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Introduction 
Internal complexity in modern microprocessors increasingly hides how programs actually 
execute.  Increasing use of techniques that include the use of caches and out-of-order 
execution to increase performance results in non-deterministic execution.  Trying to 
predict the actual performance of a program is no longer just adding up the execution 
times of the instructions and the memory references.  This paper explores the use of two 
approaches to examine the execution of a program on a superscalar processor.  The first 
approach utilizes hardware based performance monitoring to examine the execution of a 
widely used data mining program using a synthetic benchmark program for performance 
bottlenecks.  The second approach explores the use of a micro-architecture simulator to 
explore the impact of micro-architecture changes on the performance of the same data 
mining application.  Impact of the structure of the source code on the amount of 
instruction level parallelism is also explored in the micro-architecture simulator by 
studying the change in performance from a source level change.  Results from both 
approaches are discussed and changes to the micro-architecture are proposed. 

Environment 
An IBM Power II [1] running IBM’s version of Unix (AIX) was used for this work.  
Introduced in 1993, this is the first generation of IBM microprocessors to contain 
hardware performance monitoring [2].  The processor can monitor 20 programmable 
events comprised of 4 groups of five events from the Instruction Control Unit (ICU), 
Fixed-Point Unit (FXU), Floating Point Unit (FPU) and Storage Control Unit (SCU) and 
has a dedicated cycle counter.  Events to be monitored in each unit are selected via 
system control registers.  The mode of the processor during which data will be collected 
can be selected and are privileged, non-privileged or all.  A bit is included in the 
processor status word (PSW), which can be set for a process and will restrict the 
monitoring to that process.  Event counts are collected in 32 bit registers and there is no 
interrupt in case of overflow.  The initial system that was used for this work was a node 
in an IBM RS/6000 SP located at the University of Massachusetts, which was a 66 MHZ 
IBM Power II node with 256 MB of memory.  Due to hardware issues that are discussed 
later in the paper, we moved our work to an IBM RS/6000 SP, which contains the second 
generation of the IBM Power II.  The second generation of the Power II is a single chip 
implementation and the node that we use is a 120 MHz processor with 512 MB of 
memory.  Details of the performance monitoring hardware are similar to the earlier model 
except that the number of events that can be monitored simultaneously has been reduced 
to five and there are preset groups of events that can be sampled.  An additional counter 
has been added that counts the number of instructions executed and, like the cycle 
counter, is dedicated and cannot sample other events.  Figure 1 shows a block diagram of 
the hardware performance monitor. 
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Figure 1. PERFORMANCE MONITOR 

 
The software environment utilizes the monitoring program RS2HPM [3], which provides 
an environment to access and utilize the performance monitoring hardware.  Throughput 
of an IBM RS/6000 SP has been monitored with this package [4].  An AIX kernel 
extension is implemented to allow access to the performance counters and the 
configuration and control registers.  A daemon is provided that implements an application 
interface to the kernel extension and provides a control interface for the performance 
monitor to the application via TCP/IP and provides commands to configure, stop/start 
and retrieve data from the performance monitoring hardware.  The daemon is responsible 
for collecting the counters prior to counter overflow and for combining all of the partial 
counts to provide the summary counts.  Reading and clearing the counters at a fixed 
frequency achieves this.  Users are provided a utility that sets up the environment via the 
daemon, forks the user’s program and collects the results from the daemon.  Since a fixed 
number of events can be observed for each run of the program, the utility supports 
making multiple runs which are then formatted into a single report.  Support was added 
for measuring user programs for the single-chip IBM Power II.  A block diagram is 
shown in Figure 2. 
 

 
Figure 2. STRUCTURE OF RS2HPM 

 



 3

The commercial data mining application that was studied in the paper is the C4.5 [5] 
decision tree generator.  C4.5 is widely used because of its availability and speed.  
Release 8.0 was used for this work. 

