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Abstract—Wireless broadband access network technologies, such
as IEEE 802.16e WiMAX, by enabling high bandwidth appli-
cations for mobile users, necessitate mechanisms for efficiently
utilizing the limited wireless resources and meeting growing user
expectations. In this context, in a WiMAX network, we con-
sider efficient utilization of base station (BS) radio resources
and lifetime quality-of-experience (QoE) management of video-
on-demand (VoD) users. For efficient resource utilization, we
propose dynamic load balancing through coordinated scheduling
among multiple BSs. To ensure that all flows of a single user are
assigned to the same BS, our approach to coordinated scheduling
is hierarchical. In this approach, allocations to users are deter-
mined initially (first level), followed by a distribution of users’
allocations among their flows (second level). During both stages of
hierarchical scheduling, a utility-maximization based approach is
used. To achieve long-term proportional fairness (PF) and manage
lifetime QoE, user and flow utilities are modeled as functions of
past service rates, in addition to their current channel conditions
and bandwidth needs.

PF scheduling of users or flows across multiple BSs is known
to be NP-hard. In this paper, we show that the problem is in fact
NP-hard in the strong sense. We hence consider approximation
algorithms proposed in prior work and design efficient heuristics
for first-level scheduling. For the second level, we consider the
single-BS allocation problem, and show that, despite integrality
constraints, it can be solved optimally in quadratic time. Finally,
we show that the hierarchical approach that we propose is op-
timal. The efficacy of our approaches in improving QoE and
the number of satisfied users in WiMAX networks is evaluated
through simulations.

I. INTRODUCTION

The IEEE 802.16e WiMAX technology promises high broad-
band data rates over large coverage areas (couple of miles)
in mobile, wireless contexts [1]. WiMAX is also envisioned
for enterprise deployments in fixed, pedestrian, and nomadic
scenarios for improving coverage significantly, and support-
ing wide range of high data-rate applications such as mobile
workforce support, video-based training, etc. [2].

Despite the promise of high data rates, the inherently vary-
ing and unreliable nature of the wireless channel poses signifi-
cant challenges to providing guaranteed services and ensuring
quality-of-experience (QoE) for users over WiMAX. In this
paper, we propose a solution towards managing the lifetime
QoE of video-on-demand (VoD) users in WiMAX networks.
Ensuring QoE over the lifetime of a session entails managing
the service across multiple BSs (due to mobility) and channel
variations, and resource allocation in the presence of com-
peting flows. This requires mechanisms based on long-term
session characteristics.

The state-of-the-art resource allocation techniques in WiMAX
consider single base stations (BSs) only. In general, a user, that
is, subscriber station (SS), chooses its serving BS, and the
scheduler at the BS performs admission control and resource
allocation among the admitted SSs. This approach suffers from
two limitations, namely, (1) SS assignments are based merely
on the knowledge of signal strengths that is local to BSs and
SSs, and (2) SS reassignments are attempted only when there
is a change in the relative qualities of the channels of an SS
to its neighboring BSs or when hand-offs become inevitable.
Due to these limitations, the existing approaches are unlikely
to efficiently utilize the network’s aggregated resources, and
can lead to local congestions. These ill-effects would be more
pronounced when the load distribution is asymmetric.

In this paper, we address the above two limitations, while al-
leviating congestions, improving fairness, and enhancing user

QoE. This is achieved by taking a global view of the network
and jointly scheduling clusters of BSs for transmissions to their
SSs. Regardless of changes in channel quality, scheduling is
performed periodically over scheduling epochs. We refer to
this periodic, joint scheduling technique as macro-scheduling
of base stations (MSBS). VoD flows can use playout buffers at
the SSs to store video frames before they are played and can
be assumed to have backlogged queues. Therefore, to ensure
long-term fairness and QoE and to improve resource utiliza-
tion (even) in low-mobility scenarios, we consider assignments
based on past rates of flows, in addition to their bandwidth
needs and channel conditions.

One way of achieving our objective is to associate each flow
with a utility function, and determine during each scheduling
epoch, BS-SS assignments and allocations that maximize the
sum of flow utilities. If a flow’s utility function is given by
a weighted logarithm of the allocation it receives, then the
approach is known to yield proportional fairness (PF) [3]. PF
scheduling across multiple access points (APs) has previously
been considered by Li et al. in [4] in the context of multi-
rate wireless LANS for improving user fairness. In our work,
each flow is associated with a logarithmic utility function that
depends on its past service rate in addition to current channel
conditions and current allocation. The work of Li et al. differs
from ours in the following: (1) Li et al. do not consider a
flow’s past service rate while modeling its utility function,
and as such, their approach may not utilize the resources of
a network to their fullest, (2) users with multiple flows are
not addressed, and (3) allocation within a single BS under
integrality constraints is not dealt with (this is important in
OFDMA-based scheduling of slots).
Motivating example: To see how taking past service into ac-
count can help, consider the simple network in Fig. 1. If the as-
signments here are based on signal strengths only, then SSs A
and B (with one flow each) would both be assigned to the first
BS and C to the second. With an achievable bit rate of 15 bps
for A and B each, this assignment can meet the needs of nei-
ther A nor B, and under-utilizes BS2. On the other hand, if the
two BSs are jointly considered and either A or B is assigned
to BS2 (instead of BS1), then the needs of at least one of them
would be met (in addition to that of C). Further improvement
is possible by noting that serving one of the flows, say A,
exclusively from BS1 would lead to A’s buffer building up.
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SS b/w needs: A: 10 bps B: 10bps C: 2 bps

Nos. on the links indicate achievable bit rates.
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Fig. 1: An example illustrating a need
for MSBS.

For instance, if A is served
by BS1 in the first epoch
(taken as one second, for
simplicity), and B and C
from BS2, then A would
have a surplus of five bits,
while B, a deficit of 2.5,
at the end of the epoch. A
can hence tolerate degraded
service for a limited time
in the future. Therefore, in
the next epoch, A may be

assigned to BS2 while B is switched over to BS1 (if past
services of A and B are considered). Thus, B’s deficit can be
offset by the increased service it receives from BS1, and at the
end of the second epoch, both A and B would have a surplus
of 2.5 bits each. By periodically switching A and B betweens
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BSs 1 and 2, the needs of both of them could be met, at least
over reasonable time scales.
Co-scheduling related flows: In future multimedia applica-
tions, an SS can be expected to be associated with multiple
video, audio, and even data flows. One complication that arises
with MSBS when SSs are associated with multiple flows is en-
suring that all the flows of an SS are assigned to the same BS.
To deal with this problem, we propose two-level hierarchical
scheduling. In this approach, in the first level, SS assignments
and aggregate allocations to SSs are determined; in the second
level, the slots allotted to an SS are distributed among its flows.
We propose a SS utility function that can simplify scheduling
while not sacrificing optimality.
Practical considerations: Implementing MSBS necessitates
coordination among the WiMAX access network elements. In
WiMAX network architecture, the ASN-Gateway, situated at
the boundary of core and access-service networks, can act as a
central entity that has knowledge of the quality of the channel
between each BS-SS pair, and can recommend assignments
and allocations with a long-term, macro view to the BSs [5].

We assume that the scheduling epochs over which MSBS is
performed are long enough to balance the gains achieved over
the overheads involved. Macro scheduling while accounting
for the overheads, including those of handovers, is deferred
for future work.
Contributions: Jointly scheduling BSs to achieve PF is known
to be NP-hard if each SS or flow can be assigned to a single
BS only [4]. In this paper, we show that the problem is in fact
NP-hard in the strong sense. We therefore propose heuristics
for the first level of our hierarchical scheduler and compare
their efficiency and accuracy with those of the approximation
algorithms proposed by Li et al. [4].

Second-level scheduling, which distributes the allocation of
an SS among its flows, is equivalent to scheduling a set of
flows within a single BS. Therefore, we consider the single-
BS allocation problem. In WiMAX, since allocations at each
decision time are in discrete units of slots (refer to Sec. III for
more details), the resource allocation problem poses integrality
constraints. We show that the problem can be optimally solved
in quadratic time while honoring the integrality constraints.

Next, as mentioned earlier, we define the utility function
of an SS based on the parameters of its flows such that it is
different from the sum of the utilities of the individual flows,
albeit yielding optimal allocations (that is, allocations given
by sum of flow utilities) and simplifying scheduling.

Finally, through simulations, we evaluate the efficacy of
our approaches in improving QoE of VoD flows in WiMAX
networks.
Organization: The rest of the paper is organized as follows.
Sec. II surveys related work. Relevant features of WiMAX
are described in Sec. III. Our system model and notation are
introduced and hierarchical scheduling is described in Sec. IV.
Sec. V presents a quadratic-time algorithm for solving the
single base station allocation problem, while Sec. VI shows
that joint base station scheduling is NP-hard in the strong
sense, and proposes heuristics. Our hierarchical approach is
proved optimal in Sec. VII. Sec. VIII presents an empirical
evaluation, while Sec. IX concludes.

