
RC22223 (W0110-086) October 31, 2001
Computer Science

IBM Research Report

Performance Characterization and Micro-Architecture
Exploration of a Data Mining Application via Hardware Based

Performance Monitoring and Simulation

Mathew S. Thoennes
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Introduction
Internal complexity in modern microprocessors increasingly hides how programs actually
execute. Increasing use of techniques that include the use of caches and out-of-order
execution to increase performance results in non-deterministic execution. Trying to
predict the actual performance of a program is no longer just adding up the execution
times of the instructions and the memory references. This paper explores the use of two
approaches to examine the execution of a program on a superscalar processor. The first
approach utilizes hardware based performance monitoring to examine the execution of a
widely used data mining program using a synthetic benchmark program for performance
bottlenecks. The second approach explores the use of a micro-architecture simulator to
explore the impact of micro-architecture changes on the performance of the same data
mining application. Impact of the structure of the source code on the amount of
instruction level parallelism is also explored in the micro-architecture simulator by
studying the change in performance from a source level change. Results from both
approaches are discussed and changes to the micro-architecture are proposed.

Environment
An IBM Power II [1] running IBM’s version of Unix (AIX) was used for this work.
Introduced in 1993, this is the first generation of IBM microprocessors to contain
hardware performance monitoring [2]. The processor can monitor 20 programmable
events comprised of 4 groups of five events from the Instruction Control Unit (ICU),
Fixed-Point Unit (FXU), Floating Point Unit (FPU) and Storage Control Unit (SCU) and
has a dedicated cycle counter. Events to be monitored in each unit are selected via
system control registers. The mode of the processor during which data will be collected
can be selected and are privileged, non-privileged or all. A bit is included in the
processor status word (PSW), which can be set for a process and will restrict the
monitoring to that process. Event counts are collected in 32 bit registers and there is no
interrupt in case of overflow. The initial system that was used for this work was a node
in an IBM RS/6000 SP located at the University of Massachusetts, which was a 66 MHZ
IBM Power II node with 256 MB of memory. Due to hardware issues that are discussed
later in the paper, we moved our work to an IBM RS/6000 SP, which contains the second
generation of the IBM Power II. The second generation of the Power II is a single chip
implementation and the node that we use is a 120 MHz processor with 512 MB of
memory. Details of the performance monitoring hardware are similar to the earlier model
except that the number of events that can be monitored simultaneously has been reduced
to five and there are preset groups of events that can be sampled. An additional counter
has been added that counts the number of instructions executed and, like the cycle
counter, is dedicated and cannot sample other events. Figure 1 shows a block diagram of
the hardware performance monitor.

 2

Figure 1. PERFORMANCE MONITOR

The software environment utilizes the monitoring program RS2HPM [3], which provides
an environment to access and utilize the performance monitoring hardware. Throughput
of an IBM RS/6000 SP has been monitored with this package [4]. An AIX kernel
extension is implemented to allow access to the performance counters and the
configuration and control registers. A daemon is provided that implements an application
interface to the kernel extension and provides a control interface for the performance
monitor to the application via TCP/IP and provides commands to configure, stop/start
and retrieve data from the performance monitoring hardware. The daemon is responsible
for collecting the counters prior to counter overflow and for combining all of the partial
counts to provide the summary counts. Reading and clearing the counters at a fixed
frequency achieves this. Users are provided a utility that sets up the environment via the
daemon, forks the user’s program and collects the results from the daemon. Since a fixed
number of events can be observed for each run of the program, the utility supports
making multiple runs which are then formatted into a single report. Support was added
for measuring user programs for the single-chip IBM Power II. A block diagram is
shown in Figure 2.

Figure 2. STRUCTURE OF RS2HPM

 3

The commercial data mining application that was studied in the paper is the C4.5 [5]
decision tree generator. C4.5 is widely used because of its availability and speed.
Release 8.0 was used for this work.

