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ABSTRACT 

Content adaptation for the delivery of multimedia data such as 
text, images, audio, and video has been extensively studied in 
recent years. In contrast, techniques for adaptive delivery of 3D 
models to clients with different rendering capabilities and network 
connections are just beginning to emerge. In this paper we 
describe the principles involved in the design and development of 
an adaptive environment for rendering of 3D models over 
networks. This environment monitors the resources available and 
selects the appropriate transmission and representation modalities 
to match these resources. We illustrate the functionality of this 
environment through a prototype client-server implementation 
and we report experimental results obtained with this prototype. 
Keywords 

3D graphics over networks, hybrid rendering, adaptive selection, 
transcoding, universal access. 

 

1. INTRODUCTION 
In the scientific and medical domains an increasing number of 
applications are beginning to take advantage of remote 
visualization and analysis. In the industrial sector, companies 
have already begun to migrate towards fully electronic design and 
e-commerce. In this context, community boundaries are being 
redefined and new models of organization and interaction emerge. 
Networking infrastructures struggle to accommodate an ever-
increasing variety of clients and servers inter-connected by 
communication links of various types and capabilities. This 
heterogeneity makes it difficult for servers to provide a level of 
service that is appropriate for every client that requests access to 
three-dimensional graphics content.  

So far, a significant body of work has been dedicated to the 
challenges of universal access related to the delivery of traditional 
multimedia content such as text, images, audio, and video. 
However, less attention has been paid to 3D digital content, as 
true market opportunities for 3D graphics over networks have just 
recently begun to emerge. In this paper, we describe a set of 
design principles that we believe are fundamental for the efficient 
transmission of 3D models to clients spanning a wide range of 
graphics capabilities and connection types. We present an 
adaptive environment embodying these principles, as well as 
experiments with a prototype software we developed.  

The main underlying idea is that adaptive service both increases 
the quality of service and reduces the end-to-end latency 
perceived by clients. For traditional multimedia types, 
transcoding has proven successful in serving variations of the 

same object at different sizes and using different modalities. 
Transcoding, which is defined as a transformation that is used to 
convert multimedia content from one form to another [1], can be 
naturally extended to 3D data. By their very nature, 3D models 
are amenable to access through various representation modalities, 
that typically imply trade-offs between complexity, interaction, 
and download times.  

This paper is organized as follows: section 2 contains a survey of 
existing literature pertaining to various aspects of transmission 
and rendering of complex 3D models, as well as content-
adaptation techniques used for other types of multimedia. In 
section 3 we formulate a set of design principles for adaptive 
delivery of 3D data and we present the logical organization of a 
client-server platform built upon these principles. The tools 
necessary to monitor the characteristics of the transmission 
environment, the performance model used, and our adaptive 
selection algorithm are described in sections 4 and 5, respectively. 
Architectural details regarding the development and 
implementation of a prototype system, as well as experimental 
results are summarized in section 6.  

2. BACKGROUND 
Transcoding of text, images, audio and video has been extensively 
studied in recent years. For example, in the TranSend project [2], 
[3], adaptation to client variability is termed “distillation” and is 
achieved by image compression, reduction of image size and color 
space, and video conversion to different frame rates and 
encodings. In the InfoPyramid [4], a multiresolution multimodal 
hierarchy is used to represent content items on a Web page. This 
hierarchy is used to drive the selection of the best version of an 
item that delivers the most value for a given set of client 
resources.  

The delivery of 3D data over networks has been traditionally 
investigated mainly in the context of networked virtual 
environments (see [5] for a survey). Such environments have 
emerged as simulation applications for the Department of Defense 
running on supercomputers and as networked games and 
workstation demonstrations running on graphics workstations and 
game machines. They are targeted towards the creation of 
telepresence, i.e., the illusion that other users are visible from 
remote locations. The main challenge in such environments is 
maintaining a consistent state among a large number of clients 
that share and access portions of a 3D scene at interactive rates 
[6]. At the network level, a protocol was proposed in [7] in 
response to this challenge (see also [8]). At the application level, a 
number of strategies developed to meet this challenge have 
evolved into technologies routinely used for optimization of 3D 
transmission and rendering in domains beyond high-performance 



simulations and games. Such technologies include 3D model 
compression [9]-[11] for reduced storage requirements and faster 
delivery, model simplification (see [12] for a survey) and level-of-
detail management [13], [14] for improved graphics performance, 
streaming techniques [15]-[17] for progressive downloading of 
3D data, as well as various image-based methods [18]-[22] that 
replace all or parts of a model with images, thus trading freedom 
of interaction for reduced geometric complexity. 

