
RC 21722 (Log 97821) 11 April 2000 Computer Science/Mathematics

IBM Research Report

Adaptive Rendering of 3D Models Over Networks

Using Multiple Modalities

Ioana M. Martin

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

IBM
Research Division

Almaden � T.J. Watson � Tokyo � Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be
copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents.
In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be
limited to peer communications and speci�c requests. After outside publication, requests should be �lled only by reprints or
legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research
Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598, USA (email: reports@us.ibm.com). Some reports are available
at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Adaptive Rendering of 3D Models Over Networks Using
Multiple Modalities

Ioana M. Martin
IBM T. J. Watson Research Center

30 Saw Mill River Road, Rm. H4-B32
Hawthorne, NY 10532
Tel: +1-914-784-6108

ioana@us.ibm.com

ABSTRACT

Content adaptation for the delivery of multimedia data such as
text, images, audio, and video has been extensively studied in
recent years. In contrast, techniques for adaptive delivery of 3D
models to clients with different rendering capabilities and network
connections are just beginning to emerge. In this paper we
describe the principles involved in the design and development of
an adaptive environment for rendering of 3D models over
networks. This environment monitors the resources available and
selects the appropriate transmission and representation modalities
to match these resources. We illustrate the functionality of this
environment through a prototype client-server implementation
and we report experimental results obtained with this prototype.
Keywords

3D graphics over networks, hybrid rendering, adaptive selection,
transcoding, universal access.

1. INTRODUCTION
In the scientific and medical domains an increasing number of
applications are beginning to take advantage of remote
visualization and analysis. In the industrial sector, companies
have already begun to migrate towards fully electronic design and
e-commerce. In this context, community boundaries are being
redefined and new models of organization and interaction emerge.
Networking infrastructures struggle to accommodate an ever-
increasing variety of clients and servers inter-connected by
communication links of various types and capabilities. This
heterogeneity makes it difficult for servers to provide a level of
service that is appropriate for every client that requests access to
three-dimensional graphics content.

So far, a significant body of work has been dedicated to the
challenges of universal access related to the delivery of traditional
multimedia content such as text, images, audio, and video.
However, less attention has been paid to 3D digital content, as
true market opportunities for 3D graphics over networks have just
recently begun to emerge. In this paper, we describe a set of
design principles that we believe are fundamental for the efficient
transmission of 3D models to clients spanning a wide range of
graphics capabilities and connection types. We present an
adaptive environment embodying these principles, as well as
experiments with a prototype software we developed.

The main underlying idea is that adaptive service both increases
the quality of service and reduces the end-to-end latency
perceived by clients. For traditional multimedia types,
transcoding has proven successful in serving variations of the

same object at different sizes and using different modalities.
Transcoding, which is defined as a transformation that is used to
convert multimedia content from one form to another [1], can be
naturally extended to 3D data. By their very nature, 3D models
are amenable to access through various representation modalities,
that typically imply trade-offs between complexity, interaction,
and download times.

This paper is organized as follows: section 2 contains a survey of
existing literature pertaining to various aspects of transmission
and rendering of complex 3D models, as well as content-
adaptation techniques used for other types of multimedia. In
section 3 we formulate a set of design principles for adaptive
delivery of 3D data and we present the logical organization of a
client-server platform built upon these principles. The tools
necessary to monitor the characteristics of the transmission
environment, the performance model used, and our adaptive
selection algorithm are described in sections 4 and 5, respectively.
Architectural details regarding the development and
implementation of a prototype system, as well as experimental
results are summarized in section 6.

2. BACKGROUND
Transcoding of text, images, audio and video has been extensively
studied in recent years. For example, in the TranSend project [2],
[3], adaptation to client variability is termed “distillation” and is
achieved by image compression, reduction of image size and color
space, and video conversion to different frame rates and
encodings. In the InfoPyramid [4], a multiresolution multimodal
hierarchy is used to represent content items on a Web page. This
hierarchy is used to drive the selection of the best version of an
item that delivers the most value for a given set of client
resources.

