
RI 09015, 2 November 2009 Computer Science

IBM Research Report

SOPI : An Object Oriented Semantic Web Programming
API for Services Computing

Arun Kumar
IBM Research - India

ISID Campus, 4, Block - C,
Institutional Area, Vasant Kunj,

New Delhi - 110 070, India

Himanshu Chauhan
IBM Research - India

ISID Campus, 4, Block - C,
Institutional Area, Vasant Kunj,

New Delhi - 110 070, India

D Janakiram
Software Systems Lab

Dept. Of Comp.Sc. & Engg
Indian Institute of Technology Madras

Chennai - 600036, India

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably
be copyrighted is accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In
view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited
to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally
obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center,
Publications, P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on
the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.



SOPI : An Object Oriented Semantic Web Programming
API for Services Computing

Arun Kumar
IBM Research India

4, Block C, Vasant Kunj
Institutional Area

New Delhi 110070, India

kkarun@in.ibm.com

Himanshu Chauhan
IBM Research India

4, Block C, Vasant Kunj
Institutional Area

New Delhi 110070, India

himchauh@in.ibm.com

D. Janakiram
Software Systems Lab

Dept. Of Comp.Sc. & Engg
IIT Madras

Chennai - 600036, India

djram@iitm.ac.in

ABSTRACT
Services Computing is fast turning into the mainstream pro-
gramming paradigm for building enterprise systems that are
distributed in nature. However, the programming power
available to the developers of service oriented systems has
been slow to catch up with the advances in technology. Ob-
ject oriented APIs continue to be the prevalent mechanism
for implementing web services based software systems. This
creates a gap resulting from the absence of an abstraction
that can model services at the language level and yet be able
to meet the high requirements of the programming paradigm
enabled by the concept of services.
We present SOPI, a semantic web based Service Oriented
Programming API that bridges this abstraction gap by pro-
viding services as first class entities. It enables it in a fashion
that makes automatic discoverability, invocation and com-
position etc. possible at the language level. SOPI offers ma-
jor operations for service manipulation including creation,
discovery, invocation, composition, and inheritance. It relies
on the use of semantics and object oriented design principles
to achieve that. We present our design and implementation
of the API.

1. INTRODUCTION
Creating manageable applications in the presence of het-
erogeneity, and maximizing software reuse to reduce time
to market are some of the very important concerns for en-
terprise system designers of various organizations. Service
oriented computing promises to ease out these problems by
virtue of creating an infrastructure of loosely coupled busi-
ness components residing in heterogeneous frameworks.
The success of this architectural paradigm has lead to sev-
eral research efforts in the recent past that explore vari-
ous ways of creating new services (especially from exist-
ing ones) and increasing the level of automation in ser-
vice discovery, invocation, composition and interoperation.
These fall along two prominent directions. The first one
is about a distributed programming approach of specifying
web services [4] through a well defined interface definition
language in the form of Web Service Description Language
(WSDL) [23] and the associated XML based protocol for
information exchange called Simple Object Access Proto-
col (SOAP) [21]. This approach enables programmatic dis-
covery, invocation and composition of services in a service

oriented system. The second direction of research is aimed
towards automating the steps of discovery, invocation, and
composition of services through intelligent agents. These
developments proposed under the umbrella Semantic Web
technologies adopt a formal, logic based approach to spec-
ification of services including their interface, behavior, and
process model [17].
Despite these advances in underlying technologies, there is
a clear lack of abstraction available to developers building
service oriented software systems. They are required to map
high level service requirements coming from the business to
programming constructs available in current object oriented
languages such as Java and C# [7]. Further, they are forced
to take into consideration dynamics of the runtime environ-
ment since services are actively running components rather
than passive function/class libraries [11]. This highlights
mismatch between the needs of services software developer
and the programming models available today.
In this paper, we propose SOPI - a Service Oriented Pro-
gramming API that is based upon semantic web technologies
and incorporates object oriented design principles. Implic-
itly induced by the API is a programming model that pro-
poses to stage the service oriented software development pro-
cess into two stages. The first stage deals with specification
of the service oriented program in terms service definitions
of different kinds of services, available at compile time. The
second stage deals with creation of an executable service ori-
ented program that binds the specification of the program
to available service instances ready to be used which match
the specified (non-functional) requirements. This methodol-
ogy segregates the compile time aspects of services software
development from runtime aspects thus enabling improved
automatic service discovery leading to robustness and effi-
cient invocation and composition of services.
Specifically, the contributions of this paper are as follows:

• We present the architecture, design and implemen-
tation for enabling Service as a first class entity in
a programming language leading to a new direction
in service oriented programming. To the best of our
knowledge, this is the first implemented proposal for
realizing services as first class language level entities.

• We present the enhanced matchmaking of services based
upon object oriented principles and using semantic
web techniques. Specifically, we make use of OWL-S
representation of services and utilize preconditions and
effects expressed in SWRL rules to match requested



service behavior with available ones.

• We present an ontological two-level registry of services
that utilizes the proposed matchmaking techniques to
automatically build a hierarchical classification of ser-
vices enabling faster and effective retrieval.

2. PROBLEM STATEMENT
The language level abstraction of an ‘object’ available to
developers is not best suited for service oriented software
development. There is a clear need to impart first class sta-
tus to services, in prevalent object-oriented programming
languages. In this section, we highlight the differences be-
tween the service oriented paradigm and the object oriented
paradigms. We also discuss the challenges that need to be
overcome to bridge this abstraction gap and overview some
of the approaches that have attempted to do so.