II. RELATED WORK
Li et al.’s PF scheduling for multi-rate WLANs is closely

related to work in this paper [4]. As discussed in Sec. I, Li

et al. consider maximizing the sum of logarithms of rates
allocated to users in a network of access points (APs). They
claim the problem can be shown to be NP-hard by adapting the
reduction in [6], and propose two approximation algorithms
(borrowed in this paper ) with approximation ratios 5.828 and
2 + ε. The differences between Li et al.’s work and this paper
are highlighted in Sec. I. A precursor to [4] is the work in
[6], which studies generalized PF in 3G data networks. In the
setup there, each BS schedules SSs slot by slot. [6] illustrates
that independent BS scheduling can lead to non-Pareto optimal
bandwidth allocations and proposes optimal offline algorithms
and online heuristics for the case when multi-user diversity
depends only on the number of users.

Improving resource utilization in a WCDMA-like system
of multiple cells with slot-by-slot scheduling model, through
a distributed and cross-layer coordination framework among
BSs, SSs, and a central server, is considered in [7]. Their
framework consists of three optimization stages: In Stage 1,
each SS chooses the BS to attach to based on signal strengths
and BS loads (broadcasted by BSs). In Stage 2, during each
slot, each BS opportunistically schedules an SS for service us-
ing a weighted alpha rule. In Stage 3, a central server chooses
the value of α for all the BSs based on their loads that leads
to “cell breathing” and balancing of load across BSs. This
approach, however, does not take fairness into account during
load balancing, and also requires specialized SSs.

In [8], dynamic load balancing and mitigating loss due to
interference by powering down BSs in a coordinated manner
in CDMA networks is considered. A centralized and a two-tier
scheduler are proposed and compared with traditional indepen-
dent schedulers deployed at BSs. The optimization algorithms
proposed therein consider all possible BS combinations and
are heuristic in nature with no guarantees on performance.
Further, interference is less of an issue in WiMAX.

The suitability of PF in HSDPA systems for video streaming
when the traffic is a mix of elastic and non-elastic applications
is empirically studied in [9]. [10] proposes a scheduling algo-
rithm for streaming services in OFDMA systems. However, al-
locations are considered for single cells only. The performance
of weighted PF in terms of spectral efficiency, throughput, re-
source utilization, and fairness in WiMAX networks is studied
in [11]. Several other works consider the subcarrier allocation
problem in generic OFDMA systems for maximizing through-
put and improving QoS subject to a power budget. Refer
to [12], [13], and references therein. These do not consider
WiMAX specific issues and cannot be easily extended to be
used by WiMAX MAC schedulers.

III. OVERVIEW OF WIMAX
WiMAX is based on the IEEE 802.16 standard [1], which

defines the PHY and MAC specifications for last-mile con-
nections in wireless metropolitan area networks. The WiMAX
MAC layer is point-to-multipoint (PMP) with optional mesh
support. The MAC layer can support multiple PHY specifica-
tions. This paper assumes that the underlying PHY is based
on orthogonal frequency division multiple access (OFDMA).
WiMAX frames and scheduler: The basic unit of trans-
mission in WiMAX is a frame. Frames are two-dimensional,
with OFDM symbols (over time) in one dimension and sub-
channels (frequency) in the second dimension. A subchan-
nel, consists of a logical collection of subcarriers, and is the
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minimum frequency-resource unit of allocation. Subcarriers
in a subchannel can be distributed over the entire frequency
spectrum or contiguous. In this paper, we assume distributed
permutation of subcarriers in a subchannel.

All frames are equal in size. The minimum time-frequency
resource that can be allocated to a given flow is a slot. This
consists of one subchannel over one, two, or three OFDM
symbols [14]. A frame can be viewed as a collection of slots.
WiMAX supports both time-division duplexing (TDD) and
frequency-division duplexing (FDD). TDD is the preferred
approach and we assume TDD in this paper. In TDD, each
WiMAX frame is divided in time into two sub frames: a
downlink (DL) sub frame and an uplink (UL) sub frame. A
scheduler at the BS allocates the slots to the SSs both on the
DL and UL. In this paper, we focus on the DL scheduler. Each
SS should be allocated an integral number of slots by WiMAX
schedulers.
Modulation and coding shemes: WiMAX supports adap-
tive modulation and coding (AMC). Under AMC, the channel
modulation scheme and the strength of the FEC code, and in
turn, the data rate, are based on the quality of the channel to
the SS. WiMAX supports a (finite) number of modulation and
coding schemes (MCS). To determine an appropriate MCS for
an SS by the BS, SSs periodically report the quality of their
channels to their neighboring BSs. It should be noted that in
a single WiMAX frame, different slots can be coded using
different MCSs based on the SS associated with the slots.

IV. SYSTEM MODEL, NOTATION, AND UTILITY
FUNCTIONS

In this section, we describe our system model, introduce
needed notation and the WiMAX resource allocation problem.
Model and Notation: We consider joint allocation of re-
sources to SSs and flows in a cluster of BSs that can be
thought of as constituting a WiMAX sub-network. B denotes
the number of BSs in the sub-network, N , the number of
VoD of flows to be served by the BSs, and M , the number
of SSs. The number of flows associated with SS i is denoted
Ni. Hence,

∑M
i=1Ni = N . When each SS is associated with a

single flow only, N = M holds. For ease of description, when
unambiguous, we refer to a flow without referencing the SS it
is associated with. In such cases, the index i in flow i is with
respect to the universe of all flows.

The number of OFDM slots in each frame at each BS in
the downlink is denoted S. (For simplicity, we assume equal
number of slots in all BSs. Our results extend to the unequal
case.) mij(t) (resp., m̄ij(t)) denotes the rate, in terms of
the number of data bytes that can be packed in a slot, for
flow i (resp., SS i) at BS j at time t. mij(t) depends on the
modulation and coding scheme used in encoding the data for
flow i, which in turn, depends on the quality of the associated
channel. xij(t) (resp., x̄ij(t)) denotes the number of slots
allotted to flow i (resp., SS i) at BS j over all frames in
a macro-scheduling epoch that begins at time t. For flow i of
SS k, the rate per slot and the number of slots allocated at
BS j shall be denoted mk

ij and xkij , respectively. In general,
for any two flows i and ` of SS k, mk

ij = mk
`j = m̄kj holds.

wi > 0 (resp., wki > 0) is the weight assigned to flow i (resp.,
flow i of SS k), based on the bandwidth it requires (which is
also the play-out rate in the case of a VoD flow).
R̄i(t) (resp., R̄ki (t)) denotes the average rate at which flow

i (resp., flow i of SS k) is served until t. T > 1 is the time

constant of the low-pass filter that is used to update the average
rate. F is the number of frames in a scheduling epoch and
tf , the duration of each frame. Finally, di = (T − 1) · F ·
tf R̄i(t) > 0 and dki = (T − 1) ·F · tf R̄ki (t) > 0. In all of the
above notation, subscript j is omitted when only a single BS
is considered, and for conciseness, time t is omitted.

We now define utility functions for flows and SSs, which
will be used in SS and flow assignments and allocations.
Flow utility functions: Our goal is to determine an assign-
ment of flows to BSs and an allocation of slots to flows at their
assigned BSs that is in keeping with the bandwidth needs and
past service rates of flows, and current channel conditions.
A flow that has adequate buffer built up over the past in its
lifecycle can afford being served at a lower rate in the current
epoch despite its higher play-out rate. Similarly, opportunistic
scheduling, which favors flows with good channel conditions
and can hence improve overall system throughput, can be used
to prepare for future contingency provided doing so does not
adversely impact other flows. We therefore adopt proportional
fair (PF) scheduling [3], which is known to find a balance
between maximizing resource utilization and user fairness.