Environment setup and debug 
After the RS2HPM package was installed, the first step was to verify the results that the 
environment was producing.  A simple program that was easy to verify was used.  Source 
code and assembler code for the program body is: 

 
Source: 
  main(int argc, char **argv) {      
    double a=0.1, b=1.001, c=0.0, d=1.0, e=0.5;   
      int i,N;                                      

            N=atoi(argv[1]);                              
            for (i=0; i<N; i++)                           
               c=c+a*b+d/(c+e);                            
         } 

 
Assembler:       

__L48:                    
        fa        fp3,fp31,fp1          Floating Point Add                                                 
        fma     fp5,fp4,fp2,fp31    Floating Point Multiply and Add                                          
        fd        fp3,fp0,fp3            Floating Point Divide                                      
        fa        fp31,fp5,fp3           Floating Point Add                                       
        bc     BO_dCTR_NZERO,CR0_LT,__L48 Decrement counter and branch if not zero                                

 
Figure 3. Source code and Assembler for Debug Program 

 
Given the number of events that were monitored, 14 passes of the program are required to 
collect all of the different events.  Only the non-privileged user processes were 
monitored.  To compensate for performance variations in the environment between runs 
we run each group of 14 passes 30 times and average the results.  Also the program was 
run three times prior to monitoring to warm up the cache.  The initial results indicated 
high variability.  This was attributed to the interference of other processes since the mode 
selection granularity is limited to privileged/non-privileged/all mode.  Use of the bit in 
the PSW to restrict monitoring to only a single process was explored, but the current 
version of AIX does not preserve this bit in a context switch.  Running AIX in 
"maintenance mode", which is equivalent to single user mode, was explored.  Facilities 
that RS2HPM requires are present in single user mode.  After rerunning the tests a 
variance was obtained that was deemed acceptable for our work. 
 
Next the data that was being collected was examined.  From the assembler fragment 
shown in Figure 3 there are two floating-point additions, one floating-point multiply/add, 
one floating-point divide and one branch-on-count per iteration.  A loop count of 
1,000,000 was used for our experiments.  Distribution notes for RS2HPM documented a 
problem with floating point divides not being reported.  From the experiments it was 
observed that the reporting of floating point divides is dependent on the code that is being 
executed.  It was observed that the performance counters only reported 4 floating-point 
additions and 1 floating-point multiply/add per iteration.  Branch statistics also reported 
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incorrect information.  For the run of 1,000,000 iterations there were 1,000,000 total 
branches.  Detailed branch counts reported 1,000,000 conditional branches taken and 
1,000,000 non-conditional count taken branches.   
 
Given the two inconsistencies that were found in the performance monitor it was a 
concern as to whether there might be additional issues with this version of the processor.  
Moving our work to the second generation of the IBM Power II, which is a single chip 
implementation, was explored.  It appeared that issues in the performance monitoring 
hardware had been fixed in this implementation.  The issue in using the single chip 
version was that none of the nodes of our IBM RS/6000 SP contained the single chip 
processor.  Access was obtained to a machine at IBM Research that contained nodes with 
the single chip processor.  RS2HPM code required extensions to support detailed 
measuring on a single chip processor system.  Given the smaller number of counters 
available and the restriction of preset groupings, the number of passes per run increased 
to twenty-six.  
 
Rerunning the tests in single user mode produced the correct results.  The only remaining 
inconsistency that was observed is that the totals for the floating-point operations were 
consistently slightly under the number of operations that should have occurred for the 
1,000,000 loop iterations.  Initially it was suspected that operations were being lost while 
the counters were being collected and reset.  Upon rerunning the test program collecting 
data for the three modes (non-privileged, privileged, all) it was discovered that in the 
mode, where all system activity was collected, the correct count was obtained.  If the 
counts from the privileged and non-privileged modes were added together, the correct 
number was obtained.  It is speculated that this is occurring because the performance 
counter is enabled/disabled by the privileged/non-privileged state of the processor.  The 
hypothesis is that the user operations that are in the processor pipeline are not flushed at 
the context switch and are allowed to complete.  Performance counters are updated at the 
completion of the operation and since the processor is now in privileged mode the 
performance counters are disabled and the completed operations are not counted. 
 