2.1 Object Oriented Vs Service Oriented
We present a comparison of the two programming models
based on following factors:
Level of Abstraction: In Object Oriented Software Develop-
ment (OOSD), an object or a class instance is the basic unit
available to software developers. It is a datastructure that
captures the characteristics of a real world entity (rather
than a business service) and is more closer to IT domain
than to the business domain. For instance, a salary slip is
more likely to be defined as an object rather than a payroll
system. On the other hand, services are meant to capture
the characteristics of and represent an entire business func-
tionality without worrying much about how that function-
ality is realized.
In other words, services effectively capture the What of a
business function whereas objects typically represent several
components representing functionalities that come together
to define How to realize that business function.
Runtime Environment: An object oriented program is typ-
ically meant to execute in a single runtime environment of
the host language rather than span distributed hosting plat-
forms. Services, however, are inherently distributed by def-
inition and an end-to-end service invocation typically in-
volves multiple, possibly heterogeneous, runtime platforms.
Level of Coupling: Due to their distributed nature, differ-
ent services interacting with each other are loosely coupled.
This means that a service oriented system may still con-
tinue to function, if one or more of the interacting services
go down. Loose coupling allows a service client to switch
to a new service instance with ease owing sto well defined
interfaces and the fact that services exist independently.
In contrast, the components in an object oriented system are
very tightly coupled, executing within the same container
and failure of one results in failure of its dependents.
Reuse: Object oriented programming allows different kinds
of reuse. Reuse of code manifests itself in the form of reusable
classes available as class libraries and also through imple-
mentation inheritance. This form of inheritance allows a de-
rived class to be able to inherit the logic of the base class and
also modify it, if needed. OO systems also support interface
inheritance using the concept of behavioural subtyping [15]
in which a derived class inherits (and possibly extends) the
behaviour of the base class by conforming to the same inter-
face definition. Component reuse and interface inheritance
are also possible with services [12]. Implementation inheri-

tance, however, is not available since services are not meant
to expose their internal implementation.
Static Class Libraries Vs Dynamic Service Registries:
In OO systems, the developer has access to relatively static
class libraries using which a client program is written. The
components being shared are compiled class definitions avail-
able at development time, that do not change at runtime and
are either built into the language api or made available as a
distributable package.
Services, on the other hand, are active entities that get com-
posed together at runtime. They are shared as components
through service registries which maintain descriptions of ser-
vices currently available for use. Service registries, are dy-
namic in nature and change as often as new services come
up or old ones go down.
Interface Definition Language (IDL) Vs Programming Lan-
guage Constructs: The current programming model for ser-
vices is largely based upon the use of a standard IDL such
as Web Services Description Language (WSDL) for discov-
ering service interface and a standard XML based transport
protocol to send invocation messages to the service. A de-
veloper needs to be familiar with the both of these to be
able to effectively invoke a service.
Semantics: The semantics of a service are typically not
available from the interface description as in WSDL, even
though the service is meant to be discovered and invoked
programmatically. In contrast, the semantics of an object
being used is expected to be obtained from an API documen-
tation. This is fair since objects are meant to be explicitly
used and invoked through hand-coded programs as opposed
to be discovered and invoked by software agents.
Due to the above mentioned differences, we need a lan-
guage abstraction for representing services and their seman-
tics to shield the service oriented architecture (SOA) devel-
oper from unnecessary details. At the same time it should
expose service semantics to enable programmatic operations
on services. The difference in the underlying principles and
infrastructure make this a non-trivial issue.

2.2 Challenges
The primary hurdle against conceptualizing the notion of
service as a programming language abstraction is the re-
quirement of programmatic or automatic discovery [22], in-
vocation, composition [1], orchestration and even recovery [3]
of services. In OO languages, the responsibility of explictly
specifying an execution plan consisting of the exact objects
to be instantiated, invoked and the sequence to follow, lies
with the developer. Specifically, the following challenges
arise:
Business Developer Vs IT Programmer: Given the differ-
ence in level of granularity between an ‘object’ and a ‘ser-
vice’, a service oriented software development methodology
should tend to be more declarative and closer to business
user as compared to the object oriented approach which is
more programmatic in nature. Enabling this with all the
complexity involved is not straightforward.
Runtime: A service execution is split across the client run-
time environment, the service registry and the service host-
ing environment. Unifying all the three through a program-
ming construct is non-trivial.
Dealing with dynamicity: Services are typically hosted and
offered autonomously and may come up or go down dynam-
ically. This dynamic nature of services makes it extremely



hard to encapsulate them at the language level.

2.3 Existing Approaches
Some attempts have been implicitly made to address some
of the challenges in a piecemeal manner. The ServiceJ [14]
system proposes an extension of Java to enable support for
Service-Oriented Computing in OO languages. To achieve
that, it uses dynamic service selection and binding to handle
volatility of services. It also deals with distributed nature of
the service environment by offering a transparent fail-over
mechanism that is configurable using declarative language
constructs. In other words, the ServiceJ concept attempts
to provide a language level representation of services. How-
ever, it does not fulfil the requirements identified in this
paper, since it continues to offer an abstraction meant for
the IT programmer rather than high level business process
developer.
Zimmermann et al. [24] motivate the need for a Service Ori-
ented Analysis and Design (SOAD) approach that lever-
ages and builds upon existing approaches of Object Ori-
ented Analysis and Design (OOAD), Enterprise Architec-
ture frameworks and Business Process Modeling concepts.
They recognize that the basic concepts of OOAD are ap-
plicable to SOA but on a higher level of abstraction than
classes. Based upon this they identified the absence of sup-
port for cross platform inheritance and notion of first class
service instance. Our proposed approach in this paper, fills
in the gap identified by these practitioners.

3. OUR APPROACH

3.1 Services oriented development with object
oriented methodology

Our premise is that for Service oriented computing (SOC)
there is a lot to be leveraged from the research efforts and
practical learnings that have gone into the object oriented
paradigm. The key benefits of OO paradigm exemplified in
the form of reuse, extensibility, reliability, maintainability
and evolution are all needed for services as well. We believe
that SOC can leverage the same architectural principles that
have made object oriented software development as the most
successful programming model till date.
In this paper, we provide a mechanism to achieve this amal-
gamation of the two paradigms and make it available in a
programming language for direct use by developers. More
specifically, we crystallize the object oriented abstraction
principles of classification, composition and inheritance as
introduced to SOC in [12] and make it available as an API
to the service oriented software developer.

3.2 Semantic Web as the foundation
Capturing the semantics of a service in a programming con-
struct and making it available to the developer is a key ingre-
dient for making service oriented programs capable of per-
forming automated operations. We make use of research ac-
complished in Semantic Web services 1 community to be able
to do that. Further, we make use of Semantic Web Rules
language (SWRL) 2 conditions which capture the seman-
tics of behavioural interface of services. Finally, we utilize
service matchmaking techniques based upon these semantic

1http://www.daml.org/services/
2http://www.w3.org/Submission/SWRL/

descriptions to enable a rich API for automated discovery
of services in a scalable manner.