The delivery of 3D data over networks has been traditionally
investigated mainly in the context of networked virtual
environments (see [5] for a survey). Such environments have
emerged as simulation applications for the Department of Defense
running on supercomputers and as networked games and
workstation demonstrations running on graphics workstations and
game machines. They are targeted towards the creation of
telepresence, i.e., the illusion that other users are visible from
remote locations. The main challenge in such environments is
maintaining a consistent state among a large number of clients
that share and access portions of a 3D scene at interactive rates
[6]. At the network level, a protocol was proposed in [7] in
response to this challenge (see also [8]). At the application level, a
number of strategies developed to meet this challenge have
evolved into technologies routinely used for optimization of 3D
transmission and rendering in domains beyond high-performance

simulations and games. Such technologies include 3D model
compression [9]-[11] for reduced storage requirements and faster
delivery, model simplification (see [12] for a survey) and level-of-
detail management [13], [14] for improved graphics performance,
streaming techniques [15]-[17] for progressive downloading of
3D data, as well as various image-based methods [18]-[22] that
replace all or parts of a model with images, thus trading freedom
of interaction for reduced geometric complexity.

In general, methods for rendering 3D models in client-server
environments can be classified into three major categories,
according to where the rendering takes place. Client-side methods
do not involve any rendering on the part of the server. The
geometry is downloaded to each client that requests it and the
client is responsible for rendering it. A number of transformations
can be applied to the model before it is downloaded, including
simplification or conversion to a progressive representation
consisting of a simplified model and a sequence of refinement
records that are downloaded gradually. Client-side methods are
well suited for applications for which real-time interaction is
paramount to viewing the model, assuming that the client has the
ability to store and render the corresponding data.

Using server-side methods, the model is fully rendered on the
server and the resulting image or set of images is transmitted to
clients. Such methods are useful when clients with limited
resources and graphics capabilities require high-quality images of
large models. The main tradeoffs are the loss of real-time
interaction with the model (i.e., due to the inherent latency of the
network, images are delivered to clients at non-interactive rates)
and a potential increase in server response times as the number of
clients concurrently accessing the server increases.

Finally, hybrid methods partition a model into parts that are
rendered on the server (e.g., background geometry) and parts that
are downloaded and rendered on the client (e.g., foreground
objects). Such methods have the advantage that they reduce the
geometric complexity of the data being transmitted by replacing
parts of it with images. However, determining whether a part of a
model should be rendered on the server or on the client is not a
trivial task and user interaction with the hybrid representation may
be limited. Alternatively, the server could render high and low-
resolution versions of a 3D model and send the residual error
image and the low-resolution geometry to the client [23] (see also
[24]). In this case, the task of the client is to render the coarse
model and to add the residual image to restore a full quality
rendering. Such a method is typically adequate for use in low-
latency environments in which the servers have high-performance
graphics capabilities.

Although all of the methods described perform well for certain
types of 3D models and system configurations, they have not been
designed to deal with client variation. We reported a first effort to
combine existing techniques into an adaptive framework for
transmission of 3D data in [25]. The Network Graphics
Framework (NGF) provides improved service by dividing the
transmission of a model into segments corresponding to several
levels of detail and by selecting the most appropriate delivery
mechanism for each level. While it proves the feasibility of
adaptive transfer, the NGF is limited in that models are viewed as
monolithic entities that are delivered at various resolutions using
the best of several transmission methods available and the final
image is rendered using a single representation for the entire

model. The design principles outlined in this paper are based in
part on lessons learned from this early work, and are at the basis
of a new prototype system that takes the idea of adaptive 3D
transfer a step further, as described next.

3. PRINCIPLES OF ADAPTIVE DESIGN
Adaptive delivery of 3D models over networks must take into
account information about the characteristics of the 3D data, the
capabilities of various client platforms to which the data is being
delivered, the load and capabilities of the servers, as well as user
preferences. We have identified several design principles that we
believe are fundamental to adaptive transfer and rendering of 3D
models:

1. Models should be regarded as collections of one or
more components, thus allowing for efficient management and
refined schemes for perceptual measurements. A component
defines an atomic part of a model that corresponds to a visually
meaningful entity and can be individually transmitted from a
server to a client. The partitioning of the model into components
may be defined at model creation time or on the fly, and may
range from a simple decomposition into connected components to
an organization into a complex data structure reflecting semantic
or spatial grouping criteria.

2. Combining different modalities for representing model
components can achieve better transmission and rendering
performance than the use of a “one-size-fits-all” strategy.
Examples of modalities include polygonal mesh representations
using indexed face sets, progressive meshes, 2D images, depth
images, bounding boxes with or without textures, and basic
shapes (e.g., sphere, cylinder, cone, box). The modalities may be
computed and delivered at various levels of resolution.