Environment setup and debug
After the RS2HPM package was installed, the first step was to verify the results that the
environment was producing. A simple program that was easy to verify was used. Source
code and assembler code for the program body is:

Source:
 main(int argc, char **argv) {
 double a=0.1, b=1.001, c=0.0, d=1.0, e=0.5;
 int i,N;

 N=atoi(argv[1]);
 for (i=0; i<N; i++)
 c=c+a*b+d/(c+e);
 }

Assembler:

__L48:
 fa fp3,fp31,fp1 Floating Point Add
 fma fp5,fp4,fp2,fp31 Floating Point Multiply and Add
 fd fp3,fp0,fp3 Floating Point Divide
 fa fp31,fp5,fp3 Floating Point Add
 bc BO_dCTR_NZERO,CR0_LT,__L48 Decrement counter and branch if not zero

Figure 3. Source code and Assembler for Debug Program

Given the number of events that were monitored, 14 passes of the program are required to
collect all of the different events. Only the non-privileged user processes were
monitored. To compensate for performance variations in the environment between runs
we run each group of 14 passes 30 times and average the results. Also the program was
run three times prior to monitoring to warm up the cache. The initial results indicated
high variability. This was attributed to the interference of other processes since the mode
selection granularity is limited to privileged/non-privileged/all mode. Use of the bit in
the PSW to restrict monitoring to only a single process was explored, but the current
version of AIX does not preserve this bit in a context switch. Running AIX in
"maintenance mode", which is equivalent to single user mode, was explored. Facilities
that RS2HPM requires are present in single user mode. After rerunning the tests a
variance was obtained that was deemed acceptable for our work.

Next the data that was being collected was examined. From the assembler fragment
shown in Figure 3 there are two floating-point additions, one floating-point multiply/add,
one floating-point divide and one branch-on-count per iteration. A loop count of
1,000,000 was used for our experiments. Distribution notes for RS2HPM documented a
problem with floating point divides not being reported. From the experiments it was
observed that the reporting of floating point divides is dependent on the code that is being
executed. It was observed that the performance counters only reported 4 floating-point
additions and 1 floating-point multiply/add per iteration. Branch statistics also reported

 4

incorrect information. For the run of 1,000,000 iterations there were 1,000,000 total
branches. Detailed branch counts reported 1,000,000 conditional branches taken and
1,000,000 non-conditional count taken branches.

Given the two inconsistencies that were found in the performance monitor it was a
concern as to whether there might be additional issues with this version of the processor.
Moving our work to the second generation of the IBM Power II, which is a single chip
implementation, was explored. It appeared that issues in the performance monitoring
hardware had been fixed in this implementation. The issue in using the single chip
version was that none of the nodes of our IBM RS/6000 SP contained the single chip
processor. Access was obtained to a machine at IBM Research that contained nodes with
the single chip processor. RS2HPM code required extensions to support detailed
measuring on a single chip processor system. Given the smaller number of counters
available and the restriction of preset groupings, the number of passes per run increased
to twenty-six.

Rerunning the tests in single user mode produced the correct results. The only remaining
inconsistency that was observed is that the totals for the floating-point operations were
consistently slightly under the number of operations that should have occurred for the
1,000,000 loop iterations. Initially it was suspected that operations were being lost while
the counters were being collected and reset. Upon rerunning the test program collecting
data for the three modes (non-privileged, privileged, all) it was discovered that in the
mode, where all system activity was collected, the correct count was obtained. If the
counts from the privileged and non-privileged modes were added together, the correct
number was obtained. It is speculated that this is occurring because the performance
counter is enabled/disabled by the privileged/non-privileged state of the processor. The
hypothesis is that the user operations that are in the processor pipeline are not flushed at
the context switch and are allowed to complete. Performance counters are updated at the
completion of the operation and since the processor is now in privileged mode the
performance counters are disabled and the completed operations are not counted.

A simple program allowed the hardware performance monitoring to be installed and
tested. It was possible to predict the expected results from the program and verify the
results. This work allowed the identification of the incorrect behaviors and either
resolution or understanding of them thus resulting in a verified environment to begin the
application work.