3.3 Jruby’s Meta-programming
To demonstrate the realization of concepts presented in this
paper, we make use of Jruby’s 3 meta programming capa-
bilties. Jruby is well suited for this task as it enables inte-
gration Java based software implementations while retaining
the meta-programming capabilties of Ruby.
Quick proto-typing and rapid testing of proposed constructs
is the primary reason for us to choose a dynamic language
instead of the traditional approach of creating a compiler for
the new API in a programming language such as Java. This
allowed us to focus more on the API design rather than the
choice of platform to use for demonstration.

4. SOPI : AN API FOR SERVICE ORIENTED
PROGRAMMING

In this section, we present the core elements of service ori-
ented programming approach proposed in this paper. We
introduce the representation of a Service in our framework,
the programming model it induces and the API that the
framework supports.

4.1 Service Representation
Based upon our previous work [10, 11, 12], we present our
proposed representation of a Service that is split into two
complimentary pieces rather than a single unit. The first
half represents the core functional cum semantic description
of a service that is independent of actual implementation.
It is called Service Type and can be made available to a pro-
grammer in the software development phase. The second
half of the representation, called Service Instance, captures
non-functional cum operational description of the service
and is bound to runtime characteristics of a particular in-
stance of running service. This can be made available at
runtime.
We use semantic web service technologies to realize the rep-
resentation for a Service Type whereas the representation
for Service Instances relies on web services description and
protocols.

ServiceType{
functionalSpec{

interfaceTypeA{
inputTypes { .. };
outputTypes { .. };
preconditions { .. };
results { .. }; 

};
….

};
nonFunctionalReqmts{

<QoS and other reqmts.>
};

}

ServiceInstance{
serviceTypeRef;
operationalSpec{

interfaceA{
inputs {..};
outputs{..};

}
….

}

nonFunctionalCapability{
<QoS guarantees>

}
}

Figure 1: ServiceType and ServiceInstance

As shown in Fig. 1, ServiceType is composed of two elements
– a functional specification containing various interface de-
scriptions, and constraints on non-functional capabilities of
service instances. The functional specification prescribes the
set of interfaces exported by any service that conforms to

3http://jruby.org/



Name: FreshFlowerShop Service

Input: SenderAddress, ReceiverAddress, FlowerName, NumOfFlowers

Output: OrderReceipt, Packet, Amount

Precon: SenderAddress isAvailable, ReceiverAddress isAvailable,

FlowerName oneOf Flowerlist

Result: OrderReceipt sentTo Address, Amount available, Packet available

Figure 2: Example of Semantic Description

this type. Each interface is essentially a semantic represen-
tion of a method and is described in terms of inputTypes to
be supplied, the preconditions that must be satisfied before
the method can be invoked, the outputTypes that can be
expected as a result of the invocation and the results con-
sisting of implicit effects that the method brings about in
the environment where the service executes. Figure 2 gives
an example of semantic description of a FlowerShop service.
The entire functional specification in a ServiceType is based
upon concepts defined in an ontology. This enables the soft-
ware developers to write programs that can automatically
reason upon the functionality of the service they intend to
deal with.
The non-functional requirements element is intended to cap-
ture the parameters and constraints on them that instances
of that ServiceType should satisfy.
Similarly, ServiceInstance is composed of three elements – a
reference to its corresponding ServiceType, an operational
scpecification of the service containing actual interfaces (cor-
responding to interface descriptions in ServiceType), and
the set of non-functional capabilities of the instance. The
operational description of the service consists of the exact
interface that a client program needs to use to invoke the
service. It specifies the inputs and outputs corresponding to
inputTypes and outputTypes defined in the ServiceType.
The ServiceInstance entity, in essence, acts as a proxy to
the actual service that hides binding and protocol details
from service clients and provides them a simple invocation
interface. When used to invoke a method, a ServiceInstance
implementation effectively collects the parameters supplied
to it, validates them against the definition specified in the
corresponding ServiceType and uses the binding information
of the actual service instance to make a web service call to
it.
For simplicity, we focus on a subset of this representation
in this paper. Specifically, we restrict ourselves to a single
interface both in ServiceType and ServiceInstance. Also,
non-functional requirements/capabilities are not addressed
in this paper.

4.2 Semantic Relations Between Services
Semantic representation of services, as crystallized in
ServiceType, capture the entire behavior offered by the ser-
vice and is amenable to be processed automatically. This
property enables different services to be compared based
upon their semantic descriptions.
Automatic service matchmaking has been an active problem
of research in the recent past. Most of the existing literature
so far has focused on comparing either only Inputs and Out-
puts parameters or simplistic precondition and effects [13].
To the best of our belief, we present the first attempt to-
wards matchmaking of services with rich preconditions and
results expressed as SWRL rules also matched ontologically.
Firgure 3 presents the semantic match levels for input and
output comparisons [13]. The relation for Output parame-

ters is defined from Advertisement to Request and for Inputs
it is defined from Request to Advertisement. Therefore, for
outputs (refer Fig. 3(b)), an exact match is returned if the
advertised concept is equivalent to the requested concept,
a plugin match is returned if the advertised concept is a
subclass of requested concept, a contains match is returned
if the advertised concept consists or is composed of the re-
quested concept, a subsumption match is returned if the ad-
vertised concept is a superclass of the requested concept, a
part-of match is returned if the advertised concept is con-
tained by the requested concept, otherwise disjoint match
is returned. [13] gives more details of match levels for ex-
pressions in preconditions and effects and how matchmaking
across these different elements of a service description can
lead to semantic matchmaking between services.