A simple program allowed the hardware performance monitoring to be installed and 
tested.  It was possible to predict the expected results from the program and verify the 
results.  This work allowed the identification of the incorrect behaviors and either 
resolution or understanding of them thus resulting in a verified environment to begin the 
application work. 

Evaluation of c4.5 
For the evaluation of C4.5 a synthetic benchmark called LED [6] was chosen, which 
generates test cases comprised of the state of the seven segments of a numeric LED 
display and the decimal value that they represent.  States of the segments are binary 
values with 1 indicating that the segment is on.  Decimal values have the range from zero 
to nine.  Test case data is generated with a selectable probability of an error in each 
segment.  We chose the default value of ten percent.  Training sets of 1000, 5000, 10000, 
50000, 100000 cases were generated.  LED is not a particularly challenging problem for 
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decision tree generation but it allowed the ability to scale the size of the problem and 
explore the data from the hardware performance monitor. 
 
The first measurement that was looked at was the performance of the cache as the 
number of test cases increased.  A node had a 256KB L1 data cache and no L2 cache.  
Figure 4 shows the miss rate per instance for the five test cases that were run.  Results 
show a change in behavior at 10,000 cases, which is where it is believed that the size of 
the problem has exceeded the size of the L1 cache. 
 

 
Figure 4. Data Cache Misses Per Instance vs. Number of Instances 

 
A CPI plot shows a similar change in behavior that occurs at 10,000 cases.  Figure 5 
shows the CPI for the five test cases. 
 

 
Figure 5. Cycles Per Instruction vs. Number of Instances 

 
It appears that the behavior of C4.5 is very sensitive to the size of the cache.  It could 
benefit from the additional cache capacity and bandwidth that would be available if the 
program was running on multiple nodes in parallel. 
 
Table 1 shows the distribution of the number of total instructions that was executed by 
the three function units in the processor.  These units are the fixed-point unit (FXU), 
floating point unit (FPU) and instruction control unit (ICU).  Results are what we 
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expected from C4.5, since the majority of the work in program involves the fixed-point 
unit for the counting of characteristics of the instances. 
 

Number of Instances %FXU %FPU %ICU 
1000 75.2 5.8 18.9 
5000 76.1 4.7 19.2 
10000 76.2 4.4 19.3 
50000 76.3 4.4 19.3 
100000 76.4 4.3 19.3 

 
Table 1. Percentage of Instructions Per Unit 

 
Whether the bandwidth from the cache to the memory was sufficient for C4.5 was 
another question.  Power II allows two outstanding requests from the cache to memory.  
Table 2 shows the percentage of the total number of cycles that either of the two fixed-
point units where stalled due to a busy cache.  A cache stall will only happen when there 
are two outstanding requests from the cache to the memory system.  The memory 
bandwidth does not seem to be an issue for C4.5. 
 

Number of Instances % Total cycles FXU 0 held by cache % Total cycles FXU 1 held by cache 
1000 1.4 1.5 
5000 1.2 1.5 
10000 0.8 1.2 
50000 0.6 1.0 
100000 0.6 0.9 

 
Table 2. Percentage of total cycles that each FXU Unit is stalled 

 
The final question was how the available resources in the fixed-point unit were being 
utilized.  Table 3 shows the number of instruction dispatched to the FXU when 
instructions were available.  Two instructions per cycle can be dispatched to the FXU.  
For C4.5 the unit is issuing the maximum of two instruction sixty percent of the time. 
 