In general, methods for rendering 3D models in client-server 
environments can be classified into three major categories, 
according to where the rendering takes place. Client-side methods 
do not involve any rendering on the part of the server. The 
geometry is downloaded to each client that requests it and the 
client is responsible for rendering it. A number of transformations 
can be applied to the model before it is downloaded, including 
simplification or conversion to a progressive representation 
consisting of a simplified model and a sequence of refinement 
records that are downloaded gradually. Client-side methods are 
well suited for applications for which real-time interaction is 
paramount to viewing the model, assuming that the client has the 
ability to store and render the corresponding data. 

Using server-side methods, the model is fully rendered on the 
server and the resulting image or set of images is transmitted to 
clients. Such methods are useful when clients with limited 
resources and graphics capabilities require high-quality images of 
large models. The main tradeoffs are the loss of real-time 
interaction with the model (i.e., due to the inherent latency of the 
network, images are delivered to clients at non-interactive rates) 
and a potential increase in server response times as the number of 
clients concurrently accessing the server increases. 

Finally, hybrid methods partition a model into parts that are 
rendered on the server (e.g., background geometry) and parts that 
are downloaded and rendered on the client (e.g., foreground 
objects). Such methods have the advantage that they reduce the 
geometric complexity of the data being transmitted by replacing 
parts of it with images. However, determining whether a part of a 
model should be rendered on the server or on the client is not a 
trivial task and user interaction with the hybrid representation may 
be limited. Alternatively, the server could render high and low-
resolution versions of a 3D model and send the residual error 
image and the low-resolution geometry to the client [23] (see also 
[24]). In this case, the task of the client is to render the coarse 
model and to add the residual image to restore a full quality 
rendering. Such a method is typically adequate for use in low-
latency environments in which the servers have high-performance 
graphics capabilities.  

Although all of the methods described perform well for certain 
types of 3D models and system configurations, they have not been 
designed to deal with client variation. We reported a first effort to 
combine existing techniques into an adaptive framework for 
transmission of 3D data in [25]. The Network Graphics 
Framework  (NGF) provides improved service by dividing the 
transmission of a model into segments corresponding to several 
levels of detail and by selecting the most appropriate delivery 
mechanism for each level. While it proves the feasibility of 
adaptive transfer, the NGF is limited in that models are viewed as 
monolithic entities that are delivered at various resolutions using 
the best of several transmission methods available and the final 
image is rendered using a single representation for the entire 

model. The design principles outlined in this paper are based in 
part on lessons learned from this early work, and are at the basis 
of a new prototype system that takes the idea of adaptive 3D 
transfer a step further, as described next.    

3. PRINCIPLES OF ADAPTIVE DESIGN 
Adaptive delivery of 3D models over networks must take into 
account information about the characteristics of the 3D data, the 
capabilities of various client platforms to which the data is being 
delivered, the load and capabilities of the servers, as well as user 
preferences. We have identified several design principles that we 
believe are fundamental to adaptive transfer and rendering of 3D 
models: 

1. Models should be regarded as collections of one or 
more components, thus allowing for efficient management and 
refined schemes for perceptual measurements. A component 
defines an atomic part of a model that corresponds to a visually 
meaningful entity and can be individually transmitted from a 
server to a client. The partitioning of the model into components 
may be defined at model creation time or on the fly, and may 
range from a simple decomposition into connected components to 
an organization into a complex data structure reflecting semantic 
or spatial grouping criteria.  

2. Combining different modalities for representing model 
components can achieve better transmission and rendering 
performance than the use of a “one-size-fits-all” strategy. 
Examples of modalities include polygonal mesh representations 
using indexed face sets, progressive meshes, 2D images, depth 
images, bounding boxes with or without textures, and basic 
shapes (e.g., sphere, cylinder, cone, box). The modalities may be 
computed and delivered at various levels of resolution. 

3. The selection of the most appropriate modality for each 
component should account for the importance of that component 
to the final rendering of the model.  

