplicated requests. Thus a series of calls to a ServiceContract object, newBooking,
newBooking, upgrade, cancel, upgrade, cancel, will actually be received at the ServiceInvocation object
as the filtered sequence: newBooking, upgrade, cancel. The sequencing rules cause two newBooking
actions to a single service invocation to be treated as duplicates and cancel is supposed to be a “final”
action which cannot be followed by other actions on the same service invocation. Other invalid sequences
would be reported back to the client as errors. Finally, ServiceContract object (which is created upon
invocation of a BSA by an user and based on the service contract defined a priori between the invoking
user and the service provider) decides which
action requests are to be permitted.

In summary, the ServiceContract interface defines properties of the service made visible to external
clients usually in other organizations. The ServiceInvocation offers an interface to the implementation of
the service, called from within the service provider’s organization.

3.1.2 Separating monitor checking aspects of a service from the service implementation

An alternate way of looking at this separation between ServiceContract and Service Invocation is as
follows. In providing business services in a conventional network environment the value of transaction
monitors is widely accepted. Object Request Brokers (ORBs), as presently defined by OMG standards
provide a limited set of the scheduling, interface enforcement and reliability management provided in
existing procedural transaction managers. In a network centric business service environment, extensions to
transaction manager functionalities are required to handle the greater openness, extended transaction
models and more ad hoc cross organizational interactions of a public network environment.

In these terms the ServiceContract object represents processing to provide rule and interface
enforcement for a BSA. Users of this service see and make method calls on the ServiceContract object,
not the ServiceInvocation object which implements the service. The ServiceInvocation object
represents the actual implementation of the service and has method interfaces which would be called by
the transaction monitor after it had allocated an execution thread to an incoming request.

11

3.1.3 Client and Server Views of the Service Contract Object

A service contract represents the agreement between client and the provider of a service covering the
rules of interactions and any guarantees of service quality to be supported by the server. The enforcement
of this contract is actually distributed, and involves state management and checks at the both client and the
server of this service. We refere to these objects as the client and server views of the service contract
objects, i.e., CSCO and SSCO. Both of these objects are generated from the service contract as part of
the Coyote application development tools. This is illustrated in Figure 3. The inbound requests are managed
by the SSCO while outbound interactions with one or more sub-service providers are managed by the
corresponding CSCO objects.

 The CSCOs receive all outbound requests from the ServiceInvocation object to the outside world (i.e.,
various sub-service providers). Part of the CSCO interface, is a method through which requests can be
made identifying a target SSCO and an action call on it. The CSCO just converts these outbound requests
into one way method calls on the target ServiceContract object. The service provider calls back on
completion to a reply method, also defined in the CSCO interface. The SSCO and CSCOs can recognize
incoming events and parse when an event is a reply to an outstanding request for service or a new service
request. They also persistently log the requests and replies so that the service invocation can understand
after a failure what has been asked of the rest of the network.

3.1.4 ServiceEventHandler and asynchronous responses to subcontracts of the service
implementation

A Network Centric Business Service Application (NCBSA) is typically incremental. It provides a
ServiceContract interface, but its service implementation makes wide use of other services available in
the network. For the best response time to clients, these “subcontract” service invocations will be made in
parallel (since it is assumed they are executing on independent server engines scattered across the
network). Hence the action requests made to subcontract services will need to be asynchronous calls.

In this environment, although service invocations last for a long time, they are actively executing only in
brief bursts triggered by arrivals of requests from the service invocation client, and asynchronous replies
from subcontracted services. It is convenient to structure the ServiceInvocation implementation as a set
of internal methods and a set of event driven scheduling rules. Once again we separate out the rule driven
scheduling functionality of the monitor into a separate object , i.e., namely the ServiceEventHandler.
There is one ServiceEventHandler instance for each ServiceInvocation instance. The methods in the
ServiceInvocation object are now the segments of algorithmic processing which are shceduled in response
to some trigger event following the rules processed by the ServiceEventHandler.

More specifically, the ServiceEventHandler is driven whenever a new reply or message arrives from a
subcontract or a new request arrives from the client of this service invocation. Using knowledge of which
other events and replies have already been received, together with the rules defined in the
ServiceEventHandler, the appropriate method of the ServiceInvocation is allocated a thread and called.