In single-carrier transmission systems, in which only a sin-
gle flow is scheduled at each decision time, PF, which max-
imizes the sum of the weighted logarithms of long-term av-
erage rates for flows, i.e.,

∑
i wi log(R̄i), can be achieved by

scheduling that flow for which wi·ri(t)
R̄i(t)

is maximized [15].
Here ri(t) denotes the rate achievable for flow i at time t, and
R̄i(t), the average rate at which i is served until t. The problem
of extending PF scheduling to multi-carrier systems, in which
multiple channels are scheduled at each decision time, is con-
sidered in [16]. The authors consider single-BS scheduling
and derive an objective function that should be maximized
for allocations to guarantee long-term proportional fairness.
Using an approach similar to theirs, it can be shown that long-
term PF can be achieved in single-BS OFDMA systems by
allocating slots in each epoch to flows such that

∑N
i=1 Ui(xi)

is maximized, where Ui(xi), which is the utility function for
flow i, is given by

Ui(xi) = wi log(1 +
mixi
di

). (1)

Recall that di = (T − 1) · F · tf R̄i(t) > 0 and T > 1 holds.
If T = 1, then Ui is just wi log(mixi) since past service rate
is ignored. For a flow that joins at time t, R̄i(t) is initialized
to αwi, where 0 < α ≤ 1.

When the number of BSs, B, exceeds 1, the utility function
for flow i is given by

Ui(〈xij〉Bj=1) = wi log(1 +
1
di

B∑
j=1

mijxij). (2)

SS utility functions: One obvious choice for the utility func-
tion to associate with an SS k is the sum of the utilities of its
flows, given by
Uk(〈xk1j〉Bj=1, 〈xk2j〉Bj=1, . . . , 〈xkNkj

〉Bj=1) =
Nk∑
i=1

wki · log(1 +
1
dki

B∑
j=1

m̄kj · xkij), (3)

where m̄kj = mk
ij , 1 ≤ i ≤ Nk, is the rate per slot of SS k

at BS j and is common to all its flows.
Using the above utility function for SSs will necessitate

3



introducing additional constraints to the optimization problem
(considered later), for ensuring that all flows of an SS are
assigned to the same BS, and add to its complexity.

We therefore define the following alternative utility function
for SS k, which involves a single logarithmic term.

Ūk(〈x̄kj〉Bj=1) = (
Nk∑
i=1

wki ) · log(1 +
1∑Nk

i=1 d
k
i

B∑
j=1

m̄kj · x̄kj)

(4)
The above utility function may be used to determine an ag-
gregate allocation to each SS by a first-level scheduler, which
can then, at a second level, be apportioned among its flows.
We will later show that allocations to individual flows using
this two-level hierarchical approach, when optimal schedulers
are employed at the two levels, is identical to the allocations
they would receive under an optimal algorithm that uses (3)
for SS utility functions.

Since the sum of flow utilities should be maximized at the
second level, subject to not exceeding the number of slots
allocated to the SS the flows are associated with, second level
scheduling can be performed using single-BS allocation algo-
rithms.

V. SINGLE BASE STATION ALLOCATION

In this section, we present an algorithm for the single base
station resource allocation problem (SBSRA) in WiMAX. The
problem is to determine at time t, the allocation xi to flow i,
1 ≤ i ≤ N , over the next scheduling epoch, by solving the
following.

SBSRA: Maximize U(x = 〈xi〉Ni=1) =

N∑
i=1

Ui(xi),

where Ui(xi) = wi log(ai + bi · xi),

subject to
N∑
i=1

xi = S (5)

xi ≥ 0, xi ∈ N,

where wi > 0, ai = 1, and bi = mi

di
= mi

(T−1)·F ·tf R̄i(t)
> 0,

for all i. bi = 0 can hold if mi = 0. For simplicity and to
avoid boundary cases (when the non-negativity constraint is
relaxed later), we assume that mi > 0 holds for all i. This
can be ensured by isolating all users with mi = 0. The first
constraint limits the total number of slots allocated to all the
users in the BS to S. The above is a convex program with
non-negativity and integrality constraints, and hence, solving
it in a single step, using convex solvers, would be rather
inefficient. We therefore solve it in two steps. In the first step,
SBSRA-frac, which denotes a relaxed version of SBSRA, in
which integrality constraints are relaxed, is solved by solving
multiple instances (up to N − 1) of SBSRA-rel. SBSRA-rel
denotes the unconstrained version of the problem, in which
both negativity and integrality constraints are relaxed. In the
second step, the solution to SBSRA-frac is used to construct a
solution to SBSRA.

A. Solution to SBSRA-rel
Since SBSRA-rel contains only an equality constraint and its

objective function is concave, it can be solved using the tech-
nique of Lagrange multipliers [17]. Applying the technique to
SBSRA-rel, we have the following system of linear equations,
where λ is the Lagrange multiplier.

wibi
ai + bixi

= λ,

N∑
i=1

xi = S

Solving the above equations, we have

xi =
wi∑N
j=1 wj

(S +
N∑
j=1

aj
bj

)− ai
bi
. (6)

Since wi > 0, xi > −ai

bi
holds for all i. Note that the optimal

solution is unique and can take negative values for one or
more of the unknowns. In fact, because the objective function
is strictly concave and the constraints are linear, it can be
shown that SBSRA-rel and SBSRA-frac have unique optimal
solutions. The same need not hold for SBSRA.

B. Solution to SBSRA-frac
Recall that SBSRA-frac is obtained from SBSRA by relax-

ing the integrality constraints. Let x∗ = 〈x∗i 〉Ni=1, and y∗ =
〈y∗i 〉Ni=1 denote the optimal solutions to SBSRA-rel and SBSRA-
frac, respectively. If x∗i ≥ 0, for all 1 ≤ i ≤ n, then it easily
follows that y∗ = x∗. We next show that should x∗j < 0 hold
for some j, then y∗j = 0.
Lemma 1. Let x∗ = 〈x∗i 〉Ni=1 and y∗ = 〈y∗i 〉Ni=1 denote the
optimal solutions to SBSRA-rel and SBSRA-frac respectively.
Then x∗i < 0⇒ y∗i = 0 for all 1 ≤ i ≤ N .

Proof: Let x∗i = α, where 0 > α > −ai

bi
. Suppose y∗i = γ

where γ ∈ R+. Then, because
∑n
`=1 x

∗
` = S =

∑n
`=1 y

∗
` and

x∗i < 0 < y∗i , it follows that there exists some j, such that
x∗j > y∗j . Let x∗j = β, where β ∈ R+, and y∗j = β − δ, where
0 < δ ≤ β. Since y∗ is optimal, it follows that Ui(γ)+Uj(β−
δ) ≥ Ui(γ − ε) + Uj(β − δ + ε), where 0 < ε < δ (and Ui
and Uj are as defined in (1)). The above inequality may be
rewritten as

Ui(γ)− Ui(γ − ε) ≥ Uj(β − δ + ε)− Uj(β − δ). (7)

Since Ui(xi) and Uj(xj) are strictly concave, we have the
following.

Ui(α+ ε)− Ui(α) > Ui(γ)− Ui(γ − ε) (8)
(because α < 0 and γ > 0)

Uj(β − δ + ε)− Uj(β − δ) > Uj(β)− Uj(β − ε) (9)

From (8), (7), and (9), we have
Ui(α+ ε)− Ui(α) > Uj(β)− Uj(β − ε)

≡ Ui(α+ ε) + Uj(β − ε) > Ui(α) + Uj(β),

which is a contradiction to the optimality of x∗ to SBSRA-rel.
�

We now present an algorithm for solving SBSRA-frac using
SBSRA-rel. The approach is to recursively solve several in-
stances of SBSRA-rel until all the variables in the solution are
non-negative. Let SBSRA-relk denote a constrained version of
SBSRA-rel, in which N−k of the variables are specified to
be zeroes. The objective function of SBSRA-relk is therefore
the sum of the utility functions of only the k flows associated
with the remaining variables not specified as zero; similarly,
the constraint on the number of slots in (5) is on the sum
of these variables only. The RHS of (5) however remains the
same. To begin with, we consider SBSRA-relN , i.e., SBSRA-
rel in its entirety. If each xi is non-negative in the solution to
SBSRA-rel in this step, then this solution forms the solution
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Algorithm 1 Algorithm ASBSfr for solving SBSRA-frac using
SBSRA-rel

1) I = {1, 2, .., n};
2) while TRUE do
3) x∗i := wi∑

j∈I
wj

(S +
∑

j∈I
aj

bj
)− ai

bi
, for all i ∈ I;

4) if x∗i ≥ 0, for all i ∈ I then
5) y∗i := x∗i , for all i ∈ I;
6) RETURN y∗

fi
7) for all j ∈ I do
8) if x∗j < 0 then set y∗j := 0; I := I − {j} fi
9) od

od

to SBSRA-frac also and the algorithm terminates. Otherwise,
by Lemma 1, each xi that is negative assumes a value of zero
in the solution to SBSRA-frac, and hence is set to zero. Let
r < N denote the number of variables remaining. To deter-
mine the values of these remaining variables, a constrained
version of SBSRA-frac that considers only these r variables
is solved, by considering a corresponding instance of SBSRA-
relr. As with the previous step, the algorithm either terminates
or continues to the next step with the positive variables of this
step. The procedure continues until some instance of SBSRA-
relk, k ≥ 1, yields a non-negative solution. A complete listing
is provided in Algorithm 1.