3. The selection of the most appropriate modality for each
component should account for the importance of that component
to the final rendering of the model.

4. The selection mechanism should also take into account
the resources available to predict the performance of a modality in
a given context.

5. Last but not least, the selection should accommodate
user preferences, in terms of specific modalities to be used for
certain model components, resource budget allocation, and trade-
off resolution.

The work described in this paper uses these principles to facilitate
accessing and rendering of 3D models over networks to match the
attributes of diverse clients. Ultimately, it provides an
environment for automatically generating and delivering hybrid
representations that combine 2D and 3D modalities. In addition to
a multi-component model organization scheme and an adaptive
selection mechanism, this environment includes a monitoring tool
that keeps track of the dynamically changing characteristics of the
transmission and rendering contexts, as well as a transcoding
engine that drives the actual conversion of the 3D data to
modalities selected by the selection mechanism. Figure 1
illustrates the logical organization of these components within the
environment.

When a client makes a request for a 3D model to a server, it first
receives meta-data information about the requested model. This
information allows the framework to estimate the performance
characteristics for each of the modalities available. The perceptual
importance of each model component, i.e., its contribution to the
perception of a final rendering of the model, is also estimated. An
adaptive mechanism selects the best modality available for each
component that fits into the budget and delivers it to the client.
The components are processed in decreasing order of their
importance.

4. ENVIRONMENT MONITORING
A monitoring tool is necessary to record the events taking place in
the environment in which model transfer and rendering occurs,
and based on these, to provide quantitative information to the
selection process.

We characterize the state of a given client-server setup in terms of
four state parameters:

a) the rendering capability of the client,

b) the rendering capability of the server,

c) the load on the server, and

d) the performance of the communication link between the two.

Instead of attempting to map values of low-level performance
counters describing CPU, memory, I/O, and network behavior to
values corresponding to the four state parameters considered, we
record measurements that are easier to interpret from an
application’s perspective. Hence, we use the average frame rate
(in frames per second) to describe the rendering capabilities of a
machine (client or server) for a discrete range of model sizes and
several types of rendering. We measure server load in terms of the
average time between the receipt of a request by the server and the
processing of that request. We measure network performance in
terms of latency and bandwidth.

For each of the state parameters we maintain history information.
The history is initialized from benchmark data once for each state
parameter, when the server is set up and at the beginning of each
client session. The history is subsequently updated dynamically
with actual measurements taken as data is transferred. In the
remainder of this section we describe the creation, updating, and
usage of history data for the client rendering capability and the
network performance. The server rendering capability and the
server load are monitored in a similar fashion and therefore are
not described separately.

4.1 Measuring Client Rendering Performance
A benchmark test is optionally performed at the beginning of each
client session to determine the frame rates achievable on a given
client for a preset number of rendering types (e.g., wireframe,
shaded, with or without textures). By performing this benchmark
at the beginning of each client session, we aim to capture more
accurate initial measurements that reflect the client load.
Alternatively, if the benchmark is not performed at the beginning
of a session, the history is initialized with default values (e.g.,
measurements recorded when the client was installed). We have
designed our benchmarks to render different size data sets for a
preset number of frames, and we average the measurements
collected for each set.

As models are downloaded, rendered, and manipulated by users,
the frame rate history is updated with measurements performed on
these models. To limit the size of the history and to ensure that
only most recent data is used for performance estimation, we
maintain a relatively small, fixed number of samples for each
entry, and we overwrite old samples based on a least-recently used
(LRU) policy.

The goal of the selection process is to identify for each model
component the modality that brings the most value to the final
rendering of the model for a given resource budget. The value of a
particular modality is estimated in terms of visual quality and
degree of interaction. The time necessary to render a modality is
estimated based on the history information, taking into account
modalities already downloaded for other components.

4.2 Measuring Network Performance
In general, network performance is measured in two fundamental
ways: bandwidth (i.e., throughput) and latency (i.e., delay). The
former is measured by the number of bits that can be transmitted
over the network in a certain period of time, whereas the latter
corresponds to how long it takes a message to travel from one end
of the network to the other.

In our framework, we are interested in estimating the time
necessary to transfer a given modality from a server to a client.
When the connection is set up, a benchmark is performed to
measure transfer times for different size packets. To reduce
inaccuracies due to path asymmetries and differences in the source
and destination clocks, we measure the round-trip delays of
messages, rather than one-way latency. According to [26], the
relationship between transfer time, bandwidth, and data size can
be expressed as:

TransferTime = RTT + TransferSize / Bandwidth,

where RTT represents the round-trip time of the network and is
used to account for a request message being sent across the
network and the data being sent back.