Unrelated

ContainedBy

SuperClass

Contains

Subclass

Equal

Relation(Req,Advt)
(Inputs)

Unrelated

ContainedBy

SuperClass

Contains

Subclass

Equal

Relation(Req,Advt)
(Inputs)

In
cr

ea
si

ng
 S

tr
en

gt
h

(a) (b)

5
4
3
2
1
0 Unrelated

ContainedBy

SuperClass

Contains

Sublass

Equal

Relation(Advt,Req)
(Outputs)

Unrelated

ContainedBy

SuperClass

Contains

Sublass

Equal

Relation(Advt,Req)
(Outputs)

Disjoint

Part-of

Subsumption

Contains

Plugin

Exact

Semantic 
Match Level

Disjoint

Part-of

Subsumption

Contains

Plugin

Exact

Semantic 
Match Level

Figure 3: Semantic Match between parameters (a)
Inputs (b) Outputs

We now present our extended semantic match making ap-
proach which includes precondition and result comparisons
in addition to traditional input and output match tech-
niques. The process of comparing service definitions begins
by collecting the parameter sets of all the four categories
inputs, outputs, pre-conditions and results from both the
services. This process then passes lists of same category
from both the services to MatchParamLists, which re-
turns the compatibility score for these lists. For example,
when called for matching serviceA with serviceB, this com-
ponent fetches inputsA and inputsB and passes them for
matching; and then proceeds for rest three categories. Thus
for each of the four categories, a type score is computed,
resulting in four scores : InputScore, OutputScore, PreCon-
Score and ResultScore. The overall service level comparison
score is selected as the minimum of these four scores. The
psuedo-code below captures this approach in short:

MatchServices(service1, service2)

int matchScore ← 10 � 10 stands for EXACT match
� where as 0 represents a DISJOINT match
for each type : [Inputs ,Outputs ,PreCons ,Results ]

do params1 ← service1 .getParamList(type)
params2 ← service2 .getParamList(type)
typeScore ←MatchParamLists(params1, params2)
if typeScore < matchScore

then matchScore ← typeScore
return matchScore

The procedure called for computing comparison scores for
parameter sets is MatchParamLists. It iterates over both
parameter lists and compares each parameter from first list
against all from the second. Thus it generates an mxn ma-
trix of scores. This score matrix is then passed on to another
procedure FindMaximalMatch, which uses a maximal bi-
partite matching algorithm [18] to return the best match
score for the matrix.



MatchParamLists(paramList1, paramList2)

matrix ← int[paramList1 .size ][paramList2 .size ]
for i← 0 to paramList1.size

do p1← paramList1.get(i)
for j ← 0 to paramList2 .size

do p2← paramList2.get(j)
matchval ← SemanticMatch(p1, p2)
matrix [i][j]← matchval

return FindMaximalMatch(matrix)

The algorithm described above is sufficient for performing
comparisons for Input and Output parameters. However
comparisons of precondition and result sets of services varies
slightly, and uses an extended approach, which we call Match-

ParamsWithEffects. For such comparisons the algorithm
first peforms additional downward traversals to extract ef-
fect parameters from expression bodies, and then calls Match-

ParamLists with the extracted parameters.

MatchParamsWithEffects(paramList1, paramList2)

matrix ← int[paramList1 .size ][paramList2 .size ]
for i← 0 to partamList1.size

do p1← paramList1.get(i)
for j ← 0 to paramList2 .size

do p2← paramList2.get(j)
effs1 ← GetEffects(p1)
effs2 ← GetEffects(p2)
matrix [i][j]←MatchParamLists(effs1 ,

effs2 )
return FindMaximalMatch(matrix)

Both the processes described above make use of procedure
SemanticMatch to perform semantic comparison on a pair
of parameters. This procedure starts by getting semantic
classes of parameters based on their semantic definitions in
base ontology. After obtaining the class names/URLs, the
procedurej queries the ontology model to list all the state-
ments having these classes as their subject and predicate
values. Iterating over all such statements, the algorithm re-
trieves the ’property’ from each of them, and determines if
the relation represented by property value is stronger in as
compared to the previous one. If a stronger relation is found,
the algorithm assigns that as the result. At the end,after
completing interations over all the statements, the strongest
relation found is returned.

SemanticMatch(param1, param2)

owlClass1 ← param1 .semanticClass
owlClass2 ← param2 .semanticClass
� retrieve statements from ontology containing triplet:
� owlClass1 ‘relatedTo’ owlClass2
� * is used as a wildcard to fetch all the statements
iterator ← ontology .listStatements(owlClass1 , ∗, owlClass2 )
result ← DISJOINT
while iterator .hasNext

do
statement ← iterator .next
relation ← statement .getProperty
if relation > result

then result ← relation
return result

4.3 A Programming Model for SOSD
In the current practice, a service oriented software developer
binds the client program to the actual service to be invoked,

Service S/w Development
Environment

Registry of
ServiceType
Definitions

Developer

Deployable Program

Available 
Services

Service Runtime 
Execution

Environment

Binding 
Component Registry

of Service
Instances

Limited
Search

Execution Engine

Executable 
Program

Other 
Libraries

(Program with ServiceType variables 
bound to a dummy ServiceInstance)

Figure 4: Programming Model for Services

at development time itself. This is because, the representa-
tion of an invocable service available to the developer today
is the WSDL that is an interface description of a live service.
Programming to an implementation (rather than just the
interface) as is done today results in brittle programs that
woulsd break if the bound service goes down, changes its
location or deteriorates in performance. Frameworks such
as Web Service Invocation Framework (WSIF) [6] enable
late binding of a service to its client program as long as the
instance being bound conforms to the same interface as in
WSDL description used for writing the client program. The
port at which the service instance runs or the protocol used
to access it may vary at deployment time.
However, ideally the late binding mechanism should allow
other details of a service to vary as long as the semantics of
the actual service being used at runtime conforms to (and
is compatible with) the semantics of the original service us-
ing which the program was created. This implies that not
only the location of the service but also the datatype of
the parameters passed to methods as well as the number of
parameters etc. could vary. This increased flexibility can
increase the robustness of an SOA manifold especially if the
rangde of compatible alternate services could be discovered
and invoked automatically thereby enabling self-healing.
Figure 4 shows the programming model that gets induced
by the representation of a service presented in the previous
subsection and enables such late binding as discussed above.
The model presented here decouples the client program from
the actual service instances. A library of ServiceType de-
scriptions is made available to the software developer (pos-
sibly incorporated into an integrated development environ-
ment). This library, which is similar to class libraries avail-
able in object oriented languages such as Java, is called Ser-
viceType Registry. Description of service instances is stored
in a complimentary part of service registry called Service-
Instances Registry. A default ServiceInstance description
corresponding to each ServiceType is also contained in the
ServiceType registry. This is a dummy description as it
does not refer to a real available service but it is used for
initialization.
The SOPI API essentially makes use of this library of Ser-
viceType descriptions as well as ServiceInstance descriptions
and creates a wrapper around it to expose service as a
first-class representation language construct. It exposes a
MetaService construct that enables creation of new Service-
Types. This allows the developer to define new kinds of