The correctness of the above algorithm follows from Lemma 1,
and the fact that if non-negative, the optimal solution to any
SBSRA-relk is also optimal for a corresponding instance of
SBSRA-frack, for all 1 ≤ k ≤ N . It is easy to see that
Lemma 1 applies to the constrained versions of SBSRA-rel and
SBSRA-frac alsoTherefore, the solution to SBSRA-frac can be
obtained by recursively solving constrained instances.

Within the while loop (in line 2), lines 3–5 and the for
loop in line 7 have O(N) complexity. The while loop itself
can be executed O(N) times, and therefore, the worst-case
complexity of the above algorithm is O(N2).

C. Solution to SBSRA

The final step is to convert the optimal non-negative so-
lution, that may be fractional, obtained by solving SBSRA-
frac to an optimal solution to SBSRA, which requires that
all variables be non-negative and integral. Towards that end,
the lemma that follows determines bounds on the values of
the variables in the solutions to SBSRA-frac and SBSRA. If
y and y∗ are optimal solutions to SBSRA-frac and SBSRA,
respectively, then according the lemma, every yi is bounded
from above by by∗i c+ 1 or bounded from below by by∗i c.

Lemma 2. Let y = 〈yi〉Ni=1 be an optimal solution to SBSRA
and y∗ = 〈y∗i 〉Ni=1 the optimal solution to SBSRA-frac. Then
there exists an i, such that yi < by∗i c if and only if there does
not exist a j, such that yj > by∗j c+ 1.

Proof: Suppose the lemma does not hold. Then, there exist i
and j such that 0 ≤ yi ≤ by∗i c − 1 and yj ≥ by∗j c+ 2, where
yi ≥ 0, y∗j ≥ 0, y∗i ≥ 1, and yj ≥ 2. Therefore, yi ≤ y∗i − 1
and yj > y∗j + 1. Because yi ≥ 0 and yj ≥ 2 (by y∗j ≥ 0),
and y is optimal for SBSRA, we have

Uj(yj)− Uj(yj − 1) ≥ Ui(yi + 1)− Ui(yi). (10)

Algorithm 2 Algorithm ASBS to solve SBSRA
1) SOLVE SBSRA-frac; let y∗ = 〈y∗1 , y

∗
2 , ..., y

∗
N 〉 denote its solution

2) yi := by∗i c, for all 1 ≤ i ≤ N ; γ :=
∑N

i=1
by∗i c;

3) η := S − γ;
4) if η = 0 then exit fi;
5) while TRUE do
6) nexti := Ui(yi + 1)− Ui(yi), for all i;

7) previ :=

{
∞, yi = 0

Ui(yi)− Ui(yi − 1), yi > 0

8) if max1≤i≤n{nexti}≤min1≤i≤n{previ} then BREAK fi
9) k := {i|nexti ≥ nextj ,∀j 6= i};

10) k′ := {i|previ ≤ prevj ,∀j 6= i};
11) yk := yk + 1; yk′ := yk′ − 1;

od
12) for r = 1, 2, ..., η do
13) k :=mini{i|Ui(yi + 1)−Ui(yi)≥Ui′ (yi′+1)−Ui′ (yi′ ) ∀i′}
14) yk := yk + 1

od

Since Ui and Uj are strictly concave, we have

Ui(yi + 1)− Ui(yi) ≥ Ui(y∗i )− Ui(y∗i − 1) and (11)
Uj(y∗j + 1)− Uj(y∗j ) > Uj(yj)− Uj(yj − 1). (12)

Using (12), (10), and (11), we have Uj(y∗j + 1)−Uj(y∗j ) >
Ui(y∗i )−Ui(y∗i −1), i.e., Uj(y∗j +1)+Ui(y∗i −1) > Ui(y∗i )+
Uj(y∗j ), which, because y∗i ≥ 1, contradicts the optimality of
y∗ to SBSRA-frac. �

The corollary below easily follows.

Corollary 3. Let Y and Y ∗ be as defined in Lemma 2. If for
any j, yj > by∗j c+ 1, then yi ≥ by∗i c for all i.

Pseudo-code for an algorithm that makes use of Lemma 2
to solve SBSRA is provided in the listing in Algorithm 2.
Description of Algorithm 2: Algorithm 2 functions in three
phases. In the first phase in lines 1–4, SBSRA-frac is solved
and a a non-negative solution, y∗, that may be fractional is
obtained. Each flow i is also assigned a base allocation of by∗i c
slots in this phase. If by∗i c is integral for all i, then the base
allocation is an optimal integral allocation, and the algorithm
terminates. Otherwise, the next two phases are executed.

In the second phase (spanning lines 5–11), the base allo-
cation of the first γ =

∑N
i=1 by∗i c slots performed in the first

phase among the N flows is converted to an optimal allocation
of these γ slots. Allocation Y would be optimal, if there do
not exist flows i and j such that the marginal utility of the
(yi + 1)st slot of i, i.e., Ui(yi + 1) − Ui(yi), is greater than
Uj(yj) − Uj(yj − 1), the marginal utility of the yth

j slot of
j, where yj > 0. The while loop in line 5 executes until the
optimality condition is reached (in line 8). By Lemma 2, the
loop is guaranteed termination in at most η + N iterations
(proved later as part of proof of Theorem 1).

The final phase consists of optimally assigning the remain-
ing η = S − γ slots among the flows, and is carried out in
the for loop in lines 12–14. For each slot, the flow with the
largest marginal utility for an additional slot is chosen.
Correctness proof for Algorithm ASBS: A correctness proof
for the algorithm claimed in Theorem 1 is provided in an ap-
pendix. Informally correctness follows from Lemma 2, which
guarantees that the number of iterations of the while loop of
lines 5–11 is at most η + N = O(N). Correctness of the
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allocation in the for loop follows from the strict concavity of
Ui, for all i.

Theorem 1. Algorithm ASBS optimally solves SBSRA and
has a worst-case time complexity of O(N2).

VI. MACRO-SCHEDULING AMONG MULTIPLE BASE
STATIONS

This section considers MSBS, which performs coordinated
scheduling among multiple BSs. Aggregate allocations are de-
termined for SSs, each of which may be associated with mul-
tiple flows. Each SS’s utility is modeled using (4). Since each
SS can be assigned to at most one BS in a scheduling epoch,
the goal is to determine a many-to-one mapping from the set
of SSs to the set of BSs such that the sum of SS utilities is
maximized. The problem solved in each epoch is as follows.

MBSRA: Maximize
M∑
k=1

Ūk(〈x̄kj〉Bj=1),

where Ūk(〈x̄kj〉Bj=1) = wk log(1 +
B∑
j=1

bkj x̄kj),

bkj =
m̄kj∑Nk

i=1(T − 1) · tf · F
,

subject to
M∑
k=1

x̄kj = S, 1 ≤ j ≤ B (13)

x̄kj ≥ 0, x̄kj ∈ N, k = 1, . . . ,M, j = 1, . . . , B (14)
(∀j, `, j 6= ` :: x̄kj > 0⇒ x̄k` = 0), k = 1, . . . ,M (15)

The constraint in (13) restricts the total number of slots allo-
cated to all the SSs in any BS to at most S, while (14) requires
the number of slots assigned to any SS to be a non-negative
integer. (15) confines each SS to a single BS. (13) and (15)
implicitly restrict the number of slots assigned to any SS to
at most S.

A. Hardness Proof
We prove that the problem is NP-hard in the strong sense by

providing a reduction from the 3-PARTITION (3-part) prob-
lem, which is NP-Complete in the strong sense. The reduction
uses our solution to SBSRA. In [4], Li et al. claim that this
problem can be shown to be NP-hard by adapting a reduction
in [6] from the 3-dimensional matching problem.

3-part is a number problem [18] defined as follows.
Definition 1 (3-part): Given set E of 3m elements, e1, e2, . . . , e3m,
a bound K ∈ Z+, and a size s(ei) = si ∈ Z+ for each
ei ∈ E such that K/4 < si < K/2 and

∑3m
i=1 si = mK. The

problem is to determine whether E can be partitioned into m
disjoint sets E1, E2, . . . , Em such that

∑
e∈Ei

s(e) = K, for
1 ≤ i ≤ m.

Theorem 2. The multiple-base station resource allocation prob-
lem in WiMAX, MBSRA, is NP-hard in the strong sense.

Proof: To prove the theorem, we show that the decision ver-
sion of MBSRA is NP-complete in the strong sense. It is easy
to see that the decision version is in NP. We provide a pseudo-
polynomial reduction [18] from 3-part to it.