Evaluation of c4.5
For the evaluation of C4.5 a synthetic benchmark called LED [6] was chosen, which
generates test cases comprised of the state of the seven segments of a numeric LED
display and the decimal value that they represent. States of the segments are binary
values with 1 indicating that the segment is on. Decimal values have the range from zero
to nine. Test case data is generated with a selectable probability of an error in each
segment. We chose the default value of ten percent. Training sets of 1000, 5000, 10000,
50000, 100000 cases were generated. LED is not a particularly challenging problem for

 5

decision tree generation but it allowed the ability to scale the size of the problem and
explore the data from the hardware performance monitor.

The first measurement that was looked at was the performance of the cache as the
number of test cases increased. A node had a 256KB L1 data cache and no L2 cache.
Figure 4 shows the miss rate per instance for the five test cases that were run. Results
show a change in behavior at 10,000 cases, which is where it is believed that the size of
the problem has exceeded the size of the L1 cache.

Figure 4. Data Cache Misses Per Instance vs. Number of Instances

A CPI plot shows a similar change in behavior that occurs at 10,000 cases. Figure 5
shows the CPI for the five test cases.

Figure 5. Cycles Per Instruction vs. Number of Instances

It appears that the behavior of C4.5 is very sensitive to the size of the cache. It could
benefit from the additional cache capacity and bandwidth that would be available if the
program was running on multiple nodes in parallel.

Table 1 shows the distribution of the number of total instructions that was executed by
the three function units in the processor. These units are the fixed-point unit (FXU),
floating point unit (FPU) and instruction control unit (ICU). Results are what we

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

C
ac

he
 M

is
se

s
/ I

ns
ta

nc
e

Thousands of Training Instances

"cache_bool"

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

10 20 30 40 50 60 70 80 90 100

C
yc

le
s

Pe
r

In
st

ru
tio

n

Thousands of Training Instances

"cpi_bool"

 6

expected from C4.5, since the majority of the work in program involves the fixed-point
unit for the counting of characteristics of the instances.

Number of Instances %FXU %FPU %ICU
1000 75.2 5.8 18.9
5000 76.1 4.7 19.2
10000 76.2 4.4 19.3
50000 76.3 4.4 19.3
100000 76.4 4.3 19.3

Table 1. Percentage of Instructions Per Unit

Whether the bandwidth from the cache to the memory was sufficient for C4.5 was
another question. Power II allows two outstanding requests from the cache to memory.
Table 2 shows the percentage of the total number of cycles that either of the two fixed-
point units where stalled due to a busy cache. A cache stall will only happen when there
are two outstanding requests from the cache to the memory system. The memory
bandwidth does not seem to be an issue for C4.5.

Number of Instances % Total cycles FXU 0 held by cache % Total cycles FXU 1 held by cache
1000 1.4 1.5
5000 1.2 1.5
10000 0.8 1.2
50000 0.6 1.0
100000 0.6 0.9

Table 2. Percentage of total cycles that each FXU Unit is stalled

The final question was how the available resources in the fixed-point unit were being
utilized. Table 3 shows the number of instruction dispatched to the FXU when
instructions were available. Two instructions per cycle can be dispatched to the FXU.
For C4.5 the unit is issuing the maximum of two instruction sixty percent of the time.

Number of Instances 1+ / 0 Dispatched 1 / 1 Dispatched 2+ / 1 Dispatched 2+ / 2 Dispatched
1000 4.9 9.0 26.0 60.1
5000 5.3 8.2 26.5 60.0
10000 5.4 8.0 26.6 60.0
50000 5.5 7.7 26.8 60.0
100000 5.4 7.6 26.8 60.2

Table 3. Percentage of Dispatch Occurrence

From the performance data that was collected it appears that the IBM Power II is
implemented with a well-balanced set of resources, which is indicated by the fact that the
processor does not show any significant performance issues in running C4.5. As the
number of functional units is increased in future processor generations, a similar balance
should be preserved as opposed to adding more of one type of unit.