Figure 1. Logical flow of control in an adaptive client-server
setup: a monitoring tool records the characteristics of the

environment, such as server load, network delay, client and
server rendering capabilities. This data is used in conjunction
with information about the model to select suitable modalities

for transmission and rendering of the model components.

Figure 2 illustrates the benchmark measurements taken for two
client-server configurations over 10Mbps and 100Mbps
connections, respectively. For small data sizes, the transfer time is
latency bound, and the bandwidth available does not significantly
influence the transfer time. In contrast, for large data, the more
bandwidth there is, the faster the data is delivered. As in the case
of the frame rate measurements, the delay history is used to
estimate the transfer time for modalities during the selection
process. We approximate the transfer time of a modality of a
given size with the shortest time recorded for that size [27]. If the
actual size does not have a corresponding entry in the history, we
approximate it by the next largest size for which history data is
available.

5. TRANSCODING OF 3D CONTENT
The transcoding engine consists of a collection of transcoding
modules that convert 3D content to various 2D and 3D modalities
that are combined to deliver models to clients under various
conditions. The content conversion may be done either on-line,
upon selection of a desired modality or off-line, at model creation
time.

5.1 The Performance Model
We define a set of performance parameters that allow various
modalities to be compared in terms of the resources they require
and the values they offer. If m denotes a modality associated with
a model component, the following performance parameters are
considered:

1. T(m) : the total estimated time to deliver m to a client,

2. Q(m) : the estimated quality associated with rendering m,

3. I(m) : the degree of interaction supported by m.

The estimated delivery time T is defined as the sum of estimates of
the time Tg it takes the transcoding engine to generate a modality,
the time Tt to transfer it over the network, and the time Tr to
render it for the first time on the client: T(m) = Tg(m) + Tt(m) +
Tr(m). For modalities generated off-line and cached with the
model, the generation time is equivalent to the time to retrieve
them from the database, which we approximate with a constant.
For modalities generated on the fly, the transcoding time is
estimated based on information about the rendering capabilities of

the server (if the generation involves rendering on the part of the
server) and/or the worst-case complexity of the transcoding
method as a function of modality size.

The estimated quality Q reflects how closely the rendering of a
model component using a particular modality resembles the
rendering of the full-detail data. In general, it is difficult to find a
common measure of fidelity to be used for a variety of 2D and 3D
modalities without actually rendering them and comparing the
resulting images. We define quality as a dimensionless number
between 0.0 and 1.0 that is modality specific. For instance, the
modality corresponding to the full-detail representation of a
model component has a quality of 1.0; the quality of a level-of-
detail representation is expressed as a percentage of the number of
vertices in a level with respect to the number of vertices in the
full-detail representation; the quality of a depth image can be 1.0
if the image is rendered at the same (or higher) resolution as on
the client, or proportionally less, otherwise.

The degree of interaction I represents the number of degrees of
freedom when interacting with a particular modality. It can
assume values between 0 and 7 for the three principal axes of
rotation, translation, and the field-of-view. Geometric modalities
typically have all degrees of freedom, whereas image-based
representations usually allow for restricted forms of interaction
only (e.g., panoramas typically allow rotation about a point, but
no translation).

5.2 The Selection Process
The information provided in the meta-data describes the basic
characteristics of a model and it is customized according to the
capabilities of the client. In this section we focus on adaptive
delivery of 3D models to clients with varying degrees of support
for 3D rendering (either in software or in hardware) for which the
main challenge is to determine an optimal mixture of modalities to
represent a model. Clients that can display only text or 2D images
and text are not discussed in this paper.

For 3D capable clients, the meta-data information includes the
model structure (e.g., relationships between components or a
model hierarchy), bounding box information for each of the
model components, and the number, types, and characteristics of
all modalities available for each component. The characteristics of
a modality are the data necessary to evaluate the performance
parameters T, Q, and I for that modality and include size (e.g.,
number of geometric primitives or pixel dimensions), and number
of degrees of freedom supported.