4. The selection mechanism should also take into account 
the resources available to predict the performance of a modality in 
a given context. 

5. Last but not least, the selection should accommodate 
user preferences, in terms of specific modalities to be used for 
certain model components, resource budget allocation, and trade-
off resolution. 

The work described in this paper uses these principles to facilitate 
accessing and rendering of 3D models over networks to match the 
attributes of diverse clients. Ultimately, it provides an 
environment for automatically generating and delivering hybrid 
representations that combine 2D and 3D modalities. In addition to 
a multi-component model organization scheme and an adaptive 
selection mechanism, this environment includes a monitoring tool 
that keeps track of the dynamically changing characteristics of the 
transmission and rendering contexts, as well as a transcoding 
engine that drives the actual conversion of the 3D data to 
modalities selected by the selection mechanism. Figure 1 
illustrates the logical organization of these components within the 
environment. 



When a client makes a request for a 3D model to a server, it first 
receives meta-data information about the requested model. This 
information allows the framework to estimate the performance 
characteristics for each of the modalities available. The perceptual 
importance of each model component, i.e., its contribution to the 
perception of a final rendering of the model, is also estimated. An 
adaptive mechanism selects the best modality available for each 
component that fits into the budget and delivers it to the client. 
The components are processed in decreasing order of their 
importance. 

4. ENVIRONMENT MONITORING 
A monitoring tool is necessary to record the events taking place in 
the environment in which model transfer and rendering occurs, 
and based on these, to provide quantitative information to the 
selection process. 

We characterize the state of a given client-server setup in terms of 
four state parameters:  

a) the rendering capability of the client, 

b) the rendering capability of the server, 

c) the load on the server, and  

d) the performance of the communication link between the two.  

Instead of attempting to map values of low-level performance 
counters describing CPU, memory, I/O, and network behavior to 
values corresponding to the four state parameters considered, we 
record measurements that are easier to interpret from an 
application’s perspective. Hence, we use the average frame rate 
(in frames per second) to describe the rendering capabilities of a 
machine (client or server) for a discrete range of model sizes and 
several types of rendering. We measure server load in terms of the 
average time between the receipt of a request by the server and the 
processing of that request. We measure network performance in 
terms of latency and bandwidth.  

For each of the state parameters we maintain history information. 
The history is initialized from benchmark data once for each state 
parameter, when the server is set up and at the beginning of each 
client session. The history is subsequently updated dynamically 
with actual measurements taken as data is transferred. In the 
remainder of this section we describe the creation, updating, and 
usage of history data for the client rendering capability and the 
network performance. The server rendering capability and the 
server load are monitored in a similar fashion and therefore are 
not described separately. 

4.1 Measuring Client Rendering Performance 
A benchmark test is optionally performed at the beginning of each 
client session to determine the frame rates achievable on a given 
client for a preset number of rendering types (e.g., wireframe, 
shaded, with or without textures). By performing this benchmark 
at the beginning of each client session, we aim to capture more 
accurate initial measurements that reflect the client load. 
Alternatively, if the benchmark is not performed at the beginning 
of a session, the history is initialized with default values (e.g., 
measurements recorded when the client was installed). We have 
designed our benchmarks to render different size data sets for a 
preset number of frames, and we average the measurements 
collected for each set. 

As models are downloaded, rendered, and manipulated by users, 
the frame rate history is updated with measurements performed on 
these models. To limit the size of the history and to ensure that 
only most recent data is used for performance estimation, we 
maintain a relatively small, fixed number of samples for each 
entry, and we overwrite old samples based on a least-recently used 
(LRU) policy.  

The goal of the selection process is to identify for each model 
component the modality that brings the most value to the final 
rendering of the model for a given resource budget. The value of a 
particular modality is estimated in terms of visual quality and 
degree of interaction. The time necessary to render a modality is 
estimated based on the history information, taking into account 
modalities already downloaded for other components.  

4.2 Measuring Network Performance 
In general, network performance is measured in two fundamental 
ways: bandwidth (i.e., throughput) and latency (i.e., delay). The 
former is measured by the number of bits that can be transmitted 
over the network in a certain period of time, whereas the latter 
corresponds to how long it takes a message to travel from one end 
of the network to the other.  