services. A ServiceType when bound to a ServiceInstance
provides the full realization of a Service.as an object This
Service object encapsulates the ServiceType as well as the
ServiceInstance bound to the ServiceType. It expose a se-
mantic interface to query and possibly manipulate the se-
mantic definition. It also exposes the operational interface
of the ServiceInstance. In other words, Service acts as a
proxy to the actual instance running elsewhere and provides
the interface to invoke methods on the actual instance.
As shown in the figure, the developer creates client programs
by initializing ServiceType with a dummy ServiceInstance
description without worrying about the nuances of runtime
environment and specific characteristics of actual running
instances. This deployable program can then be executed
in a services runtime environment. It is the responsibil-
ity of the runtime system to update the binding of Service-
Types in the program to conforming ServiceInstances that
best matche the non-functional criteria specified in those
ServiceTypes. For this purpose, the runtime system does
a search on the ServiceInstance registry for ServiceInstance
that either directly conforms 4 to the ServiceType or can be
used in its place by virtue of having been derived from that
ServiceType. Once such a semantically matching Service-
Instance is found, the retrieved ServiceInstance is bound to
the ServiceType in the program and the program executed
else the execution fails in absence of a real running instance
of the desired service.
For other situations, such a plugin match, developer/user
input becomes essential.
In essence, the client program is tightly coupled with a Ser-
viceType and is bound to a semantically compatible Service-
Instance satisfying non-functional criteria, only at runtime.
It is this flexibility in binding that makes the system robust
and shields it from dynamics of runtime environment since
actual instance to be invoked is not bound at compile time.

4.4 The SOPI API
To support the programming model presented above, we
propose a set of API calls for the developer that are con-
venient to use, are declarative in manner and yet enable
important operations over services.

4.4.1 Service Creation
We assume that various services would be developed and
hosted by various autonomous entities in different adminis-
trative domains. Service creation in a client program then,
is essentially an operation that creates a language level rep-
resentation of the desired service and at an appropriate time
gets bound to a running ServiceInstance hosted elsewhere.
The latter step is essentially instantiation of the Service-
Type, in our terminology.
Service creation API is exposed by the MetaService con-
struct available as part of the core language functionality.
The creation is achieved either by instantiating existing Ser-
viceTypes or by first creating a new ServiceType and then
instantiating it.
MetaService.createServiceType(serviceName, serviceTypeURI):

4The task of automatically identifying whether a Service-
Instance conforms to a ServiceType is a research problem
in itself and out of scope of this paper. Here, we assume
that a ServiceInstance description consists of an identifier
that points to its corresponding ServiceType. This could be
done manually by the service creator.

Creates a new service type using the serviceTypeURI as the
resource path for service type definition, and registers this
profile against serviceName . The registry process is covered
in detail later in the paper. In case the user does not pro-
vide a name for service and passes serviceName argument as
null, this method itself may generate a name for service and
inform the user by returning the name sstring as its return
parameter.
ServiceType.instantiate(serviceInstanceURI): Binds an ex-
isting service instance running whose description is available
at serviceInstanceURI with type represented by ServiceType .
It returns a Service object. The binding action results in the
interface of the target service getting exposed to the devel-
oper through the Service object.

4.4.2 Service Discovery
Automatically discovering instances of desired service is a
key promise of service oriented computing. The Service-
Type descriptions enable semantic search for desired ser-
vices without having to look through the entire world of
running instances. Having identified the exact ServiceType
one needs, the search needs to be restricted to only those
ServiceInstances that are labelled as instances of that Ser-
viceType. This imparts scalability to the discovery process
as it scopes down the search to a much small set by splitting
it into two phases. In the first phase, the search is restricted
to ServiceTypes registry whereas in the second phase it is
restricted to only those entries of ServiceInstance Registry
that are instances of the given ServiceType or those of se-
mantically compatible ServiceType.
Apart from MetaService construct the developer has access
to the ServiceTypes Registry for creating client programs.
The discovery are defined over the Service Registry.
Registry.findServiceType(serviceTypeName, relation, doStrict-
Match): Finds ServiceTypes whose semantic match with
serviceType produces a match of strength relation or better,
based on the value of boolean variable doStrictMatch . For
example, if doStrictMatch is set to false (which is default
behaviour) and if the passed argument relation denotes a
‘Sub-Class’ relation, this method returns all service types
whose semantic comparison with serviceType shows ‘Sub-
ClassOf’ or stronger ‘Exact’ match. However when it is set
to true the method returns only those service types that
have their semantic comparison result with serviceType as
‘Sub-ClassOf’.
Registry.findAlternateService(serviceTypeName, relation, doStrict-
Match): This method internally invokes the findService-
Type and findServiceInstance methods and return an alter-
nate ServiceInstance matching the ServiceType functionally
as well as non-functionally.

4.4.3 Service Invocation
Service.methodName(parameterlist): This enables invoca-
tion on the actual service through the API. This is the real
use of the API, as it presents an abstract interface for the
actual service. If the service provides any management in-
terfaces such as for starting pausing, shutting it down, those
can be exposed as well.s

4.4.4 Query APIs
ServiceType.getMatchLevel(serviceType): This operation
compares two service types and indicates the semantic de-
gree of match between those. The algorithm used to com-



pute semantic match between service types is described in
detail in section 6.3. ServiceType.isEquivalentTo(a): Com-
pares the service type instance a with the instance it is
called upon and returns whether both the instances are se-
mantically equivalent or not. This method uses getMatch-
Level(a,b) method described above to perform the compar-
isons. However, before calling this method, it also checks
if the invoking instance and the instance passed as argu-
ment are both same, in which case there is no need to per-
form further comparisons and this method reports them as
equivalent.
ServiceType.isDerivedFrom(a): Determines if a given ser-
vice type instance is derived from (is subclass of) another
service type. The method queries for semantic match level
of the two instances by calling getMatchLevel, and if the
match level indicates that service type of a is superclass of
that of invoking instance this method returns true.
ServiceType.isSuperServiceOf(a): This method acts as an
inverse of isDerivedFrom, and determines if service type of
invoking instance is superclass (based upon semantic defini-
tions) of service type of instance a .
ServiceType.isDisjointWith(a): Checks if service type defi-
nitions of invoking instance and a are semantically disjoint.