In 3-part, without loss of generality, assume that s1 ≥ si,
for all 1 < i ≤ 3m.

SBS-3part: Consider an instance of the unconstrained version
of the single-BS allocation problem SBSRA-rel, denoted SBS-
3part, with the following parameters: N = 3m, S = mK,
ai = wi = 1, and bi = 1

1+s1−si
> 0 (because s1 ≥ si),

for 1 ≤ i ≤ N . As discussed in Sec. V-A, SBSRA-rel has
a unique optimal solution when bi > 0. By (6), the unique
optimal solution to SBS-3part is given by 〈xi〉3mi=1 = 〈si〉3mi=1.
Note that this solution is non-negative and the unique optimal
objective value is given by

OPT =
3m∑
i=1

log(1+bi ·xi) =
3m∑
i=1

log(1+
si

1 + s1 − si
). (16)

We now reduce an instance of 3-part to MBSRA.
Reduction, MBS-3part: Construct an instance of MBSRA,
denoted MBS-3part, from an arbitrary instance of 3-part as
follows. Let B = m, M = 3m, S = K, and wi = 1, for
1 ≤ i ≤ M . For each i, let bij = bi = 1

1+s1−si
, for all

1 ≤ j ≤ B. We claim that a solution to 3-part exists if and
only if there is a solution to MBS-3part with objective value
at least OPT as defined in (16).
⇐: Assume MBS-3part has a solution with objective value at
least OPT . In this solution, for each i, at most one of x̄ij , for
1 ≤ j ≤ B, that corresponds to the BS that i is assigned to,
is positive. Let βi denote this unique BS, if such a BS exists,
and be undefined, otherwise (when xij = 0 for all j). x̄iβi

is
the number of slots allotted to i if βi exists, and 0, otherwise..
Now, a feasible solution to SBS-3part can be constructed from
the solution to MBS-3part as follows:

xi =
{

x̄iβi , βi is defined
0, otherwise

This is because (i) bij of MBS-3part equals bi of SBS-3part
for all i, j, (ii) for each i, at most one of x̄ij is positive in any
solution to MBS-3part, (iii) the total capacity of the K BSs in
MBS-3part, K ·m, is equal to the capacity of the single BS in
SBS-3part, hence

∑B
j=1

∑3m
k=1 x̄kj = mK =

∑3m
i=1 xβi

and
(iv) the remaining parameters are equal in both the problems:
N = 3m of SBS-3part equals M of SBS-3part, and ai’s and
wi’s are identical in both the problems, for 1 ≤ i ≤ 3m.
Hence, unless βi is well defined and x̄iβi

= si > 0, for each
i, the objective value of SBS-3part can be either increased or
achieved with a solution different from 〈si〉3mi=1. This would
contradict either the optimality of OPT for SBS-3part or the
fact that its optimal solution is unique. Hence, MBS-3part has
a unique solution given by for all i, xij = 0, for all j 6= βi
and xiβi

= si, and it is easy to see that a solution to 3-part is
obtained by simply assigning ei to set Eβi

.
⇒: Assume 3-part has a solution. Let element ei be assigned
to set Ek. Then, a solution to MBS-3part that achieves an
objective value of exactly OPT can be obtained by assigning
SS i to BS k.

It is easy to verify the the reduction can be performed in
polynomial time. Further all numbers in MBS-3part (M , B, S,
wi, bi, and OPT ) are polynomially bounded by the numbers
in 3-part. Thus, the decision version of MBSRA is also NP-
complete in the strong sense. MBSRA is therefore NP-hard in
the strong sense. �

In [4], Li et al. propose two approximation algorithms for
the problem. In the first, denoted cvap, the constraint in (15),
which restricts each SS to a single BS, and the integrality

6



Algorithm 3 Heuristic ffrac for determining an approximate
fractional solution
variables
BSRankForSS : array [1..N ] of array [1..B] of integers

1) for pass := 1 to B do
2) for BS := 1 to B do

B Find all SSs for which base station BS provides
B among the pass highest bandwidths

3) SSpass [BS ] := {i|BSRankForSS [i][BS ] ≤ pass}
od

4) for round := 1 to pass do
5) for BS := 1 to B do
6) for each i ∈ SSpass [BS ] do
7) rank := BSRankForSS [i][BS ];
8) higher alloc[i] := sum of allocations in bytes for

SS i in BSs with ranks 1 to rank − 1
9) Ui := wi log(1+higher alloc[i]

di
+
mi,BSxi,BS

di
)

od
10) Solve SBSRA for base station BS and determine xi,BS

for i ∈ SSpass [BS ]
11) xi,BS := 0, for i 6∈ SSpass [BS ]

od
od

od

constraint in (14) of MBSRA are relaxed and a fractional so-
lution to the resulting convex program in which an SS can
be assigned to multiple BSs is obtained. The fractional solu-
tion is then rounded using the technique based on bi-partite
graph construction proposed in [19] for the generalized as-
signment problem. Li et al. show that this method provides an
approximation ratio of 5.828. Their second algorithm, nlap,
discretizes an equivalent exact non-linear formulation of MB-
SRA to construct a relaxed linear program, in which an SS
may be associated with multiple BSs. The solution to the
discretized linear program is then rounded to obtain a solution
with approximation ratio 2+ε. In this paper, we evaluate cvap,
and two other heuristics that we design. (nlap is omitted due
to its high running time.)

B. Heuristics
cvap involves solving a convex program, and nlap, a linear

program, in which the number of variables needed depends on
the desired accuracy. Hence, the running times of both these
algorithms can be quite considerable. (Our simulations confirm
this.) We therefore propose efficient heuristics.
Highest Bandwidth First (hbf): The first heuristic, called
highest bandwidth first (hbf), assigns an SS to the BS from
which it is likely to receive the highest bandwidth (bw). When
the load distribution is asymmetric, the highest-bw BS for an
SS need not be the one with the strongest signal. To determine
SS assignments, the single-BS allocation algorithm, ASBS, is
run at each BS for all SSs. Each SS is assigned to the BS at
which the bw assigned by ASBS is the largest. In the second
step, allocations to the SS’s assigned to a BS are performed
using the single-BS allocation algorithm. The complexity of
this heuristic can easily be seen to be O(BN2).
Approximating the fractional solution (ffrac): The convex
and linear solvers of cvap and nlap are used for determin-
ing near-optimal fractional solutions (that are then rounded).
To lower running time, we consider heuristics for this step,
and use ASBS to determine a fractional solution. We call the

heuristic ffrac (for fast fractional), pseudo-code for which is
provided in the listing in Algorithm 3. The idea is to iteratively
determine allocations for SSs in successive BSs in B passes.
In the first pass, in each BS k, only those flows for which BS
k provides the highest bandwidth are allocated. (Ties can be
resolved arbitrarily.) In general, in the ith pass, in BS k, SSs
for which that BS provides among the highest i bandwidths are
allocated. Allocations at each BS are performed independently
using ASBS. Also, in pass i, SS allocations in the BSs are
revised using i rounds for better accuracy. Refer to the for
loop beginning in line 4.

One aspect to note is that due to non-linearity, the utility
function associated with an SS cannot be identical at all BSs.
Let higher alloc[j] denote the number of bytes allocated to
SS j in its top i BSs. Then, the utility function to be used
at the BS with the next highest bandwidth is obtained by
adding higher alloc[j]/dj (assuming Nj = 1) to the log
term in (1). The i rounds of pass i are needed to ensure
that higher alloc[j] used at BS i1 is not invalidated due to
reallocations later at BS i2, where i2 > i1, and i2 provides a
higher bandwidth to SS j than i1. It can be shown that due to
the absence of circular dependencies among BSs, convergence
is guaranteed in at most i rounds in the ith pass.

A second aspect concerns limiting the total number of slots
allotted to an SS to S. This can be ensured by not considerating
an SS in poorer BSs when the total allocation to it in prior
BSs reaches S. The complexity of this heuristic is O(B3N2),
and in our simulation experiments was found to be more than
an order of magnitude faster than the convex solver.

VII. HIERARCHICAL JOINT BASE STATION SCHEDULING

In this section, we show that the two-level hierarchical ap-
proach proposed for ensuring that all flows of an SS are as-
signed to the same BS is optimal. For this, we show that
the number of bytes allocated to each flow remains the same
regardless of whether (3) or (4) is used as the utility function
for SS k in MBSRA. One difference is that, if (3) is used as
the utility function, then the solution to MBSRA would directly
yield per-flow allocations, whereas flow allocations should be
determined in a second step if (4) is used. For simplicity,
we consider a relaxed version of MBSRA in which integrality
constraints and constraints confining each SS to a single BS
in (14) and (15), respectively, are relaxed. The non-negativity
constraints in (14) still hold. We will refer to this relaxed
version as MBSRAREL.