In our framework, we are interested in estimating the time 
necessary to transfer a given modality from a server to a client. 
When the connection is set up, a benchmark is performed to 
measure transfer times for different size packets. To reduce 
inaccuracies due to path asymmetries and differences in the source 
and destination clocks, we measure the round-trip delays of 
messages, rather than one-way latency. According to [26], the 
relationship between transfer time, bandwidth, and data size can 
be expressed as: 

TransferTime = RTT + TransferSize / Bandwidth, 

where RTT represents the round-trip time of the network and is 
used to account for a request message being sent across the 
network and the data being sent back.   

 

Figure 1. Logical flow of control in an adaptive client-server 
setup: a monitoring tool records the characteristics of the 

environment, such as server load, network delay, client and 
server rendering capabilities. This data is used in conjunction 
with information about the model to select suitable modalities 

for transmission and rendering of the model components. 



Figure 2 illustrates the benchmark measurements taken for two 
client-server configurations over 10Mbps and 100Mbps 
connections, respectively. For small data sizes, the transfer time is 
latency bound, and the bandwidth available does not significantly 
influence the transfer time. In contrast, for large data, the more 
bandwidth there is, the faster the data is delivered. As in the case 
of the frame rate measurements, the delay history is used to 
estimate the transfer time for modalities during the selection 
process. We approximate the transfer time of a modality of a 
given size with the shortest time recorded for that size [27]. If the 
actual size does not have a corresponding entry in the history, we 
approximate it by the next largest size for which history data is 
available.  

5. TRANSCODING OF 3D CONTENT 
The transcoding engine consists of a collection of transcoding 
modules that convert 3D content to various 2D and 3D modalities 
that are combined to deliver models to clients under various 
conditions. The content conversion may be done either on-line, 
upon selection of a desired modality or off-line, at model creation 
time.  

5.1 The Performance Model 
We define a set of performance parameters that allow various 
modalities to be compared in terms of the resources they require 
and the values they offer. If m denotes a modality associated with 
a model component, the following performance parameters are 
considered: 

1. T(m) : the total estimated time to deliver m to a client, 

2. Q(m) : the estimated quality associated with rendering m,   

3. I(m) : the degree of interaction supported by m. 

The estimated delivery time T is defined as the sum of estimates of 
the time Tg it takes the transcoding engine to generate a modality, 
the time Tt to transfer it over the network, and the time Tr to 
render it for the first time on the client: T(m) = Tg(m) + Tt(m) + 
Tr(m). For modalities generated off-line and cached with the 
model, the generation time is equivalent to the time to retrieve 
them from the database, which we approximate with a constant. 
For modalities generated on the fly, the transcoding time is 
estimated based on information about the rendering capabilities of 

the server (if the generation involves rendering on the part of the 
server) and/or the worst-case complexity of the transcoding 
method as a function of modality size.  

The estimated quality Q reflects how closely the rendering of a 
model component using a particular modality resembles the 
rendering of the full-detail data. In general, it is difficult to find a 
common measure of fidelity to be used for a variety of 2D and 3D 
modalities without actually rendering them and comparing the 
resulting images. We define quality as a dimensionless number 
between 0.0 and 1.0 that is modality specific. For instance, the 
modality corresponding to the full-detail representation of a 
model component has a quality of 1.0; the quality of a level-of-
detail representation is expressed as a percentage of the number of 
vertices in a level with respect to the number of vertices in the 
full-detail representation; the quality of a depth image can be 1.0 
if the image is rendered at the same (or higher) resolution as on 
the client, or proportionally less, otherwise. 

The degree of interaction I represents the number of degrees of 
freedom when interacting with a particular modality. It can 
assume values between 0 and 7 for the three principal axes of 
rotation, translation, and the field-of-view. Geometric modalities 
typically have all degrees of freedom, whereas image-based 
representations usually allow for restricted forms of interaction 
only (e.g., panoramas typically allow rotation about a point, but 
no translation). 

5.2 The Selection Process 
The information provided in the meta-data describes the basic 
characteristics of a model and it is customized according to the 
capabilities of the client. In this section we focus on adaptive 
delivery of 3D models to clients with varying degrees of support 
for 3D rendering (either in software or in hardware) for which the 
main challenge is to determine an optimal mixture of modalities to 
represent a model. Clients that can display only text or 2D images 
and text are not discussed in this paper. 