5.2.1 Estimating Perceptual Importance
Initially, the collection of bounding boxes can be used to display
an outline of the requested model (see Figures 3 (a)-(b)) and to
allow users on the client side to define camera parameters. Next,
to determine the order in which model components should be
considered for modality selection and downloading, the visibility
and perceptual importance of each component are estimated. The
perceptual importance is a measure of the contribution of a
component to the perception of a final rendering of the model.
Good heuristics to evaluate importance are difficult to design in a
way that closely mimics the partition made by a human eye into
what is important and what is not. We found that the benefit
heuristics proposed in [14] for interactive navigation of large 3D
data sets are also suitable for predicting importance in the context
of adaptive transmission. In this section we describe a simple

Figure 2. Benchmark measurements for two client-server

configurations with different bandwidth connections. We use
a logarithmic scale to show relative performance.

approach to estimate perceptual importance and visibility of a
component simultaneously.

Visibility and perceptual importance can be derived from the
bounding box information. A simple way of estimating visibility
is to perform view-frustum culling at the bounding box level.
Perceptual importance can be roughly approximated by the
projected area of the bounding box. We use an image-based
method to estimate visibility and perceptual importance in one
pass. For a given viewing position, the collection of bounding
boxes representing a 3D model is rendered into an off-screen
buffer (e.g., the back buffer). Each box is rendered using a color
that uniquely identifies it (see Figure 3 (c)). The resulting image is
processed to compute a histogram of the colors in it. Model
components corresponding to the colors found, i.e., those whose
bounding boxes are visible from the current viewpoint, are sorted
in decreasing order of their histogram levels and are considered by
the adaptive selection algorithm in this order. Components left out
by this algorithm due to having bounding boxes that are not
visible from a given viewpoint are considered to be context data
and are processed last.

This approach has the advantage that it is fast to compute and can
be later augmented to incorporate additional parameters [13] such
as distance from the center of the screen (i.e., the focus of
attention) to more accurately predict perceptual importance.

5.2.2 Automatic Selection
User preferences and/or information provided by the environment
monitor and meta-data determine the time budget TB available for
transmission and rendering. Starting with the component with the
highest importance value, the selection algorithm proceeds to
identify the most suitable modality for a component C, as follows.
The performance parameters T, Q, and I are evaluated for all
modalities available for C, based upon the characteristics of C
defined in its meta-data. Among the modalities with T <= TB, the
one with the highest quality Q is selected. If several modalities
have the highest quality, the one that supports the highest degree
of interaction I is chosen. This type of selection assumes that
timely delivery of the model data is most important to the client,
followed by the quality of the modalities received, and lastly by
the degree of interaction they offer. However, depending on the
application, alternative prioritization schemes may be more
suitable. For instance, clients may be willing to concede on the
waiting time, as long as the quality level of all components
received is larger than a threshold value QB. In this case,
modalities are first selected based on the quality level they
provide, and if several modalities offer the same quality they are
differentiated based on their associated delivery times, and lastly,
based on their corresponding degrees of interaction. In total six
prioritization schemes corresponding to the permutations of T, Q,
and I are considered.

6. IMPLEMENTATION DETAILS
The design ideas described in this paper have been incorporated
into an Adaptive Rendering and Transmission Environment
(ARTE) that supports adaptive downloading of 3D models
between a server and multiple clients. For transmission and
storage purposes, 3D data is encoded in compressed format using
the Topological Surgery compression scheme described in [10].
The modalities currently available for representing each model
component are the indexed face set polygonal representation and

the depth image, which can be delivered at various resolutions.
These modalities determine an implicit partitioning of model
components for hybrid rendering on the clients.

6.1 The Communication Architecture
Both the client and the server are designed as multithreaded
applications, in which communication, rendering, and modality
generation/decoding are performed in separate threads. An
application-level protocol supports efficient data transfer of
various modalities between servers and clients. This protocol
enables on-demand transmission of 2D and 3D data and allows
for a choice of the delivery channel (UDP or TCP). Since
modalities generated by the transcoding engine may be view-
dependent, the protocol also supports transmission of control
information (e.g., viewing camera parameters) over a back
channel from clients to servers.