 7

Study of Architectural Modifications
The question is what resources should be modified to increase the performance of C4.5
on a superscalar processor. In modifying the resources of the processor we need to insure
that it is done in a balanced manner. If it is not then constraints from other elements in
the processor may prevent the added resources from being efficiently utilized. A
previous paper [reference to synthesis project] discusses potential modifications to the
processor to increase the performance of C4.5. These resulted from work that modified a
section of code to study if greater parallelism could be found by hardware as a result of
restructuring the code. The conclusions of the paper indicate that the limits on the
performance of the code could be the result of contention for resources for address
calculation in the modified loop. Modifications that were suggested are: additional
integer units, increased instruction fetch bandwidth and increased bandwidth and number
of outstanding memory requests to memory.

Environment
To study the impact of modifying the micro-architecture a simulator that can simulate the
micro-architecture is required. A functional simulator will work for software
development but will not provide the hardware detail that is required to study the
modification of processor resources. Since this work has been done on an IBM Power2
processor, the use of a version of SIMOS [7] that has been modified by the IBM Austin
Research Laboratory [8] was explored. This version supports the PowerPC architecture.
Given that the IBM Power2 heavily influences the PowerPC family, the architectures are
similar. A copy of the simulator was installed on an IBM RS/6000 with a 32-bit
PowerPC 604e processor running AIX. A benefit of SIMOS-PPC is that it can run a
slightly modified version of the AIX operating system with reasonable performance and
provides an environment that is equivalent to a real system.

The documentation for SIMOS-PPC indicates that there are three models available for the
simulator. They are a fast, functional and detailed simulator. During bring up of the
simulator on the 604e system, it was discovered that only the SIMPLE model, which is
the functional simulator, was available. A startup message in the simulator stated that the
BLOCK model was not debugged for a 32-bit environment and that the SIMPLE model
would be used. The work was then transferred to an IBM RS/6000 with a 64-bit RS64
processor. The BLOCK model is supported on this system. With the simulator installed
and operational, the source code was examined to determine what modifications could be
made to the micro-architecture. It was discovered that only two of the three models have
been implemented. The two models are BLOCK and SIMPLE. The BLOCK model
implements a just-in-time (JIT) environment were the simulated instructions are mapped
to instructions that are native to the processor on which the simulator is executing. This
results in very fast functional simulation. The SIMPLE model is a serial functional
simulator that simulates the instructions and is slower than the BLOCK model. The third
model was indicated in the documentation to be a version of the Simple Scalar simulator
modified to model the PowerPC architecture. After examination of the code it was
determined that this model is currently not implemented in SIMOS-PPC. Given that no
model in SIMOS-PPC can support the simulation of micro-architecture, SIMOS-PCC
was not usable for this work.

 8

Given that there are no available simulators that implement the Power/PowerPC micro-
architecture, other simulators were explored. The Simple Scalar [9] simulator was
chosen since its out-of-order model supports the modeling of micro-architecture.
Although the basic micro-architecture is different from the Power/PowerPC architecture,
the model is parameterized to allow some customization of the base micro-architecture.
A set of parameters was chosen that closely models the Power2 architecture given the
constraints of the base micro-architecture. Installation of Simple Scalar and the
associated compiler environment was a challenge. After attempting to install the
environment on IBM AIX and then a Linux system it was successfully installed on a Sun
running Solaris 2.8. From reviewing various forums it appears that the problem is that
Simple Scalar was developed with a bias towards BSD Unix and the first two operating
systems are not BSD based.