5. SYSTEM ARCHITECTURE

SR- Service
Registry

Service
Matchmaking

STR SIR

S/W 
Development
Environment

Services
Runtime

Environment

Registry
Admin

Service
Crawler

Services
In the Internet

Service
Developer

Service
Oriented
Program

Service
Consumer

Figure 5: SOPI Architecture

5.1 System Overview
Development Environment: As shown in Figure 5, IDE is
the interface through which the services software developer
is exposed to SOPI API. It could be support for Services
in traditional programming languages such as Java or a Do-
main Specific Language or, as in our case, an API in dynamic
language (we provide SOPI as an api in Jruby as presented
later in this paper). The development environment inter-
faces with the Services Registry to retrieve ServiceTypes
and make them available to the developer.
Service Runtime Environment: This is what a service con-
sumer uses to execute a client program that invokes one or
more services. The client program created in the develop-
ment environment would have ServiceType variables bound
to dummy ServiceInstances. The runtime evaluates the best
available ServiceInstance from the underlying Service Reg-
istry that satisfy the non-functional criteria specified.
Service Registry is a key component of the SOPI Architec-
ture and we present its details in the next subsection. The
registry administrator and crawler programs are responsible

for keeping the registry updated based upon services avail-
able in the internet. Details of interfaces for these are not
covered in this paper.

5.2 Service Registry
We present a novel approach of capturing semantic as well
as operational interface description of services in a registry.
Essentially, a services registry in SOPI is a composition of
two separate but interlinked sub-registries. The first one,
called ServiceTypes Registry (STR), consists of descriptions
of various ServiceTypes along with description of a conform-
ing dummy ServiceInstance. STR is available to program-
mers at development time. This is similar to availability
of class definitions in Java class libraries using which the
programmer creates objects in a program. Typically, the
description consists of semantic specification of the service
interface in terms of its inputs, outputs, preconditions and
results based on an ontology. ServiceType descriptions in
SOPI architecture are represented as OWL-S files.
The second sub-registry, called ServiceInstance Registry con-
sists of descriptions of ServiceInstances that capture details
of actual running instances including information required
to invoke those services. Specifically, this may include infor-
mation about the service invocation interface, the protocol
to be used to invoke it, the QoS parameters supported by
the service instance and the URL where it is available. It
is this second kind of registries that have been proposed so
far in the literature and are in use today in service oriented
runtime environments. ServiceInstance descriptions in SOPI
architecture are represented using Web Service Description
Language (WSDL). Since much work has been devoted to
such registries, we do not discuss them in detail in this paper.
As shown in Fig. 5 as well as Fig. 4, the resulting Services
Registry provides search on types of services as well as indi-
vidual instances. The STR part of the registry is made use
of by the developer at program development time whereas
SIR is used by the runtime to look for an appropriate Servi-
ceInstance to bind. New entries in STR and SIR could either
be added automatically by a program or manually by a reg-
istry administrator. Next we describe details of ServiceType
Registry.

ServiceType Registry
As mentioned, STR contains semantic description of services
capturing their behavior interface. This description is suffi-
cient to determine the capabilities of a service and reason on
it. Since ServiceTypes are available at development time, it
implies that it is possible to compare and contrast capabil-
ities of different kinds of services in an offline environment.
This saves precious matchmaking time at runtime.
Furthermore, as a result of the comparison between differ-
ent ServiceTypes (typically, while adding a new type to the
registry) it computes and captures different relationships
among ServiceTypes to automatically build an ontology of
ServiceTypes. The matchmaking algorithms presented ear-
lier, let the registry determine whether newly added service
is related to an existing one through one of the semantic
relations introduced in semantic relations section including
equivalence, plugin, composite, supertype, subtype and dis-
joint.
Such an ontology of ServiceTypes enables an ontological
search for services to be performed by referring to their on-
tological names. This not only prevents having to match



services by comparing their interface descriptions each time
but also enables richer service retrieval through queries over
the relationships between those ServiceTypes. Not having
to specify full descriptions for search makes service discovery
more scalable than what is possible today.
STR consists following components:
Service Loader parses ServiceType descriptions and cre-
ates an object corresponding to each of those. The Service
Loader performs primary validations on semantic descrip-
tions as well as ensures that registry does not load multiple
instances of same type description.
Matcher Given a pair of service objects, this module com-
pares service components and calculates degree of match on
component level as well as overall match scores between the
two services.
Discovery Manager On invocation of query methods Dis-
covery Manager traverses its internal graph representation
of ServiceType ontology and repeatedly calls Matcher to
discover ServiceTypes which match the discovery criteria.

6. IMPLEMENTATION
In this section, briefly describe different aspects of our proto-
type implementation of SOPI API. ServiceType descriptions
are created using OWL-S and we use Jena’s OWL API and
OWL-S API (both for Java) to parse and interpret these de-
scriptions. Conditions in preconditions and results of OWL-
S descriptions are encoded using Semantic Web Rules Lan-
guage (SWRL). The language level constructs are imple-
mented using Jruby’s metaprogramming capability which is
integrated well with the Java code.

Figure 6: SOPI Implementation

6.1 JRuby Metaprogramming Layer
We define a MetaService Class in JRuby that has a create-
ServiceType method with serviceTypeName and OWLS URL
as parameters. This method creates a subclass of MetaSer-
vice Class which when instantiated has the entire seman-
tic interface of the ServiceType available through methods.
The methods corresponding to individual inputs, outputs,
preconditions and results are prefixed I, O, P and R respec-
tively. This subclass of the MetaService class with methods
defined according to the semantic description specified, is
the language level representation of that ServiceType. This
can be used to create different instances of this ServiceType.
Similar to ‘create’ the MetaService class has an instantiate
method with WSDL URL as a parameter. This method
invokes instance eval() which is meta-programming method
in Jruby used for inserting class level methods dynamically

sat runtime. So, a portType/message part should have an
equivalent instance method to that is invokable.
This dynamically modified ServiceType object with new added
interface corresponding to a ServiceInstance is the complete
first class representation of a Service. It encapsulates both
- the ServiceType interface as well as the ServiceInstance
interface.