For 3D capable clients, the meta-data information includes the 
model structure (e.g., relationships between components or a 
model hierarchy), bounding box information for each of the 
model components, and the number, types, and characteristics of 
all modalities available for each component. The characteristics of 
a modality are the data necessary to evaluate the performance 
parameters T, Q, and I for that modality and include size (e.g., 
number of geometric primitives or pixel dimensions), and number 
of degrees of freedom supported. 

5.2.1 Estimating Perceptual Importance 
Initially, the collection of bounding boxes can be used to display 
an outline of the requested model (see Figures 3 (a)-(b)) and to 
allow users on the client side to define camera parameters. Next, 
to determine the order in which model components should be 
considered for modality selection and downloading, the visibility 
and perceptual importance of each component are estimated. The 
perceptual importance is a measure of the contribution of a 
component to the perception of a final rendering of the model. 
Good heuristics to evaluate importance are difficult to design in a 
way that closely mimics the partition made by a human eye into 
what is important and what is not. We found that the benefit 
heuristics proposed in [14] for interactive navigation of large 3D 
data sets are also suitable for predicting importance in the context 
of adaptive transmission. In this section we describe a simple 

 
Figure 2. Benchmark measurements for two client-server 

configurations with different bandwidth connections. We use 
a logarithmic scale to show relative performance. 



approach to estimate perceptual importance and visibility of a 
component simultaneously.  

Visibility and perceptual importance can be derived from the 
bounding box information. A simple way of estimating visibility 
is to perform view-frustum culling at the bounding box level. 
Perceptual importance can be roughly approximated by the 
projected area of the bounding box. We use an image-based 
method to estimate visibility and perceptual importance in one 
pass. For a given viewing position, the collection of bounding 
boxes representing a 3D model is rendered into an off-screen 
buffer (e.g., the back buffer). Each box is rendered using a color 
that uniquely identifies it (see Figure 3 (c)). The resulting image is 
processed to compute a histogram of the colors in it. Model 
components corresponding to the colors found, i.e., those whose 
bounding boxes are visible from the current viewpoint, are sorted 
in decreasing order of their histogram levels and are considered by 
the adaptive selection algorithm in this order. Components left out 
by this algorithm due to having bounding boxes that are not 
visible from a given viewpoint are considered to be context data 
and are processed last. 

This approach has the advantage that it is fast to compute and can 
be later augmented to incorporate additional parameters [13] such 
as distance from the center of the screen (i.e., the focus of 
attention) to more accurately predict perceptual importance. 

5.2.2 Automatic Selection 
User preferences and/or information provided by the environment 
monitor and meta-data determine the time budget TB available for 
transmission and rendering. Starting with the component with the 
highest importance value, the selection algorithm proceeds to 
identify the most suitable modality for a component C, as follows. 
The performance parameters T, Q, and I are evaluated for all 
modalities available for C, based upon the characteristics of C 
defined in its meta-data. Among the modalities with T <= TB, the 
one with the highest quality Q is selected. If several modalities 
have the highest quality, the one that supports the highest degree 
of interaction I is chosen. This type of selection assumes that 
timely delivery of the model data is most important to the client, 
followed by the quality of the modalities received, and lastly by 
the degree of interaction they offer. However, depending on the 
application, alternative prioritization schemes may be more 
suitable. For instance, clients may be willing to concede on the 
waiting time, as long as the quality level of all components 
received is larger than a threshold value QB. In this case, 
modalities are first selected based on the quality level they 
provide, and if several modalities offer the same quality they are 
differentiated based on their associated delivery times, and lastly, 
based on their corresponding degrees of interaction. In total six 
prioritization schemes corresponding to the permutations of T, Q, 
and I are considered. 

6. IMPLEMENTATION DETAILS 
The design ideas described in this paper have been incorporated 
into an Adaptive Rendering and Transmission Environment 
(ARTE) that supports adaptive downloading of 3D models 
between a server and multiple clients. For transmission and 
storage purposes, 3D data is encoded in compressed format using 
the Topological Surgery compression scheme described in [10]. 
The modalities currently available for representing each model 
component are the indexed face set polygonal representation and 

the depth image, which can be delivered at various resolutions. 
These modalities determine an implicit partitioning of model 
components for hybrid rendering on the clients.  