 
 

Number of Instances 1+ / 0 Dispatched 1 / 1 Dispatched 2+ / 1 Dispatched 2+ / 2 Dispatched 
1000 4.9 9.0 26.0 60.1 
5000 5.3 8.2 26.5 60.0 
10000 5.4 8.0 26.6 60.0 
50000 5.5 7.7 26.8 60.0 
100000 5.4 7.6 26.8 60.2 

 
Table 3. Percentage of Dispatch Occurrence 

 
From the performance data that was collected it appears that the IBM Power II is 
implemented with a well-balanced set of resources, which is indicated by the fact that the 
processor does not show any significant performance issues in running C4.5. As the 
number of functional units is increased in future processor generations, a similar balance 
should be preserved as opposed to adding more of one type of unit. 
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Study of Architectural Modifications 
The question is what resources should be modified to increase the performance of C4.5 
on a superscalar processor.  In modifying the resources of the processor we need to insure 
that it is done in a balanced manner.  If it is not then constraints from other elements in 
the processor may prevent the added resources from being efficiently utilized.  A 
previous paper [reference to synthesis project] discusses potential modifications to the 
processor to increase the performance of C4.5.  These resulted from work that modified a 
section of code to study if greater parallelism could be found by hardware as a result of 
restructuring the code.  The conclusions of the paper indicate that the limits on the 
performance of the code could be the result of contention for resources for address 
calculation in the modified loop.  Modifications that were suggested are: additional 
integer units, increased instruction fetch bandwidth and increased bandwidth and number 
of outstanding memory requests to memory. 

Environment 
To study the impact of modifying the micro-architecture a simulator that can simulate the 
micro-architecture is required.  A functional simulator will work for software 
development but will not provide the hardware detail that is required to study the 
modification of processor resources.  Since this work has been done on an IBM Power2 
processor, the use of a version of SIMOS [7] that has been modified by the IBM Austin 
Research Laboratory [8] was explored.  This version supports the PowerPC architecture.  
Given that the IBM Power2 heavily influences the PowerPC family, the architectures are 
similar.  A copy of the simulator was installed on an IBM RS/6000 with a 32-bit 
PowerPC 604e processor running AIX.  A benefit of SIMOS-PPC is that it can run a 
slightly modified version of the AIX operating system with reasonable performance and 
provides an environment that is equivalent to a real system.   
 
The documentation for SIMOS-PPC indicates that there are three models available for the 
simulator.  They are a fast, functional and detailed simulator.  During bring up of the 
simulator on the 604e system, it was discovered that only the SIMPLE model, which is 
the functional simulator, was available.  A startup message in the simulator stated that the 
BLOCK model was not debugged for a 32-bit environment and that the SIMPLE model 
would be used.  The work was then transferred to an IBM RS/6000 with a 64-bit RS64 
processor.  The BLOCK model is supported on this system.  With the simulator installed 
and operational, the source code was examined to determine what modifications could be 
made to the micro-architecture.  It was discovered that only two of the three models have 
been implemented.  The two models are BLOCK and SIMPLE.  The BLOCK model 
implements a just-in-time (JIT) environment were the simulated instructions are mapped 
to instructions that are native to the processor on which the simulator is executing.  This 
results in very fast functional simulation.  The SIMPLE model is a serial functional 
simulator that simulates the instructions and is slower than the BLOCK model.  The third 
model was indicated in the documentation to be a version of the Simple Scalar simulator 
modified to model the PowerPC architecture.  After examination of the code it was 
determined that this model is currently not implemented in SIMOS-PPC.  Given that no 
model in SIMOS-PPC can support the simulation of micro-architecture, SIMOS-PCC 
was not usable for this work.   
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Given that there are no available simulators that implement the Power/PowerPC micro-
architecture, other simulators were explored.  The Simple Scalar [9] simulator was 
chosen since its out-of-order model supports the modeling of micro-architecture.  
Although the basic micro-architecture is different from the Power/PowerPC architecture, 
the model is parameterized to allow some customization of the base micro-architecture.  
A set of parameters was chosen that closely models the Power2 architecture given the 
constraints of the base micro-architecture.  Installation of Simple Scalar and the 
associated compiler environment was a challenge.  After attempting to install the 
environment on IBM AIX and then a Linux system it was successfully installed on a Sun 
running Solaris 2.8.  From reviewing various forums it appears that the problem is that 
Simple Scalar was developed with a bias towards BSD Unix and the first two operating 
systems are not BSD based.   
 