Content to be transferred from a server to a client is partitioned
into variable-size packets. In ARTE the size of a packet is tailored
to semantic units of content (e.g., the compressed geometry of a
single model component or a fixed number of “lines” in a depth
image). As packets are received by a client, they are grouped into
decoder frames, for efficient decoding. A frame defines an atomic
unit that can be individually decoded by a decoder on the client.
As soon as all packets in a frame are received, the frame is placed
in a decoder queue waiting for its turn to be decoded. If the
packets are delivered via an unreliable transport protocol such as

Listening Thread

 While connection is active do

 Listen for incoming data

 If new packet has arrived then

 Decode packet header and extract packet info
 Copy payload into frame in the decoder buffer

 If frame is full then

 Place frame into decoder queue
 Resume decoder thread

 End if

 End if

 End do

Decoder Thread

 While connection is active do

 If decoder queue is empty then

 Suspend decoder thread

 Else

 Decode frame at the front of the queue
 Send message to rendering thread to update display

 End if

 End do

Figure 4. The steps involved in the processing of the data
packets from their receipt by the client to the display of their

contents.

UDP, it may happen that not all packets in a frame are received, in
which case the entire frame is omitted from decoding, and
ultimately, from being rendered. The processing of the packets
from their receipt by the client to their display is described in
pseudocode in Figure 4.

6.2 Selection of Model Components
ARTE supports two modes for the selection of components to be
transmitted as geometric data: user-defined and automatic. In
user-defined mode, the user selects specific components from a
model hierarchy, based on meta-data information. Alternatively,
in automatic mode, the system derives the components to be
downloaded and the resolution of the modalities based on the
current view position, the resource budget, the estimated
resources available, and the priorities assigned by the user to
performance parameters, as described in Section 5.2.2. The
remaining components (i.e., those that are not selected for
downloading) are rendered on-demand into a depth image on the
server, which is subsequently delivered to the requesting client as
context. Figure 3 shows a hybrid-rendering example in which
model components were selected automatically and downloaded
in decreasing order of their projected screen size.

We experimented with two implementations of the component
importance estimation algorithm presented in section 5.2.1. Using
the first implementation, the entire collection of bounding boxes
representing a model is rendered off-screen for every view
position. This approach ensures that only components with
bounding boxes visible from that position are considered.
However, due to the error with which a box approximates the
actual component, visible components may be omitted, as shown
in Figure 3 (f). Our second implementation uses a “layered”
approach in which only bounding boxes corresponding to
components that have not yet been downloaded are rendered off-
screen. While this method guarantees that, if the budget allows it,
all components are eventually downloaded as the model is
manipulated, large components occluded by already downloaded
data may be considered for processing sooner than small,
unoccluded components (see Figure 5). In practice, if the viewing

position is modified frequently, small changes in the camera
parameters typically reveal the larger components, and their out-
of-order delivery does not impact negatively on the final
rendering.

6.3 Experimental Results
Data pertaining to content adaptation is shown in Figures 7 and 8
for a configuration consisting of a server and five clients. The
clients made requests for two models of different complexities: an
engine with 218 components (70275 vertices) and an automobile
with 48 components (12733 vertices). The server was installed on
an Intellistation Z Pro, running Windows NT 4.0, with a dual
Pentium II 450 MHz processor, 1.2 GB RAM, and an Intergraph
Intense 3D Pro 3400-GT graphics adapter. The clients were
connected to this server over combinations of 16Mbps Token
Ring, 10Mbps Ethernet, and 100Mbps Ethernet connections.
Table 1 summarizes the configurations of the five clients. The
benchmark measurements reflecting the rendering and network
performance of each of these clients are shown in Figure 6.

Client Model OS CPU
(MHz)

Mem
(MB)

Display
adapter

#1 ThinkPad
770 ED

Win
95 266 96

Trident
Cyber
9397

#2 ThinkPad
600 E

Win
98 300 192

NeoMagic
Magic
Media

#3 Intellistation
M Pro

Win
NT 400 256

Intense
3D Pro
3400-T

#4 Intellistation
Z Pro

Win
NT 400 1024

Intense
3D

WildCat
4000

#5 Running on the same machine as the server

Table 1. Platform configurations used in the adaptive
experiment reported in Table 1.

(a)

(b)

Figure 6. Snapshot of the benchmark measurements recorded
for the five clients listed in Table 1. (a) Rendering

performance measured for smooth shading, one light, and no
triangle strips. (b) Network delay (shown on a logarithmic

scale).

7. SUMMARY
In this paper, we addressed issues related to access to 3D graphics
content via client devices with varying degrees of support for 3D
rendering and different types of connections to servers that
manage this content. In particular, we emphasized the importance
of integrating existing techniques for transmission and

representation of 3D models into a common framework, aware of
the context in which transfer and rendering take place, and
capable of selecting the most appropriate combination of
modalities to deliver models to clients requesting them.