6.1 The Communication Architecture 
Both the client and the server are designed as multithreaded 
applications, in which communication, rendering, and modality 
generation/decoding are performed in separate threads. An 
application-level protocol supports efficient data transfer of 
various modalities between servers and clients. This protocol 
enables on-demand transmission of 2D and 3D data and allows 
for a choice of the delivery channel (UDP or TCP). Since 
modalities generated by the transcoding engine may be view-
dependent, the protocol also supports transmission of control 
information (e.g., viewing camera parameters) over a back 
channel from clients to servers. 

Content to be transferred from a server to a client is partitioned 
into variable-size packets. In ARTE the size of a packet is tailored 
to semantic units of content (e.g., the compressed geometry of a 
single model component or a fixed number of “lines” in a depth 
image). As packets are received by a client, they are grouped into 
decoder frames, for efficient decoding. A frame defines an atomic 
unit that can be individually decoded by a decoder on the client. 
As soon as all packets in a frame are received, the frame is placed 
in a decoder queue waiting for its turn to be decoded. If the 
packets are delivered via an unreliable transport protocol such as 

Listening Thread 

   While connection is active do 

      Listen for incoming data 

      If new packet has arrived then 

         Decode packet header and extract packet info 
         Copy payload into frame in the decoder buffer 

         If frame is full then 

            Place frame into decoder queue 
            Resume decoder thread 

         End if 

      End if 

   End do 

 

Decoder Thread 

   While connection is active do 

      If decoder queue is empty then 

        Suspend decoder thread 

      Else 

         Decode frame at the front of the queue 
         Send message to rendering thread to update display 

      End if 

   End do 

Figure 4. The steps involved in the processing of the data 
packets from their receipt by the client to the display of their 

contents. 



UDP, it may happen that not all packets in a frame are received, in 
which case the entire frame is omitted from decoding, and 
ultimately, from being rendered. The processing of the packets 
from their receipt by the client to their display is described in 
pseudocode in Figure 4.  

 

6.2 Selection of Model Components 
ARTE supports two modes for the selection of components to be 
transmitted as geometric data: user-defined and automatic. In 
user-defined mode, the user selects specific components from a 
model hierarchy, based on meta-data information. Alternatively, 
in automatic mode, the system derives the components to be 
downloaded and the resolution of the modalities based on the 
current view position, the resource budget, the estimated 
resources available, and the priorities assigned by the user to 
performance parameters, as described in Section 5.2.2. The 
remaining components (i.e., those that are not selected for 
downloading) are rendered on-demand into a depth image on the 
server, which is subsequently delivered to the requesting client as 
context. Figure 3 shows a hybrid-rendering example in which 
model components were selected automatically and downloaded 
in decreasing order of their projected screen size. 

We experimented with two implementations of the component 
importance estimation algorithm presented in section 5.2.1. Using 
the first implementation, the entire collection of bounding boxes 
representing a model is rendered off-screen for every view 
position. This approach ensures that only components with 
bounding boxes visible from that position are considered. 
However, due to the error with which a box approximates the 
actual component, visible components may be omitted, as shown 
in Figure 3 (f). Our second implementation uses a “layered” 
approach in which only bounding boxes corresponding to 
components that have not yet been downloaded are rendered off-
screen. While this method guarantees that, if the budget allows it, 
all components are eventually downloaded as the model is 
manipulated, large components occluded by already downloaded 
data may be considered for processing sooner than small, 
unoccluded components (see Figure 5). In practice, if the viewing 

position is modified frequently, small changes in the camera 
parameters typically reveal the larger components, and their out-
of-order delivery does not impact negatively on the final 
rendering. 

6.3 Experimental Results 
Data pertaining to content adaptation is shown in Figures 7 and 8 
for a configuration consisting of a server and five clients. The 
clients made requests for two models of different complexities: an 
engine with 218 components (70275 vertices) and an automobile 
with 48 components (12733 vertices). The server was installed on 
an Intellistation Z Pro, running Windows NT 4.0, with a dual 
Pentium II 450 MHz processor, 1.2 GB RAM, and an Intergraph 
Intense 3D Pro 3400-GT graphics adapter. The clients were 
connected to this server over combinations of 16Mbps Token 
Ring, 10Mbps Ethernet, and 100Mbps Ethernet connections. 
Table 1 summarizes the configurations of the five clients. The 
benchmark measurements reflecting the rendering and network 
performance of each of these clients are shown in Figure 6. 