Before proceeding further, we claim the following.

Claim 1. Let f(b) = (
∑n
j=1 wj) · log(1 + b∑n

j=1
dj

) and

fi(bi) = wi log(1 + bi

di
), where b ≥ 0, bi ≥ 0, di > 0, and

wi > 0 for 1 ≤ i ≤ n. Let β, βj ∈ R.
(i) If β ≤

∑n
j=1 βj , then df

db

∣∣∣
b=β
≥ dfi

dbi

∣∣∣
bi=βi

holds for some

1 ≤ i ≤ n.
(ii) If β ≥

∑n
j=1 βj , then df

db

∣∣∣
b=β
≤ dfi

dbi

∣∣∣
bi=βi

holds for some

1 ≤ i ≤ n.
Proof: We prove part (i). The proof for the other part is

similar. df
db =

(
∑n

j=1
wj)∑n

j=1
dj+b

and dfi

dbi
= wi

di+bi
. Suppose the claim

does not hold. That is, df
db

∣∣∣
b=β

< dfi

dbi

∣∣∣
bi=βi

, for all i. Then,
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by the above derivatives, we have (
∑n
j=1 wj)(di + βi) <

wi((
∑n
j=1 dj) + β), for all 1 ≤ i ≤ n. Summing the left-

hand and right-hand sides of these n inequalities, we have
(
∑n
i=1 wi)

∑n
j=1(dj+βj) <

∑n
i=1 wi((

∑n
j=1 dj)+β), which

is a contradiction, since β ≤
∑n
j=1 βj . �

We next show that the hierarchical approach proposed is
optimal.

Theorem 3. The hierarchical approach described in IV is
optimal for solving MBSRAREL if optimal algorithms are used
for allocation at the first and second levels.

Proof: Let Hier denote our hierarchical approach with optimal
schedulers for both the first and second levels, and Opt, some
arbitrary optimal algorithm. Let 〈Hi〉Mi=1 and 〈Oi〉Mi=1 denote
the aggregate allocations in bytes (not slots) to the M SSs
(the number of bytes to SS k at BS j is given by m̄kj x̄kj)
by Hier and Opt, respectively. Suppose the theorem does not
hold. Then, there exists an SS i, such that Hi < Oi. Otherwise,
since Hier’s second-level scheduler is optimal, for each SS i,
its allocation of Hi bytes would be optimally allocated among
its flows, that is, the sum of its per-flow utilities under Hier
would be at least the sum under Opt (because per-flow utility
functions at the second-level of Hier are the same as those in
Opt), contradicting the fact that Opt is optimal. Next, because
Hi < Oi, there must exist an SS ` such that H` > O`.
Otherwise, a higher aggregate utility for the SSs than achieved
by Hier’s first level scheduler can be obtained using Opt’s
allocation (that is, a solution to Hier in which each SS is
assigned an aggregate allocation that equals the sum of the
allocations to its flows in Opt in each BS would have a higher
utility than that of the the solution of Hier). This contradicts
the fact that Hier’s first-level scheduler is optimal.

Let Hi =
∑B
k=1 m̄ikX̄ik denote the number of bytes al-

located to SS i by Hier’s first-level scheduler. Then, for SS
i, Ūi(Hi) = Ūi(〈X̄ik〉Bk=1) = (

∑Ni

j=1 w
i
j) · log(1 + Hi∑Ni

j=1
di

j

)

(refer (4)). Note that this function is strictly concave in Hi.
Let Oij , 1 ≤ j ≤ Ni, denote the number of bytes allocated
to flow j of SS i by Opt. Let Ui(Oi) = Ui(〈Oij〉

Ni
j=1) =∑Ni

j=1 w
i
j log(1 +

∑B
k=1

m̄ik·Xi
jk

di
j

) =
∑Ni

j=1 w
i
j log(1 + Oi

j

di
j

) =∑Ni

j=1 U
j
i (Oji ), the sum of the utilities of the flows of SS i

in Opt. Let H` and O` be defined similarly to Hi and Oi,
respectively. Since Hier’s first-level scheduler is optimal, for
any arbitrarily small ε, we have

Ūi(Hi + ε)− Ūi(Hi) ≤ Ū`(H`)− Ū`(H` − ε). (17)

Since Opt is optimal, we also have

(∀1 ≤ k ≤ N`, 1 ≤ j ≤ Ni ::
U `k(O`k + ε)− U `k(O`k) ≤ U ij(Oij)− U ij(Oij − ε)). (18)

Since H` > O` and Ū` is strictly concave, Ū`(H`)− Ū`(H`−
ε) < Ū`(O` + ε) − Ū`(O`), for ε < H` − O`. In the limit
ε→ 0, Ū`(H`)−Ū`(H`−ε)

ε = (Ū`)
′(H`− ε), Ū`(O`+ε)−Ū`(O`)

ε =
(Ū`)

′(O`), and U`
k(O`

k+ε)−U`
k(O`

k)
ε = (U `k)′(O`k). Because O` =∑N`

k=1O
`
k, by Claim 1(ii), (Ū`)

′(O`) ≤ (U `k)′(O`k), and hence,
(Ū`)

′(H` − ε) < (U `k)′(O`k) holds for some k. Therefore,
by (17) and (18), in the limit ε → 0, Ūi(Hi+ε)−Ūi(Hi)

ε <

Ui
j (Oi

j)−Ui
j (Oi

j−ε)
ε , holds for all 1 ≤ j ≤ Ni. Next, since

Hi < Oi and Ūi is strictly concave, for ε < Oi−Hi, Ūi(Oi)−
Ūi(Oi−ε) ≤ Ūi(Hi+ε)− Ūi(Hi). Therefore, by the previous
inequality, we have in the limit ε → 0, Ūi(Oi)−Ūi(Oi−ε)

ε <
Ui

j (Oi
j)−Ui

j (Oi
j−ε)

ε , that is, (Ūi)
′(Oi − ε) < U ij(O

i
j − ε), for

all 1 ≤ j ≤ Ni. This contradicts Claim 1(i), since Oi =∑Ni

j=1O
i
j . The theorem follows. �

VIII. EMPIRICAL EVALUATION

This section presents results of our simulation experiments.

A. Experimental Setup

Parameter Value
BS/SS antenna height 32 m/1.5m
Carrier Frequency 2.5 GHz
Duplexing Scheme TDD (DL:UL

Ratio= 2:1)
BS to BS distance 1 Km
Rms transmit power 43 dBm
per carrier
BS/SS antenna gain 16 dBi, 0 dBi
BS,SS Hardware loss 2 dB
SS Noise Figure 7 dB
Thermal Noise Density -174 dBm/Hz
Bandwidth 10 MHz
Frame Duration 5ms
Number of DL slots 450
per frame
DL permutation type PUSC
Penetration and other 10 dB
losses

Fig. 2: WiMAX system parameters
used in simulations.

We use the macro-
cell model and sys-
tem parameters recom-
mended by the WiMAX
Forum [20] for our
experiments. We sim-
ulate 19 cells, with
a frequency reuse of
three, placed in a reg-
ular, three-tier hexag-
onal tessellation. Per-
formance evaluation is
over the serving set of
the inner seven cells; the
outermost tier of twelve
cells model realistic in-
terference. For the mo-
bility experiments, we
assumed pedestrian mo-

bility at 3km/h [20]. Since the epoch durations over which the
channel quality is estimated are long in comparison to channel
coherence times, we model only large-scale effects, namely,
path loss per the modified COST231 Hata urban propagation
model and 8dB Log-Normal Shadowing. Interference only due
to other BSs is modeled assuming edge users in neighbor-
ing cells can be allocated in non-overlapping subchannels.
WiMAX system parameters used in our simulations are listed
in Fig. 2.

SS locations are randomly generated in two modes, uniform
and hotspot. The number of SSs, N , is set at 132, with playout
rates set at 384 Kbps, 512 Kbps, and 1 Mbps, for every 1/3rd

of the user population. Further increase in load led to a sharp
drop in the performance metrics of all the algorithms. For the
uniform mode, each SS is placed randomly in a disc of radius
2R, where R is the cell radius. For the hotspot mode, we
consider two scenarios. In the first scenario (hotspot-1), N/2
users are placed in a disc of radius R and the remaining half
are placed in an annulus of width R, whereas in the second
scenario (hotspot-2), all N users are placed in a central disc of
radius R. Each scheduling epoch is set to 10 secs when users
are stationary and is lowered to 5 secs when users are mobile,
to account for the greater variations in channel conditions
under mobility. Experiments are conducted over 200 epochs.