We presented the design principles used in the development of
ARTE, an adaptive environment that attempts to provide
increased quality of service by monitoring the resources available
and by automatically selecting among multiple modalities
associated with model components.

ARTE is a proof of concept and a prototype under
implementation. Future work will include enhancing the accuracy
of the monitoring tool to provide better input for the performance
estimators and developing better quality measures. We plan to
generalize our current definition of the degree of interaction
associated with a modality to reflect more general actions (e.g.,
making a component transparent) and to support editing
operations. We also plan to add transcoding modules to enable
selection form a larger number of modalities. This will allow us to
experiment with the order in which modalities are considered for
selection (e.g., delivering the “best” modality versus delivering
the “first” modality that satisfies the requirements).

8. ACKNOWLEDGMENTS
I am grateful to Bill Horn for our discussions and his support of
this project. I owe special thanks to Jim Klosowski for his
contribution to early versions of the code, to Gabriel Taubin for
providing the geometric compression library, to Holly Rushmeier
and Fausto Bernardini for reviewing the paper, to Claudio Silva
for pointing out valuable references, and to Bengt-Olaf Schneider
for steering my interests into this area of research. I would also
like to thank all of my colleagues in the Visual Technologies
Department at IBM T. J. Watson for their helpful comments and
suggestions during presentations of my prototype.

(a)

(b)

Figure 7. Results of adaptive delivery of 3D content from a
server to five clients with different capabilities (see Table 1).
(a) The percentage of the total geometry downloaded to the
clients for a target frame rate of 15 frames-per-second for
two models of different complexity. (b) Same as (a) for a

target frame rate of 5 frames-per-second.

Figure 8. The resolution of the context image received by the
five clients listed in Table 1 was adjusted adaptively, given a

user-specified transfer budget of 0.3 seconds. The context
image was generated on the server by rendering the

components of the engine model that were not downloaded to
the clients for the scenario shown in Figure 6(a).

9. REFERENCES
[1] Chandra, S., Schlatter-Ellis, C., and Vahdat, A.,

“Multimedia Web services for mobile clients using
quality aware transcoding”, in Proceedings of the 2nd
ACM International Workshop on Wireless Mobile
Multimedia, 99-108, 1999.

[2] Fox, A., and Brewer, E.A., “Reducing WWW latency
and bandwidth requirements by real-time distillation”,
in Proceedings of 5th International WWW Conference,
Paris, France, 1996.

[3] Fox, A., Gribble, S.D., Brewer, E.A., and Amir, E.,
“Adapting to network and client variation using
infrastructural proxies: lessons and perspectives”, IEEE
Personal Communications, 40, 10-19, 1998.

[4] Mohan, R., Smith, J. R., and Li, C.-S., “Adapting
multimedia Internet content for universal access”,
IEEE Transactions on Multimedia, 1(1), 1999.

[5] Singhal, S., and Zyda, M., “Networked virtual
environments”, Addison-Wesley, 1999.

[6] Funkhouser, T.A., “RING: A client-server system for
multi-user virtual environments”, in Proceedings of
1995 Symposium on Interactive 3D Graphics, 85-209,
1995.

[7] Brutzman, D., Zyda, M., Watsen, K., and Macedonia,
M., “Virtual reality transfer protocol (vrtp) design
rationale”, in Workshops on Enabling Technology:
Infrastructure for Collaborative Enterprises (WET
ICE): Sharing a Distributed Virtual Reality, MIT 1997
(http://www.web3d.org/WorkingGroups/vrtp/docs/vrtp
_design.pdf).

[8] Rhyne, T.-M., Barton, B., Brutzman, D., and
Macedonia, M., “Internetworked 3D computer
graphics: overcoming bottlenecks and supporting
collaboration”, in ACM SIGGRAPH’99 Course Notes,
course # 21, 1999.

[9] Deering, M.F., “Geometry compression”, in
Proceedings of ACM SIGGRAPH’95, 13-20, 1995.

[10] Taubin, G., and Rossignac, J., “Geometric compression
through topological surgery”, in ACM Transactions on
Graphics, 17(2), 84-115, 1998.

[11] Gumhold, S., and Strasser, W., “Real-time
compression of triangle mesh connectivity”, in
Proceedings of ACM SIGGRAPH’98, 133-140, 1998.