With Simple Scalar installed and verified with diagnostics tests, the next step was to run
C4.5. Since Simple Scalar is implementing a specific architecture, it is necessary to
recompile C4.5 for that architecture. The GNU gcc environment that is shipped with
Simple Scalar provides a cross-compiler that has the Simple Scalar instruction set as the
target. The Simple Scalar environment has a number of simulators that implement
different styles of simulation. The three of interest are FAST, SAFE and OUTORDER.
FAST provides a fast functional simulator that implements none of the traditional
hardware checks such as access permission on memory references. SAFE is a functional
simulator that enforces all of the traditional hardware checks. OUTORDER is the micro-
architecture simulator that will be used to study the impact of resource changes. Since
OUTORDER is simulating the micro-architecture it is significantly slower than the other
two simulators. C4.5 was first tried on the FAST simulator where it worked correctly. It
was then tried on the SAFE simulator where a segmentation error occurred inside the
simulator due to an attempted read of address 0. The OUTORDER simulator also
encountered the same error. Simple Scalar provides a symbolic debugger for the
environment that was not very useful in tracking down a source level problem. By
adding print statements to the C4.5 source it was possible to determine that the problem
was with a system call that was passed a pointer that was modified to point to address
location 0. The call was to the time() system function and the results were used in the
output generated by C4.5. Since it has no impact to the functionality of C4.5, the
offending call was commented out. With this change C4.5 executed correctly on both the
SAFE and the OUTORDER simulator.

Parameters For IBM Power2
The next step was to determine a set of parameters that models the Power2 micro-
architecture within the constraints of the Simple Scalar micro-architecture. There are
several aspects of the Power2 architecture that do not map well to the Simple Scalar
micro-architecture. Power2 integrates the arithmetic/logic and multiplier/divide units
into a single unit for both integer and floating point operations but Simple Scalar provides
separate units for each. Power2 has two integer and two floating point units. It was
decided to model the Power2 by using 2 integer ALUs, 1 integer mult/div unit, 2 floating
point ALUs and 1 floating point unit. The width of the instruction decode and issue are

 9

limited to powers of two but the Power2 supports the dispatch of five instructions. A
dispatch value of four was used. Table 4 lists the parameters that were used for the
simulation of the Power2 architecture.

Parameter Description Flag Value
instruction fetch queue size (in insts) -fetch:ifqsize 8
extra branch mis-prediction latency -fetch:mplat 1
branch predictor type {nottaken|taken|perfect|bimod|2lev} -bpred nottaken
instruction decode B/W (insts/cycle) -decode:width 4
instruction issue B/W (insts/cycle) -issue:width 4
run pipeline with in-order issue -issue:inorder false
issue instructions down wrong execution paths -issue:wrongpath true
register update unit (RUU) size -ruu:size 16
load/store queue (LSQ) size -lsq:size 8
l1 data cache config, i.e., {<config>|none} -cache:dl1 dl1:256:256:4:l
l1 data cache hit latency (in cycles) -cache:dl1lat 1
l2 data cache config, i.e., {<config>|none} -cache:dl2 none
l1 inst cache config, i.e., {<config>|dl1|dl2|none} -cache:il1 il1:128:128:2:l
l1 instruction cache hit latency (in cycles) -cache:il1lat 1
l2 instruction cache config, i.e., {<config>|dl2|none} -cache:il2 none
flush caches on system calls -cache:flush false
convert 64-bit inst addresses to 32-bit inst equivalents -cache:icompress false
memory access latency (<first_chunk> <inter_chunk>) -mem:lat 18 2
memory access bus width (in bytes) -mem:width 64
instruction TLB config, i.e., {<config>|none} -tlb:itlb itlb:16:4096:4:l
data TLB config, i.e., {<config>|none} -tlb:dtlb dtlb:256:4096:2:l
inst/data TLB miss latency (in cycles) -tlb:lat 30
total number of integer ALU’s available -res:ialu 2
total number of integer multiplier/dividers available -res:imult 1
total number of memory system ports available (to CPU) -res:memport 2
total number of floating point ALU’s available -res:fpalu 2
total number of floating point multiplier/dividers available -res:fpmult 1
ratio of fetch to issue -fetch:speed 2