Each SS is assumed to be associated with a single flow.
All SS buffers are assumed to be empty at the start of each
simulation run. Our measures of performance are as follows:
mean statlling fraction (MSF), which is the fraction of time a
user stalls in an epoch, and percentage of satisfied users (PSU)
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Fig. 3: Performance metrics for T = 50 in hotspot scenario 1 (hotspot-1) with stationary users,

per epoch. Stalling duration in an epoch is computed based on
the content delivered in the epoch, SS buffer contents at the
beginning of the epoch, and playout rate. A user is considered
satisfied in an epoch, if their VoD flow does not stall. A flow
stalls when its buffer is empty and it is served at less than its
playout rate.

We compare cvap, our heuristics hbf and ffrac, and the
common strongest-signal first (ssf) heuristic. The objective of
the experiments is to evaluate the efficacy of the algorithms
in balancing load across BSs and the impact of taking past
service rates into account. A flow with a good channel might
be served at higher than its playout rate, which can lead to its
playout buffer building up at the SS. The allocation to such
a flow might be lowered in a future epoch to help starved
flows, if any. We compare results for T = 50 and T = 1 to
study the impact of such lifetime QoE management that takes
into account past history of service rates. Recall that T is the
time constant used in updating average past rate. T provides a
trade-off between throughput and latency. Results are averages
of 15 runs. (The limitation was due to the high running time
of cvap.)

B. Discussion of Results
All the algorithms exhibited comparable behavior under uni-

form load. This is due to the limited scope in improving per-
formance using joint scheduling for the uniform case. Detailed
results have hence been omitted for that case.

Simulation results for the first hotspot scenario (hotspot-1)
for stationary users for T = 50 are plotted in Fig. 3. PSU and
MSF averaged over all users (MSF-UA) are plotted by epoch
in insets (a) and (b), respectively. In the plots, opt denotes
the fractional solution returned by the convex solver used as
part of cvap, and provides an upper bound on the optimal
performance with respect to maximizing total utility. Both our
heuristics perform as well as, and occasionally, marginally bet-
ter than, opt, with respect to maximizing PSU and minimizing
the stalling fraction. This suggests that additional constraints
and techniques, such as limiting the allocation to flows with
adequate buffers and good channels (even though PF schedul-
ing may prefer them), to deviate slightly from PF allocation
for improving QoE at the cost of system throughput may
be helpful. Exploring such mechanisms is deferred for future
work. cvap lags our heuristics by 10%, while ssf by around
20%. It should be noted that the performances of both the
heuristics are very similar.
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Fig. 4: Performance metrics for T = 1 in hotspot scenario with stationary users

Referring to inset (a), for all the algorithms, performance
improves with epoch number. The “knee” of the curves is
at about 20 epochs, that is, around 3.5 minutes. This suggests
that, at least in our setup, pre-buffering for 3-5 minutes can be
beneficial and help in improving satisfaction levels. Measuring
QoE with pre-buffering is deferred for future work.

Inset (c) plots MSF averaged over the entire session by user
(MSF-SA). Here, the first N/2 users are within the hotspot,
and the remaining in the surrounding annulus. Within each
class, users are arranged in an increasing order of their band-
widths. MSF-SA is negligible for the 50% of the users who
are away from the central hotspot but quite substantial for
the remaining users (who are in the hotspot). In the hotspot,
stalling fraction is higher for users with higher bandwidth
needs.

Inset (d) plots the surplus/deficit for the users at the end
of 200 epochs. Users are arranged in the same order as in
inset (c). Here, the first N/2 users, who are in the hotspot,
are either underserved or have their needs met barely. The
plots also indicate that there is good load balancing of the
hotspot users. The remaining users have substantial surpluses
in proportion to their bandwidth needs. As mentioned earlier,
when meeting QoS is more important than maximizing system
throughput, additional constraints may be added to the problem
formulation to deviate from the PF allocation and allocate
more resources to the starved flows and improve their QoE.

Fig. 4 plots the performance metrics for T = 1. Recall that

when T = 1, past service history is ignored, which has the
effect of lowering PSU by around 30% for all the algorithms.
Note that the other metrics also deteriorate similarly to PSU.
This observation underscores the importance of lifetime QoE
management by taking past history into account, at least for
VoD.

Insets (a)–(c) of Fig. 5 are for the second hotspot scenario,
hotspot-2. In this case, all 132 users are placed in the hotspot.
PSU with opt is 70%, cvap preforms close to opt, while the
heuristics lag opt initially but improve gradually and catch up
with opt. Plots of the surplus metric in inset (b) shows that at
least under cvap and opt, load balancing of users is reasonable.

PSU for mobile users, initially distributed in the hotspot-
1 mode, is shown in inset (d) of Fig. 5. Performance in this
case is worse than for stationary users in hotspots by roughly
10% for all algorithms. This is because the system capacity is
lowered due to mobility, whereas the load remains unchanged.
It should also be noted that, in our simulations, the hotspot
condition eases with time due to mobility. As mentioned ear-
lier, since the epoch duration is halved when users are mobile,
the time constant T is double to 100 to ensure that the duration
of time in the past over which service is considered is the same
as in stationary experiments.

IX. CONCLUSION

In this paper, we have considered coordinated, hierarchi-
cal scheduling in a network of WiMAX base stations, called
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Fig. 5: Performance metrics for (a)–(c) hotspot scenario 2 (hotspot-2) with stationary users, T = 50 and (d) hotspot scenario
1 (hotspot-1) with mobile users, T = 100 (T is doubled since epoch duration is halved.

macro-scheduling of base stations (MSBS), for managing the
QoE of VoD flows. Our utility maximization approach for
guaranteeing long-term proportional fairness and managing
lifetime QoE shows that MSBS can improve fairness for VoD
flows significantly when the load distribution is asymmetric
and that accounting for past service history during schedul-
ing can increase the percentage of satisfied users, both under
uniform and asymmetric loads.

As part of the QoE management problem, we showed that
the network-wide PF scheduling problem is NP-hard in the
strong sense. Since approximation algorithms previously pro-
posed can require long running times, we have proposed effi-
cient heuristics for the problem. We have also showed that the
problem of assigning related flows to the same base station
can be optimally solved using a hierarchical approach.

The work reported herein provides some guidelines for schedul-
ing VoD flows. Using these guidelines to design efficient algo-
rithms that can provide guaranteed services not only for VoD
flows but real-time applications with more stringent require-
ments, such as video-conferencing, under WiMAX, remains a
challenging next step.
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APPENDIX
PROOF OF THEOREM 1

We begin by making two needed claims.

Claim 2. Before the execution of the for statement in line 12
for the rth time, where 1 ≤ r ≤ η + 1, the following holds.
(When line (12) is executed for the (η+1)st time, the for loop
terminates.)

(∀1 ≤ k ≤ N :: (Uk(yk)− Uk(yk − 1)
≥ U`(y` + 1)− U`(y`),∀1 ≤ ` ≤ N)) (19)

Proof: The proof is by induction on the executions r of the
for statement in line 12.
Base Case: r = 1: The while loop of lines 5–11 terminates
when the condition in line 8 holds. This condition implies that
(19) holds when the while loop terminates and before the for
statement is executed for the first time.
Induction Step: Assuming (19) holds for all 1 ≤ r ≤ i <
η + 1, we show that it holds for r = i + 1. For this, we
show that (19) holds at the end of the ith iteration of the for
loop. Let the ith allocation in the ith iteration of the for loop
be to flow p. The selection criterion for choosing p in line 13
ensures that at the end of the ith iteration, (19) holds for k = p.
Because (19) holds for all flows, i.e., all k, at the beginning
of the ith iteration, and the allocation count is incremented
for flow p only, it is easy to see that at the end of the ith

iteration, (19) holds for all the other flows also with respect
to every flow other than perhaps p (that is, for all k 6= p,
` 6= p in (19)). To see that (19) holds for the other flows
with respect to p as well, note that at at the end of the ith
iteration, by the induction hypothesis, Uk(yk)−Uk(yk−1) ≥
Up(yp)−Up(yp−1) holds for all k 6= p. Because Up is strictly
concave, Up(yp)− Up(yp − 1) > Up(yp + 1)− Up(yp) holds,
from which (19) follows for all k 6= p with respect to p. �

Claim 3. If yi is incremented (resp., decremented) in iteration
p, then it is never decremented (resp., incremented) in a later
iteration, q, for all i.