[12] Cignoni, P., Montani, C., Scopigno, R., “A comparison
of mesh simplification algorithms”, in Computers and
Graphics, 22, 37-54, 1998.

[13] Funkhouser, T.A., and Sequin, C.H., “Adaptive display
algorithm for interactive frame rates during
visualization of complex virtual environments”, in
Proceedings of ACM SIGGRAPH’93, 247-254, 1993.

[14] Maciel, P.W.C., and Shirley, P., “Visual navigation of
large environments using textured clusters”, in
Proceedings of 1995 Symposium on Interactive 3D
Graphics, 95-102, 1995.

[15] Hoppe, H., “Progressive meshes”, in Proceedings of
ACM SIGGRAPH’96, 99-108, 1996.

[16] Hoppe, H., “View-dependent refinement of progressive
meshes”, in Proceedings of ACM SIGGRAPH’97, 189-
198, 1997.

[17] Gueziec, A., Taubin, G., Lazarus, F., and Horn, W.,
“Simplicial maps for progressive transmission of
polygonal surfaces”, in Proceedings of ACM
VRML’98, 1998.

[18] Chen, S.E., QuickTime VR – an image-based approach
to virtual environment navigation”, in Proceedings of
ACM SIGGRAPH’95, 29-38, 1995.

[19] Aliaga, D.G., “Visualization of complex models using
dynamic texture-based simplification”, in Proceedings
of IEEE Visualization’96, 101-106, 1996.

[20] Shade, J., Lischinski, D., Salein, H., DeRose, T., and
Snyder, J., “Hierarchical image caching for accelerated
walkthroughs of complex environments”, in
Proceedings of ACM Siggraph’96, 75-82, 1996.

[21] Shade, J., Gortler, S., He, L., and Szeliski, R.,
“Layered depth images”, in Proceedings of ACM
SIGGRAPH’98, 231-242, 1998.

[22] Aliaga, D.G., Lastra, A., “Automatic image placement
to provide a guaranteed frame rate”, in Proceedings of
ACM SIGGRAPH’99, 307-316, 1999.

[23] Levoy, M., “Polygon-assisted JPEG and MPEG
compression of synthetic images”, in Proceedings of
ACM SIGGRAPH’95, 21-28, 1995.

[24] Mann, Y., and Cohen-Or, D., “Selective pixel
transmission for navigating in remote virtual
environments”, in Computer Graphics Forum
(proceedings of Eurographics’97), 16(3), 201-206,
1997.

[25] Schneider, B.-O., and Martin, I., “An adaptive
framework for 3D graphics over networks”, in
Computers and Graphics, 23, 867-874, 1999.

[26] Peterson, L.L. and Davie, B.S., “Computer networks: a
systems approach”, Morgan Kaufmann, 2000.

[27] Snell, Q.O., Mikler, A.R., and Gustafson, J.I.,
NetPIPE: A network protocol independent
performance evaluator”, in Proceedings of the
International Conference on Intelligent Information
Management Systems, 1996.

(a) (b) (c)

(d) (e) (f)

Figure 3. Example of adaptive selection of components to be downloaded to a client based on estimated perceptual importance and
visibility from the current viewing position. (a) Original model. (b) Meta-data information includes a collection of bounding boxes that
can be manipulated in 3D to select a viewing position. (c) Once a view is selected, the bounding boxes of the components are rendered

into an off-screen buffer. The histogram levels of the resulting image (shown in the upper right corner) determine the components that
will be downloaded and the order in which they are processed. In this example, three components are downloaded. (d) Hybrid rendering

on the client combining the components downloaded with a depth image generated on the server. (e) Same as (d), except the three
components downloaded are shown as wireframe. (f) Top view of the bounding boxes corresponding to components A and B. Using a

non-layered approach, component A is never considered by the selection algorithm due to occlusion by the larger box corresponding to
component B.

(a) (b)

(c) (d)

Figure 5. Estimation of visibility and perceptual importance using a layered approach: (a) portion of an engine model. (b) The same
model, viewed from a position in which component A is completely occluded. (c) Components B and C have already been

downloaded to the client (e.g., by user selection). (d) The order in which the remaining components are processed is determined by
the histogram of the image shown. By “peeling off” the layer of components already on the client, the bounding box corresponding
to component A becomes unoccluded and since its projected area is larger than that of component E, A will be processed before E.