6.2 Service Representation and Matchmaking
We used OWL-S Jena API 5 to parse ServiceType descrip-
tion available as OWL-S files and converted them to in-
memory object instances. This object encapsulates the OWL-
S representation and makes it available to the Jruby metapro-
gramming layer described above. We enhanced the service
matchmaking algorithm implementation as presented in [11]
to include the first ever preconditions and results based se-
mantic matching with SWRL rules rather than simple on-
tological concepts, to the best of our knowledge.
Our initial implementation used SWRL API from CMU for
parsing SWRL rules embedded inside OWL-S descriptions.
However, the API turned out to be incomplete in function-
ality as it was unable to parse the SWRL rules in their
entirety. Specifically, effect objects from the rule definitions
could not be parsed successfully. For such requirements we
have extended it for parsing the definitions and generating
effect objects. Semantic reasoning on ontological models
remains the most basic requirement for our approach, and
for all such reasoning tasks we make use of Jena API, which
allows interactions with ontology in an object oriented man-
ner. All these layers put together form the base for our API
layer implementation.

6.3 Ontological Discovery Of Services
We implement ServiceTypes Registry by using a map data
structure called typeMap which holds type names (as keys)
against a bucket (a list) of profile URLs bound to these
names and an ontology of type names, called typeOnt con-
taining their semantic relations. Using this setup, we imple-
ment the two primary operations addServiceType and find-
ServiceTypes in following manner:
Adding a new service type to registry entails invoking addSer-
viceType with a typeName and a serviceURL. On invoca-
tion, the method first validates parameter values. In the
next step, the key set of typeMap is then looked up for
typeName : (a) if this name is present in the set, the new
service description (specified by serviceURL) is matched se-
mantically against a description from the bucket in map,
that is stored against the typeName . The result of this com-
parison is called relation . If it denotes an ‘Exact’ match,
serviceURL is added to the existing bucket in the map. In
case relation is not ‘Exact’, we replace typeName with an
auto-generated unique type name uName and then follow
steps same as (b).
(b) if the name is not present in key set then buckets against
each key are iterated upon, and each profile from each bucket
is compared semantically with profile from the argument.
We use a variable bestMatch to retain the strongest match-
ing profile found.
After each semantic comparison, its result is observed and
compared with bestMatch . If this result denotes a stronger
match, bestMatch is set to result . At any stage if it de-
notes an ‘Exact’ match, serviceURL is added to the existing

5http://jena.sourceforge.net/



bucket in the map from which this match was found, and the
iterations are terminated. If termination occurs by ‘Exact’
match, typeOnt is updated with the statement denoting
the two profile types as equal, and the procedure finishes.
Whereas if the relation of result is not ‘Exact’, we carry
on iterating and updating bestMatch . After completion of
iterations, and no ‘Exact’ match being found, we add an en-
try to typeMap having typeName as key having its value
set to a new bucket containing servicseURL. Then type-
Ont is updated with statement like : typeName has relation
with bestMatch . In case serviceType is not provided, we use
an auto-generated unique name and then execute the above
steps.
Searching for a service type involves a similar procedure as
described above. The difference is that in search operations,
we do not perform add operations on typeMap but we do up-
date typeOnt with all the relations found during the search.
Also, search operations return the service type having best
possible semantic match, and other service types which are
equivalent to that service type (deduced from ontological
reasoning).

7. EVALUATION
In this section we focus on evaluating the peformance of our
registry implementation under the combined effects of pro-
posed service match-making approach and registry design.
For our experiments we use OWLS-MX6 [8] dataset of ser-
vice profiles. We carry out two set of experiments.
First, we measure cost of add operations by adding services
to registry, for which we add 200 service profiles to it.
Second, we perform a set of experiments to compute the cost
of query operations on this populated registry, for which we
query a profile and to retrieve all matching profiles and their
bindings. For both these sets, we also demonstrate the bene-
fit of using the proposed concept of ServiceTypes by calling
addService and findService operations first with manually
assigned ServiceType names and then without ServiceType
names provided. Same service is queried for in both cases.
When a type name is not provided, the registry uses an
auto-generated name and returns this name on completion
of operation.

Figure 7: Cost of addService() operation

6http://projects.semwebcentral.org/frs/download.php/255/owls-
tc2.zip

Figure 8: Cost of findService() operation

Figure 7 presents time variance of add operations on reg-
istry as its size and internal ServiceType ontology grows. It
is evident from this figure that when a type name is known
for a profile being added, the procedure takes significantly
lower time. Figure 8 presents the times taken to retrieve
same number of matches from the registry for a given query
profile. As is intuitive from the map based implementation
of registry, this figure also confirms that query operations
finish in O(1) time when the service type is known for de-
sired service profiles.

8. RELATED WORK
Service matchmaking has been researched a lot in recent
years both in the context of syntactic (WSDL) matching as
well as for semantic matching. Kokash, et al. [9] present
a survey and comparison of different approaches. OWLS-
MX [8] provides a framework for hybrid semantic Web ser-
vice matching. It utilizes both reasoning techniques as well
as traditional information retrieval techniques for service
matchmaking. However, the thrust has been towards au-
tomated matching rather than enabling it for a web services
developer.
Apart from heavy focus on automated matching, functional
matching operations proposed have remained at the abstrac-
tion level of ontological concepts alone. Matching operations
at the level of services have been restricted to attempts at
defining equivalence operation [19, 16]. Even there, the no-
tion of an operation with services as operands does not find
emphasis.
Several researchers have either extended or felt the need of
applying some of these OO concepts that are currently miss-
ing from SOC [2, 20]. The ServiceJ [14] system proposes
an extension of Java to enable support for Service-Oriented
Computing in OO languages. It uses dynamic service se-
lection and binding to handle volatility of services. Our
approach starts by first defining the right level of abstrac-
tions needed for service oriented computing and then goes
on to provide language level constructs needed for services
based programming.
Papazoglou [20] provides a detailed comparison between ser-
vices in SOA and objects in OOAD. However, they felt that
concepts like polymorphism etc. are not applicable in SOA.
[5] propose a programming language for Web Service Devel-
opment. Their aim however, is to ease the task of the soft-
ware developer working with web services paradigm which is
different from traditional programming as it involves XML



manipulation and uses a messaging paradigm. Semantics
of service descriptions and automating service operations is
not considered.