This observation reinforces the need to separate out ServiceContract object from ServiceInvocation
object. Although the ServiceContract interface defines as its methods the set of action requests which
can be made, the implementation (i.e. the set of methods on the ServiceInvocation object) will not be a
set of independent procedures - one for each defined action. In general in the presence of asynchronous

12

responses to subcontracted requests, a service invocation which allows clients to make action requests A
and B, and processes action A by sending out subcontract network requests AF1, AF2 would be more
likely to have a set of methods:
 method1 - in response to A: sends out sub requests AF1, AF2
 method2 - timely relies to AF1 and AF2 are received; respond to A
 method3 - a request for B is received before responses to AF1, AF2 from a preceding A
 method4 - replies to AF1 and AF2 are not both received in time: report progress only on
 outstanding request
 method5 - handle late arriving responses to AF1 or AF2 after progress report to client.

The above example shows that even though the client has a set of actions which can be applied to a
service invocation, and are defined as the methods of the ServiceContract, the ServiceInvocation is best
implemented as a ServiceEventHandler with rules for choosing what action should be scheduled in
response to a particular network event and the ServiceInvocation object itself whose methods are the
specific processing called as a result. The ServiceInvocation methods provide a complete implementation
of the service, but not in 1-1 correspondence with the actions callable by the client.

3.1.5 Further comparison of this object structure with Transaction Monitors

Transaction monitors classically completely surround the transactional applications which they support. A
monitor provides an external interface to clients used to receive requests and drive the appropriate
transaction applications. It also intercept all outbound requests from the transactional application to
databases, file servers or services on other nodes, to insert hooks for transactional co-ordination,
scheduling and monitoring. Orbs have not as yet defined interfaces to play this surrounding role. But in
order to have a productive environment for developing NCBSAs using object technology we need to be
able to define the necessary infrastructure support in object terms. The ServiceContract captures
functionality which a monitor would have to provide as inbound request processing; the
ServiceEventHandler is providing the monitor services for outbound request handling.

Transaction monitors build their inbound and outbound request handling support for a given application
based on metadata provided when the transactional application is registered with or defined to the monitor.
In our approach the ServiceInvocation object provides the essential implementation while he
ServiceContract and ServiceEventHandler provide the application specific metadata and the general
processing which extend the Orb to enable it to function as a more general purpose monitor, meeting the
needs of NCBSAs.

3.1.6 Compensation and Compensation Groups

So far we have said nothing about transactional semantics and co-ordination other than mentioning that this
responsibility is supported in the ServiceEventHandler. Now in the world of business and of NCBSAs
there is little reason to expect service invocations to be “abortable” at all times - in the sense that all
permanent effects can be removed. Some services involve payments which are not refundable; bookings
may have been made which beyond some point in time cannot be cancelled. Hence we talk about
compensation and cancellation of services rather than abort as it used for transactions.

Compensation of service may occur at several levels:

13

� compensation of an individual action: - action A has an inverse action undoA; clients of the
service containing action A may use the inverse to undo it.

� compensation of a ServiceInvocation: cancellation is a known action defined for many (but
possibly not for all) ServiceInvocation classes; it will end the ServiceInvocation instance stopping
any subsequent actions to that instance. it will provide as complete a cancellation as is possible.

� compensation group: a ServiceInvocation may sometimes want to group together several
subcontract requests and have either all or none of them succeed. In addition, it may want other parts
of the ServiceInvocation to be executed conditionally on the success of one of these groups.

The implementation of CompensationGroups is straightforward. If all service invocations in the group
succeed, the group has succeeded; if one or more fail then the CompensationGroup is responsible for
calling the cancel method on all the other successful members of the group. A CompensationGroup is
defined by a BSA implementation which passes it as a rule to its ServiceEventHandler.

4. Summary and Conclusions

Service Transactions are an effective model to capture the semantics for adding service application to a
network centric environment. With the Coyote monitor services, we have defined the critical services
which the transaction infrastructure need to provide to support network centric service applications. Key
technical features provided by this monitor are:

� Transaction monitoring and Logging services
� Compensation model, Group compensation
� Automated invocation of applications and services
� Persistent queryable conversation state
� Reliable execution of service requests
� Services for generating Internet (HTML or Java) formatted output from the transactional

environment.