With Simple Scalar installed and verified with diagnostics tests, the next step was to run 
C4.5.  Since Simple Scalar is implementing a specific architecture, it is necessary to 
recompile C4.5 for that architecture.  The GNU gcc environment that is shipped with 
Simple Scalar provides a cross-compiler that has the Simple Scalar instruction set as the 
target.  The Simple Scalar environment has a number of simulators that implement 
different styles of simulation.  The three of interest are FAST, SAFE and OUTORDER.  
FAST provides a fast functional simulator that implements none of the traditional 
hardware checks such as access permission on memory references.  SAFE is a functional 
simulator that enforces all of the traditional hardware checks.  OUTORDER is the micro-
architecture simulator that will be used to study the impact of resource changes.  Since 
OUTORDER is simulating the micro-architecture it is significantly slower than the other 
two simulators.  C4.5 was first tried on the FAST simulator where it worked correctly.  It 
was then tried on the SAFE simulator where a segmentation error occurred inside the 
simulator due to an attempted read of address 0.  The OUTORDER simulator also 
encountered the same error.  Simple Scalar provides a symbolic debugger for the 
environment that was not very useful in tracking down a source level problem.  By 
adding print statements to the C4.5 source it was possible to determine that the problem 
was with a system call that was passed a pointer that was modified to point to address 
location 0.  The call was to the time() system function and the results were used in the 
output generated by C4.5.  Since it has no impact to the functionality of C4.5, the 
offending call was commented out.  With this change C4.5 executed correctly on both the 
SAFE and the OUTORDER simulator.   

Parameters For IBM Power2 
The next step was to determine a set of parameters that models the Power2 micro-
architecture within the constraints of the Simple Scalar micro-architecture.  There are 
several aspects of the Power2 architecture that do not map well to the Simple Scalar 
micro-architecture.  Power2 integrates the arithmetic/logic and multiplier/divide units 
into a single unit for both integer and floating point operations but Simple Scalar provides 
separate units for each.  Power2 has two integer and two floating point units.  It was 
decided to model the Power2 by using 2 integer ALUs, 1 integer mult/div unit, 2 floating 
point ALUs and 1 floating point unit.  The width of the instruction decode and issue are 
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limited to powers of two but the Power2 supports the dispatch of five instructions.  A 
dispatch value of four was used.  Table 4 lists the parameters that were used for the 
simulation of the Power2 architecture. 
 