 

Client Model OS CPU 
(MHz) 

Mem 
(MB) 

Display 
adapter 

#1 ThinkPad 
770 ED 

Win 
95 266  96 

Trident 
Cyber 
9397 

#2 ThinkPad 
600 E 

Win 
98 300  192 

NeoMagic 
Magic 
Media 

#3 Intellistation 
M Pro 

Win 
NT 400  256 

Intense 
3D Pro 
3400-T 

#4 Intellistation 
Z Pro 

Win 
NT 400 1024 

Intense 
3D 

WildCat 
4000 

#5 Running on the same machine as the server 

Table 1. Platform configurations used in the adaptive 
experiment reported in Table 1. 

 
(a) 

 
(b) 

Figure 6. Snapshot of the benchmark measurements recorded 
for the five clients listed in Table 1. (a) Rendering 

performance measured for smooth shading, one light, and no 
triangle strips. (b) Network delay (shown on a logarithmic 

scale). 



 

 

7. SUMMARY 
In this paper, we addressed issues related to access to 3D graphics 
content via client devices with varying degrees of support for 3D 
rendering and different types of connections to servers that 
manage this content. In particular, we emphasized the importance 
of integrating existing techniques for transmission and 

representation of 3D models into a common framework, aware of 
the context in which transfer and rendering take place, and 
capable of selecting the most appropriate combination of 
modalities to deliver models to clients requesting them.  

We presented the design principles used in the development of 
ARTE, an adaptive environment that attempts to provide 
increased quality of service by monitoring the resources available 
and by automatically selecting among multiple modalities 
associated with model components.  

ARTE is a proof of concept and a prototype under 
implementation. Future work will include enhancing the accuracy 
of the monitoring tool to provide better input for the performance 
estimators and developing better quality measures. We plan to 
generalize our current definition of the degree of interaction 
associated with a modality to reflect more general actions (e.g., 
making a component transparent) and to support editing 
operations. We also plan to add transcoding modules to enable 
selection form a larger number of modalities. This will allow us to 
experiment with the order in which modalities are considered for 
selection (e.g., delivering the “best” modality versus delivering 
the “first” modality that satisfies the requirements).  
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Figure 7. Results of adaptive delivery of 3D content from a 
server to five clients with different capabilities (see Table 1). 
(a) The percentage of the total geometry downloaded to the 
clients for a target frame rate of 15 frames-per-second for 
two models of different complexity. (b) Same as (a) for a 

target frame rate of 5 frames-per-second. 

 
Figure 8. The resolution of the context image received by the 
five clients listed in Table 1 was adjusted adaptively, given a 

user-specified transfer budget of 0.3 seconds. The context 
image was generated on the server by rendering the 

components of the engine model that were not downloaded to 
the clients for the scenario shown in Figure 6(a). 
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Figure 3. Example of adaptive selection of components to be downloaded to a client based on estimated perceptual importance and 
visibility from the current viewing position. (a) Original model. (b) Meta-data information includes a collection of bounding boxes that 
can be manipulated in 3D to select a viewing position. (c) Once a view is selected, the bounding boxes of the components are rendered 

into an off-screen buffer. The histogram levels of the resulting image (shown in the upper right corner) determine the components that 
will be downloaded and the order in which they are processed. In this example, three components are downloaded. (d) Hybrid rendering 

on the client combining the components downloaded with a depth image generated on the server. (e) Same as (d), except the three 
components downloaded are shown as wireframe. (f) Top view of the bounding boxes corresponding to components A and B. Using a 

non-layered approach, component A is never considered by the selection algorithm due to occlusion by the larger box corresponding to 
component B. 

 



 
 

 

 
 

(a) (b) 

 

 
(c) (d) 

 

Figure 5. Estimation of visibility and perceptual importance using a layered approach: (a) portion of an engine model. (b) The same 
model, viewed from a position in which component A is completely occluded. (c) Components B and C have already been 

downloaded to the client (e.g., by user selection). (d) The order in which the remaining components are processed is determined by 
the histogram of the image shown. By “peeling off” the layer of components already on the client, the bounding box corresponding 
to component A becomes unoccluded and since its projected area is larger than that of component E, A will be processed before E. 

 