Proof: We prove the claim that yi cannot be decremented after
it gets incremented in a prior iteration. The proof for the other
case is similar. Suppose the claim does not hold. Let q be the
first iteration after p that yi is decremented in. Let ŷ`, y′` be the
number of slots allocated to each flow ` before the beginning
of iterations p and q, respectively, i.e., y` = ŷ` and y` = y′`
hold at the beginning of iterations p and q, respectively. Since
yi is incremented in iteration p, by the criteria that choose
k and k′ (the flows whose allocations are incremented and
decremented) in lines 9 and 10, respectively, we have

Ui(ŷi + 1)− Ui(ŷi) ≥ U`(ŷ` + 1)− U`(ŷ`),∀` 6= i. (20)

In iteration q, in which yi is decremented, let flow j’s allo-
cation, yj , be incremented. Then, by the same argument as
above, we have

Uj(y′j + 1)− Uj(y′j) ≥ U`(y′` + 1)− U`(y′`),∀` 6= j.

Further, since i’s allocation is decremented by one, while that
of j is incremented by one in iteration q, we must have (by
the condition in line 8 and by the criteria selecting k and k′

in lines 9 and 10)

Uj(y′j+1)−Uj(y′j) > Ui(y′i = ŷi+1)−Ui(y′i−1 = ŷi). (21)

We consider two cases based on whether the allocation to j is
incremented or decremented or unchanged between iterations
p and q.
Case 1: ŷj ≤ y′j: In this case, by the strict concavity of
Uj , we have Uj(ŷj + 1) − Uj(ŷj) ≥ Uj(y′j + 1) − Uj(y′j) >
Ui(ŷi + 1)− Ui(ŷi). (The second inequality is by (21).) This
contradicts (20) (and the fact that yi is incremented in the pth
iteration).
Case 2: ŷj > y′j: This implies that yj is decremented in
one of the iterations p, . . . , q − 1. Let p ≤ q′′ < q denote
the iteration before q, when yj was last decremented. Let
yj = y′′j at the end of iteration q′′. This implies that at the
beginning of iteration q′′, yj = y′′j +1 holds. Since flow i is not
decremented in iterations p+1, . . . , q′′, yi = ŷi+1 holds at the
beginning iteration q′′. Since yj , and not yi, is decremented
in iteration q′′, by the criterion in line 10, the following holds
at the beginning of iteration q′′: Uj(y′′j + 1) − Uj(y′′j ) ≤
Ui(ŷi + 1) − Ui(ŷi). Since y′′j ≤ y′j , by the concavity of Uj ,
we have Uj(y′j + 1)−Uj(y′j) ≤ Uj(y′′j + 1)−Uj(y′′j ), which
by the previous inequality implies Uj(y′j + 1) − Uj(y′j) ≤
Ui(ŷi + 1)− Ui(ŷi), which contradicts (21). �

We are now ready for the optimality proof.
Theorem 1 Algorithm ASBS optimally solves SBSRA and has
a worst-case time complexity of O(N2).
Proof: We will first prove that Y is optimal for the case η =
0. In this case,

∑N
i=1 y

∗
i = S =

∑N
i=1 by∗i c. This is only

possible when y∗i = by∗i c for all 1 ≤ i ≤ N , that is, when Y ∗
is integral. This in turn implies that the optimal solution to
SBSRA-frac is integral and hence is also the optimal solution
to SBSRA. Since the assignment Y := Y ∗ in line 2 is unaltered
until the algorithm terminates at line 4, Y is optimal.

For the case η > 0, we will prove correctness assuming that
the while loop at line 5 terminates. (Termination is proved
later.) Note that in each of the η iterations of the for loop
in line 12, exactly one flow is allocated one slot, and so, in
all, γ + r − 1 slots will have been allocated among the flows
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before the for statement is executed for the rth time, where
1 ≤ r ≤ η+ 1. We next show that before the execution of the
for statement for the rth time, where 1 ≤ r ≤ η + 1, y is an
optimal allocation of the initial γ + r − 1 slots.

Suppose not. Then there must exist some other allocation
y′ = 〈y′i〉 6= y of these slots such that U(y′) > U(y). Since
y′ 6= y and

∑N
k=1 yk =

∑N
k=1 y

′
k = γ+r−1, there must exist

i and j such that y′i > yi and y′j < yj . Let i = argmaxp(y′p−
yp), y′i = yi +α, j = argminp(yp− y′p), and y′j = yj −β. By
the previous argument, α, β ∈ Z+.

We consider the following three cases.
Case 1: α ≥ 2: From the strict concavity of Ui and Uj , we
have Ui(y′i) − Ui(y′i − 1) < Ui(yi + 1) − Ui(yi) (because
y′i ≥ yi + 2) and Uj(yj)−Uj(yj − 1) ≤ Uj(y′j + 1)−Uj(y′j)
(because y′j ≤ yj − 1). (19) in Claim 2 above implies Ui(yi +
1)−Ui(yi) ≤ Uj(yj)−Uj(yj−1). By these three inequalities,
we have Ui(y′i) + Uj(y′j) < Ui(y′i − 1) + Uj(y′j + 1), This
contradicts that y′ is an optimal allocation of the initial γ+r−1
slots.
Case 2: β ≥ 2: Proof as in Case 1.
Case 3: α = 1 and β = 1: By the condition of this case, for
each i for which y′i = yi + 1 holds, there must be a distinct
j, such that y′j = yj − 1 (because

∑N
k=1 yk =

∑N
k=1 y

′
k = γ).

By Claim 2 (Ineq. (19)), we have Ui(yi + 1) − Ui(yi) ≤
Uj(yj)−Uj(yj−1), that is Ui(y′i)+Uj(y′j) ≤ Ui(yi)+Uj(yj).
Summing over all distinct pairs of flows as (i, j), we have∑
{(i,j)|y′

i
=yi+1,y′

j
=yj−1} Ui(y

′
i) + Uj(y′j) ≤ Ui(yi) + Uj(yj).

The utilities of the remaining flows remain unchanged, and
hence, we have U(y′) ≤ U(y), which is a contradiction to the
assumption that U(y′) > U(y).

Thus, Y is an optimal allocation of the initial γ + r − 1
slots before the rth execution, and an optimal allocation of
γ + η = S slots when the for loop terminates.
Algorithm complexity: We now turn to determining the

complexity of the algorithm. Line 1 takes O(N2) time, while
line 2 performs N assignments. Since η is at most N − 1,
the for loop in lines 12–14 is executed O(N) times. A binary
MIN-HEAP may be used to determine the minimum in line 13.
Construction of this heap at the beginning of the loop would
require O(N) time, while subsequent maintenance and min
operations would take O(log(N)) time. Thus, the complexity
of the for loop is O(N logN).

To determine the algorithm’s complexity, we are left with
determining the number of iterations of the while loop and the
complexity of each of its iterations. First note that termination
is guaranteed. For this, note that the assignment previ = ∞
when yi = 0 in line 7 ensures that yi ≥ 0 holds for each i
at the end of the while loop. By Claim 3, this limits the total
number of decrements, and hence, the iterations of the while
loop, to γ. We now determine a more accurate bound.

Note that η ≤ N−1 slots are allocated to the flows in the for
loop of lines 12–14. Let ηi denote the allocation to flow i in
this loop. Now, suppose line 11 of the while loop is executed
more than η times. Then, after iteration η+1, the total number
of increments and decrements that line is each equal to η+ 1.
By Claim 3, this implies that there exists a flow i, whose
allocation is decremented by more than ηi, i.e., yi ≤ by∗i c −
ηi−1 holds, after η+1 iterations. By Claim 3 again, yi cannot
be incremented in the while loop, and hence, yi ≤ by∗i c − 1
would hold when the for loop terminates. Therefore, since

termination of the while loop is guaranteed, and hence, ASBS
determines an optimal solution, by Lemma 2, there does not
exist a flow j with yj > by∗j c + 1, at the end of either the
while or the for loops. Note that in each iteration of the while
loop (that does not terminate the loop), there is exactly one
increment. At the beginning of the while loop, yi = by∗i c
holds for all 1 ≤ i ≤ N . By Claim 3, once yi is incremented,
it is never decremented, and vice versa. Thus, the number of
iterations of the while loop may exceed η by at most N − 1.
The total number of iterations is thus at most η + N − 1 =
O(N).

The max and min operations in lines 9 and 10 may be per-
formed using a binary MAX-HEAP and a MIN-HEAP, respec-
tively, to store the values of nexti and previ, respectively, for
all i. Besides the construction of the heaps at the beginning of
the loop requiring O(N) time, all other updates can be done in
O(logN) time. Thus the total complexity of the while loop is
O(N logN). Therefore, the worst-case time complexity of Al-
gorithm ASBS is O(N2)(in line 1) +O(N logN) = O(N2).

�
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