The appropriate model for developing applications in this environment is based on:

� service actions which are themselves atomic
� long running persistent conversations built from them
� scheduling rules identifying the ``next'' action in
� response to messages or events
� use of the Coyote coordination and compensation services

Finally, for implementation of these applications and infrastructure, we have introduced the creation of
ServiceContract object and ServiceEventHandler objects dynamically per service invocation instance.
The detailed guidelines for implementing these objects providing monitor services can be found in [10].
This set of concepts, service transactions, monitor and application structure has considerable practical
implications as to how one can most effectively construct middle tier servers in a network centric service
environment.

References

14

1. G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor and C. Mohan, ``Advanced
Transaction Models in Workflow Contexts'' In 12th ICDE, New Orleans, Lousiana, Feb. 1996.

2. P. Attie, M. P. Singh, A. Sheth, M. Rusinkiewicz, ``Specifying and Enforcing Intertask
Dependencies'', VLDB 1993, pp. 134-145.

3. P. A. Bernstein, M. Hsu, and B. Mann, ``Implementing Recoverable Requests using Queues''. In
Proc. ACM SIGMOD, 1990.

4. A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, K. Ramamritham, ``ASSET: A System for Supporting
Extended Transactions'', Proc. ACM SIGMOD 1994, pp. 44-54.

5. Y. Breitbart, A. Deacon, H. Schek, A. Sheth and G. Weikum, ``Merging Application Centric and Data
Centric Approaches to Support Transaction-Oriented Multi-System Workflows'', ACM SIGMOD
Record, 22(3), Sept. 1993.

6. D. Chappell, ``Understanding ActiveX and OLE: A guide for Developers and Managers'', Microsoft
Press, Redmond, Washington, 1996.

7. P. Chrysanthis and K. Ramamritham, ``ACTA: The SAGA continues'', pp. 349-397, in [2].
8. Customer Information Control System/ Enterprise Systems Architecture (CICS/ESA), IBM, 1991
9. IBM CICS Home Page, http://www.hursley.ibm.com
10. A. Dan and F. N. Parr, “The Coyote Approach for Network Centric Business Service Applications:

Conversational Service Transactions, a Monitor and an Application Style”, HPTS workshop,
Asilomar, CA, 1997.

11. U. Dayal, M. Hsu, and R. Ladin, ``Organizing Long-Running Activities with Triggers and
Transactions'' ACM SIGMOD Record, pp. 204-210, 1990.

12. “Database Transaction Models for Advanced Applications'', Ed. A. K. Elmagarmid,
Morgan-Kaufmann Publishers, 1992.

13. FlowMark, SBOF-8427-00, IBM Corp., 1996.
14. H. Garcia-Molina, and K. Salem, ``SAGAS,'' Proc. of ACM SIGMOD Conf., 1987, pp. 249--259.
15. J. Gray, and A. Reuter ``Transaction Processing: Concepts and Techniques,'' Morgan Kaufmann

Publishers, 1993.
16. T. Haerder, and A. Reuter ``Principles of Transaction-Oriented Database Recovery,'' ACM

Computing Surveys, Vol. 15, No. 4, 1983, pp. 287--317.
17. IBM IMS Homepage, http://www.software.ibm.com/data/ims
18. Java Beans Homepage, http://splash.javasoft.com/beans
19. M. Kamath, and K. Ramamritham, `` Modeling, Correctness and Systems Issues in Supporting

Advanced Database Applications using Workflow Management Systems'' , Technical Report, TR
95-50, University of Massachusetts, Amherst, 1995.

20. Object Management Group (OMG), http://www.omg.org
21. C. Pu, G. Kaiser and N. Hutchinson, ``Split Transactions for Open-Ended Activities'' , Proc. VLDB,

1988.
22. M. Rusinkiewicz, and A. P. Sheth, ``Specification and Execution of Transactional Workflows''

Modern Database Systems, 1995, pp. 592-620.
23. F. Schwenkreis, ``APRICOTS - A Prototype Implementation of a ConTract System: Management of

the Control Flow and the Communication System'', Proc. of the 12th Symposium on Reliable
Distributed Systems, pp. 12-21, 1993.

24. H. Waechter, and A. Reuter, ``The ConTract Model'', Chapter 7, pp. 219-263, in [12].

15

16