Parameter Description Flag Value 
instruction fetch queue size (in insts) -fetch:ifqsize 8 
extra branch mis-prediction latency -fetch:mplat 1 
branch predictor type {nottaken|taken|perfect|bimod|2lev} -bpred nottaken 
instruction decode B/W (insts/cycle) -decode:width 4 
instruction issue B/W (insts/cycle) -issue:width 4 
run pipeline with in-order issue -issue:inorder false 
issue instructions down wrong execution paths -issue:wrongpath true 
register update unit (RUU) size -ruu:size 16 
load/store queue (LSQ) size -lsq:size 8 
l1 data cache config, i.e., {<config>|none} -cache:dl1 dl1:256:256:4:l 
l1 data cache hit latency (in cycles) -cache:dl1lat 1 
l2 data cache config, i.e., {<config>|none} -cache:dl2 none 
l1 inst cache config, i.e., {<config>|dl1|dl2|none} -cache:il1 il1:128:128:2:l 
l1 instruction cache hit latency (in cycles) -cache:il1lat 1 
l2 instruction cache config, i.e., {<config>|dl2|none} -cache:il2 none 
flush caches on system calls -cache:flush false 
convert 64-bit inst addresses to 32-bit inst equivalents -cache:icompress false 
memory access latency (<first_chunk> <inter_chunk>) -mem:lat 18 2 
memory access bus width (in bytes) -mem:width 64 
instruction TLB config, i.e., {<config>|none} -tlb:itlb itlb:16:4096:4:l 
data TLB config, i.e., {<config>|none} -tlb:dtlb dtlb:256:4096:2:l 
inst/data TLB miss latency (in cycles) -tlb:lat 30 
total number of integer ALU’s available -res:ialu 2 
total number of integer multiplier/dividers available -res:imult 1 
total number of memory system ports available (to CPU) -res:memport 2 
total number of floating point ALU’s available -res:fpalu 2 
total number of floating point multiplier/dividers available -res:fpmult 1 
ratio of fetch to issue -fetch:speed 2 

 
Table 4. Simulator Parameters for Power2 Architecture 

 
The parameters are a close approximation of the Power2 architecture.  Any parameters 
that are not shown use their default values.  The configuration format for the cache is 
<cache:sets:linesize:associativity:policy>.  The configuration format for the TLB is 
<tlb:sets:pagesize:associativity:policy>.  The caches and the TLBs were configured to 
match those in the Power2.  The parameters were used to simulate the execution of C4.5 
on the largest test case to establish a baseline for performance.  The cumulative 
modifications that were studied are: 
 

1) Increasing the number of integer ALUs from two to four. 
2) Increasing the instruction fetches and decode to eight instructions per cycle 

from four and the instruction queue to sixteen from 8. 
3) Increasing the number of memory ports from two to four. 
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We need to study the changes in a cumulative manner since each subsequent change 
provides increased resources for the previous change.  The first change is to increase the 
number of integer ALUs.  It was speculated in previous work [reference to synthesis 
paper] that the instruction level parallelism is limited due to the address calculations 
required to access the instance data.  The choice was to increase the integer ALUs from 
two, the number in the Power2, to four.  Next the flow of instructions was increased to 
explore if the performance bottleneck could be the lack of instruction for the functional 
units.  To explore this we need the additional integer ALUs to consume the increased 
number of available instructions.  Finally the number of memory ports is increased to 
determine if the memory is limiting the number of instructions that are available to the 
fetch unit. 

Results of Simulation of Micro-Architecture Modifications 
The modifications were implemented by modifying the configuration file and C4.5 was 
re-simulated with the new parameters.  The first modification of increasing the number of 
integer ALUs improved the performance over the base case by 2%.  Increasing the fetch 
and decode bandwidth in addition to the number of integer ALUs increased the 
improvement over the base case by 2.7%.  Finally the increase of the number of memory 
ports with the other two modifications achieved an increase in performance over the base 
case of 3.3%.  The addition of a significant amount of hardware resources did not provide 
a substantial increase in performance for C4.5.  This may be due to a limited amount of 
instruction level parallelism in the code. 
 
Given that we suspect that the performance is being limited by the code we are running, 
modifications to the source level code may result in additional parallelism being available 
for the hardware.  In previous work [10], several modifications to a well-used routine in 
C4.5 were explored.  The alternative implementations yielded no better results than the 
original code but since we have now modified the micro-architecture these changes may 
improve the performance.  The piece of code from the subroutine ComputeFrequencies 
that was studied is: 
 
 for (p = FP ; p <= LP ; p++) { 
  Case = Item[p]; 
  Freq[Case.attribute][Case.class] += Weight[p];   
 } 
 