Table 4. Simulator Parameters for Power2 Architecture

The parameters are a close approximation of the Power2 architecture. Any parameters
that are not shown use their default values. The configuration format for the cache is
<cache:sets:linesize:associativity:policy>. The configuration format for the TLB is
<tlb:sets:pagesize:associativity:policy>. The caches and the TLBs were configured to
match those in the Power2. The parameters were used to simulate the execution of C4.5
on the largest test case to establish a baseline for performance. The cumulative
modifications that were studied are:

1) Increasing the number of integer ALUs from two to four.
2) Increasing the instruction fetches and decode to eight instructions per cycle

from four and the instruction queue to sixteen from 8.
3) Increasing the number of memory ports from two to four.

 10

We need to study the changes in a cumulative manner since each subsequent change
provides increased resources for the previous change. The first change is to increase the
number of integer ALUs. It was speculated in previous work [reference to synthesis
paper] that the instruction level parallelism is limited due to the address calculations
required to access the instance data. The choice was to increase the integer ALUs from
two, the number in the Power2, to four. Next the flow of instructions was increased to
explore if the performance bottleneck could be the lack of instruction for the functional
units. To explore this we need the additional integer ALUs to consume the increased
number of available instructions. Finally the number of memory ports is increased to
determine if the memory is limiting the number of instructions that are available to the
fetch unit.

Results of Simulation of Micro-Architecture Modifications
The modifications were implemented by modifying the configuration file and C4.5 was
re-simulated with the new parameters. The first modification of increasing the number of
integer ALUs improved the performance over the base case by 2%. Increasing the fetch
and decode bandwidth in addition to the number of integer ALUs increased the
improvement over the base case by 2.7%. Finally the increase of the number of memory
ports with the other two modifications achieved an increase in performance over the base
case of 3.3%. The addition of a significant amount of hardware resources did not provide
a substantial increase in performance for C4.5. This may be due to a limited amount of
instruction level parallelism in the code.

Given that we suspect that the performance is being limited by the code we are running,
modifications to the source level code may result in additional parallelism being available
for the hardware. In previous work [10], several modifications to a well-used routine in
C4.5 were explored. The alternative implementations yielded no better results than the
original code but since we have now modified the micro-architecture these changes may
improve the performance. The piece of code from the subroutine ComputeFrequencies
that was studied is:

 for (p = FP ; p <= LP ; p++) {
 Case = Item[p];
 Freq[Case.attribute][Case.class] += Weight[p];
 }

This code walks through the instances totaling the number of classes for each of the
possible values of the chosen attribute. It accounts for 7.8% of the total runtime of C4.5
on the largest test case. The modified version of the code is:

 11

 p = FP;
 /* start up code for odd no. of elements */
 if (((LP – p) % 2) != 1) then {
 Case = Item[p];
 Freq[Case.attribute][Case.class] += Weight[p];
 p++;
 }
 /* process instances two at a time */
 for (; p < LP ; p = p + 2) {

 Case = Item[p];
Case2 = Item[p + 1];

 Freq[Case.attribute][Case.class] += Weight[p];
 Freq[Case2.attribute][Case2.class] += Weight[p + 1];
 }

The code was modified to step through the instance array and process two elements at a
time. There is a potential resource conflict if both instances write to the same location in
Freq but the hardware will insure that the operations are correctly executed. By
modifying the main loop the hope is that the instruction level parallelism is increased.
The goal is to reduce the execution time by increasing the amount of work that can be
done each cycle. All of the micro-architecture modifications were rerun using the
modified version of C4.5.

Simulation on the base configuration that closely matches the Power2 showed an increase
in performance of .8% over the base case. Again we will be using the performance of the
unmodified version of C4.5 on the Power2 configuration as the base case. Adding two
additional integer ALUs for the first modification resulted in a 2.5% increase over the
base case. Increasing the fetch and decode rate in the second modification produces a
3.3% increase in performance over the base case. Finally increasing the number of
memory ports produces an increase in performance of 3.9%.