9. CONCLUSION
There are two main contributions of this paper. First, it pro-
vides a mechanism to be able to offer a service abstraction
to the developer by utilizing semantic web and web service
technologies. We demonstrated it with an API that is made
available to the developer by exploiting the metaprogram-
ming capabilities of a dynamic language. This mechanism
induces a new programming model as illustrated in the pa-
per. Second, it makes use of this proposed programming
model and enhanced matchmaking techniques to present a
Service Registry, part of which is ontological in nature. The
ontology of services is built automatically from service de-
scriptions and is available to service programmers at devel-
opment time. By virtue of its design it imparts scalability
to the service search process which in the case of dynamicity
of web services, often lies in the path of service invocation.
In future, we plan to incorporate support for service com-
position as proposed in [1] into SOPI API. While we chose
to exploit JRuby’s metaprogramming facility for quick pro-
totyping, adding support for the proposed model in Java
is another direction we wish to pursue. Finally, we intend
to build upon this work and add service instance matching
functionality to our system to provide an end-to-end inte-
grated development environment for service oriented soft-
ware development. This would require, among other things,
adding support for non-functional requirements matching.

10. REFERENCES
[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar,

A. Kundu, S. Mittal, and B. Srivastava. A Service
Creation Environment based on End to End
Composition of Web Services. In Proceedings of
WWW, May 2005.

[2] S. Baker and S. Dobson. Comparing Service-Oriented
and Distributed Object Architectures. In Proceedings
of the Intl. Symp. on DOA, Cyprus, Nov 2005.

[3] K. Birman, R. van Renesse, and W. Vogels. Adding
High Availability and Autonomic Behavior to Web
Services. In Proceedings of ICSE, UK, May 2004.

[4] D. Booth, H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris, and D. Orchard. Web
Services Architecture, W3C Working Group Note.
http://www.w3.org/TR/ws-arch/wsa.pdf, Feb 2004.

[5] D. Cooney, M. Dumas, and P. Roe. A programming
language for web service development. In ACSC ’05:
Proceedings of the Twenty-eighth Australasian
conference on Computer Science, 2005.

[6] M. J. Duftler, N. K. Mukhi, A. Slominski, and
S. Weerawarana. Web Services Invocation Framework
(WSIF). In Workshop on OOWS, OOPSLA, 2001.

[7] P. Giambiagi, O. Owe, A. P. Ravn, and G. Schneider.
Language-Based Support for Service Oriented
Architectures: Future Directions. In Proceedings of the
1st International Conference on Software and Data
Technologies (ICSOFT 2006), Portugal, Sept 2006.

[8] M. Klusch, B. Fries, M. Khalid, and K. Sycara.
OWLS-MX: Hybrid OWL-S Service Matchmaking. In
Proceedings of AAAI, 2005.

[9] N. Kokash, W.-J. van den Heuvel, and V. D’Andrea.
Leveraging web services discovery with customizable
hybrid matching. In IEEE International Conference
on Service Oriented Computing (ICSOC), 2006.

[10] A. Kumar and D. Janakiram. Towards a
Programming Language for Services Computing. In
Proceedings of the 17th International World Wide
Web Conference (WWW), Beijing, China, April 2008.

[11] A. Kumar, A. Neogi, S. Pragallapati, and D. J. Ram.
Raising Programming Abstraction from Objects to
Services. In Proceedings of IEEE Intl. Conference on
Web Services (ICWS), Salt Lake City, USA, July
2007.

[12] A. Kumar, A. Neogi, and D. J. Ram. An OO Based
Semantic Model for Service Oriented Computing. In
Proc. of IEEE SCC, USA, Sept. 2006.

[13] A. Kumar, S. Pragalapati, A. Neogi, and
D. Janakiram. Raising Programming Abstraction from
Objects to Services. In Proceedings of ICWS, July
2007.

[14] S. D. Labey, M. van Dooren, and E. Steegmans.
ServiceJ: - A Java Extension for Programming Web
Service Interaction. In Proc. of IEEE ICWS, Jul 2007.

[15] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming
Languages and Systems, 16:1811–1841, 1994.

[16] X. Luan. Adaptive Middle Agent for Service Matching
in the Semantic Web: A Quantitative Approach. PhD
thesis, Dept. of CS and EE, UMBC, 2004.

[17] D. Martin, M. Burstein, J. Hobbs, O. Lassila,
D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. OWL-S.
http://www.daml.org/services/owl-s, Nov 2004.

[18] J. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society of
Industrial and Applied Mathematics, 5(1), 1957.

[19] M. Paolucci, T. Kawamura, T. R. Payne, and
K. Sycara. Semantic matching of web services
capabilities. In Proceedings of the First Intl. Semantic
Web Conference, pages 333–347, 2002.

[20] M. P. Papazoglou. Service-Oriented Computing:
Concepts, Characteristics and Directions. In Proc. of
WISE, Dec 2003.

[21] Simple Object Access Protocol.
http://www.w3.org/TR/soap/.

[22] T. Syeda-Mahmood, G. Shah, R. Akkiraju, A. Ivan,
and R. Goodwin. Searching Service Repositories by
Combining Semantic and Ontological Matching. In
IEEE International Conference on Web Services
(ICWS), 2005.

[23] WSDL 1.1. http://www.w3.org/TR/wsdl, Mar 2001.

[24] O. Zimmermann, P. Krogdahl, and C. Gee. Elements
of Service-Oriented Analysis and Design: An
interdisciplinary modeling approach for SOA project.
http://www.ibm.com/developerworks/
webservices/library/ws-soad1/, June 2004.