This code walks through the instances totaling the number of classes for each of the 
possible values of the chosen attribute.  It accounts for 7.8% of the total runtime of C4.5 
on the largest test case.  The modified version of the code is: 
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 p = FP; 
 /* start up code for odd no. of elements */ 
 if ( ((LP – p) % 2) != 1) then { 
  Case = Item[p]; 
  Freq[Case.attribute][Case.class] += Weight[p]; 
  p++; 
 } 
 /* process instances two at a time          */ 
 for ( ; p <  LP ; p = p + 2) { 

 Case = Item[p]; 
Case2 = Item[p + 1]; 

  Freq[Case.attribute][Case.class] += Weight[p];   
  Freq[Case2.attribute][Case2.class] += Weight[p + 1];   
 } 
 
The code was modified to step through the instance array and process two elements at a 
time.  There is a potential resource conflict if both instances write to the same location in 
Freq but the hardware will insure that the operations are correctly executed.  By 
modifying the main loop the hope is that the instruction level parallelism is increased.  
The goal is to reduce the execution time by increasing the amount of work that can be 
done each cycle.  All of the micro-architecture modifications were rerun using the 
modified version of C4.5. 
 
Simulation on the base configuration that closely matches the Power2 showed an increase 
in performance of .8% over the base case.  Again we will be using the performance of the 
unmodified version of C4.5 on the Power2 configuration as the base case.  Adding two 
additional integer ALUs for the first modification resulted in a 2.5% increase over the 
base case.  Increasing the fetch and decode rate in the second modification produces a 
3.3% increase in performance over the base case.  Finally increasing the number of 
memory ports produces an increase in performance of 3.9%.   
 
With all of the micro-architecture modifications and the modification of C4.5, a 
performance increase of 3.9% was achieved.  If it is assumed that the time spent 
executing phases of C4.5 in the simulator is similar to the results obtained on the Power2 
the increase in performance is much larger.  The subroutine that was modified accounts 
for 7.8% of the execution time of the program on the Power2.  For the case where the 
program is modified and all the micro-architecture are included, an increase in 
performance of 50% is achieved in the subroutine.  Table 5 summarizes the percentage of 
performance increase for the modification to C4.5, the enhancements of the micro-
architecture, and the loop for the modified version of C4.5.  
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Version Original Modified Modified C4.5 Loop 
Power2 Base .8 10 
Mod1 2 2.5 32 
Mod2 2.7 3.3 42 
Mod3 3.3 3.9 50 

 
Table 5. Percentage of Performance Increase  

 
For both versions of C4.5 the increase in the number of integer ALUs provided the 
largest increase in performance.  Each incremental modification to the micro-architecture 
resulted in an incremental increase in performance.  Modifications in this study were 
made to a set of interrelated resources.  Each change resulted in additional resources 
being available to the previous modification.  To propose modifications to the Power2 
architecture, the implementation cost versus gain of each of these modifications would 
have to be studied.  Also, additional programs would have to be studied to determine 
whether the performance increases due to the micro-architectural changes occur in a 
broader set of programs.  From the results here, we would recommend that the number of 
ALUs be increased to four in the Power2.   

Conclusions 
This paper has explored the use of hardware-based performance monitoring to examine 
the execution characteristics of C4.5, which is a widely used data mining application.  A 
methodology was developed that addressed controllable and uncontrollable variances.  
C4.5 was studied using a synthetic benchmark that allowed the scaling of the size of the 
test cases.  The results indicate that the Power2 architecture is well balanced for C4.5. 
Several micro-architecture changes were explored to study the impact on the performance 
of C4.5.  Simple Scalar, a micro-architecture simulator, was used to study three 
modifications of the micro-architecture and a modified version of C4.5.  The single 
modification that resulted in the largest increase in performance of the simulated micro-
architecture for both versions of C4.5 was the increase in the number of ALUs.  
Modifications to this resource, which is involved in address calculation, yielded higher 
performance but this must be viewed with the caveat that the entire program may have 
benefited from this change.  Finally the results show the complex relationship between 
the program, compiler and micro-architecture.  
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