With all of the micro-architecture modifications and the modification of C4.5, a
performance increase of 3.9% was achieved. If it is assumed that the time spent
executing phases of C4.5 in the simulator is similar to the results obtained on the Power2
the increase in performance is much larger. The subroutine that was modified accounts
for 7.8% of the execution time of the program on the Power2. For the case where the
program is modified and all the micro-architecture are included, an increase in
performance of 50% is achieved in the subroutine. Table 5 summarizes the percentage of
performance increase for the modification to C4.5, the enhancements of the micro-
architecture, and the loop for the modified version of C4.5.

 12

Version Original Modified Modified C4.5 Loop
Power2 Base .8 10
Mod1 2 2.5 32
Mod2 2.7 3.3 42
Mod3 3.3 3.9 50

Table 5. Percentage of Performance Increase

For both versions of C4.5 the increase in the number of integer ALUs provided the
largest increase in performance. Each incremental modification to the micro-architecture
resulted in an incremental increase in performance. Modifications in this study were
made to a set of interrelated resources. Each change resulted in additional resources
being available to the previous modification. To propose modifications to the Power2
architecture, the implementation cost versus gain of each of these modifications would
have to be studied. Also, additional programs would have to be studied to determine
whether the performance increases due to the micro-architectural changes occur in a
broader set of programs. From the results here, we would recommend that the number of
ALUs be increased to four in the Power2.

Conclusions
This paper has explored the use of hardware-based performance monitoring to examine
the execution characteristics of C4.5, which is a widely used data mining application. A
methodology was developed that addressed controllable and uncontrollable variances.
C4.5 was studied using a synthetic benchmark that allowed the scaling of the size of the
test cases. The results indicate that the Power2 architecture is well balanced for C4.5.
Several micro-architecture changes were explored to study the impact on the performance
of C4.5. Simple Scalar, a micro-architecture simulator, was used to study three
modifications of the micro-architecture and a modified version of C4.5. The single
modification that resulted in the largest increase in performance of the simulated micro-
architecture for both versions of C4.5 was the increase in the number of ALUs.
Modifications to this resource, which is involved in address calculation, yielded higher
performance but this must be viewed with the caveat that the entire program may have
benefited from this change. Finally the results show the complex relationship between
the program, compiler and micro-architecture.

References
1. S.W.White and S. Dhawan. “POWER2: Next Generation of the RISC System/6000

family”, IBM Journal of Research and Development, 38(1), pp. 493-502, 1994.
2. E. H. Welbon, C. C. Chan-Nui, D. J. Shippy, and D. A. Hicks, "The POWER2

performance monitor", IBM Journal of Research and Development, 38(5), pp. 545-
554, 1994.

3. Jussi Mäki. “POWER2 Hardware Performance Monitor Tools”,
http://www.csc.fi/~jmaki/rs2hpm-paper, 1995.

4. Robert Bergeron, “Measurement of a Scientific Workload using the IBM Hardware
Performance Monitor”, Proceedings of Supercomputing ’98, 1998.

5. J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1992.

 13

6. C.L. Blake and C.J. Merz, UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA: University of
California, Department of Information and Computer Science, 1998.

7. M. Rosenblum, S. Herrod, E. Witchel, A. Gupta, “Complete Computer Simulation:
The SimOS Approach”, IEEE Parallel and Distributed Technology, Winter 1995.

8. T. Keller, A. M. Maynard, R. Simpson and P. Bohrer, “SimOS-PPC full system
simulator”, http://www.cs.umtexas.edu/users/cart/SimOS.

9. D.C. Burger, T. M. Austin, and S. Bennett. "Evaluating Future Microprocessors-the
SimpleScalar Tool Set”, UW Computer Sciences Technical Report #1308, University
of Wisconsin, July 1996.

10. M. Thoennes, “Interaction of a Superscalar Architecture and a Data Mining
Application”, IBM Research Report RC22198, IBM TJ Watson Research Center,
Yorktown Heights, NY, September 2001.

