
July 11, 2002

RT0475

Network 16 pages

Research Report

Reliable Multicast based on Peer-to-Group Dissemination

Shuichi Shimizu, Taiga Nakamura

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Limited Distribution Notice

This report has been submitted for publication outside of IBM and will be probably copy-

righted if accepted. It has been issued as a Research Report for early dissemination of its

contents. In view of the expected transfer of copyright to an outside publisher, its distri-

bution outside of IBM prior to publication should be limited to peer communications and

specific requests. After outside publication, requests should be filled only by reprints or

copies of the article legally obtained (for example, by payment of royalties).



Abstract

This article presents a new reliable multicast scheme for “one-to-
many” distributions such as a streaming of digital media in networks.
It is based on Peer-to-Group (P2G) Dissemination, in which a server
simply transmits a single set of data packets toward a group of receiv-
ing hosts; each host, on an equal basis in a local network, then makes
copies of data packets it received and shares the data with every other
receiving host in order to compensate and allow for a full assembly of
the original data. By doing so, the system can avoid server overload
and network congestion, both of which are serious issues in most ont-
to-many distributions. The system is reliable and remains stable even
when clients frequently join and leave the service because the server
optimizes the flow of packets and leaves the clients with no fixed role
in copying packets. P2G Dissemination requires no infrastructure sup-
port, unlike IP Multicast, and no secondary servers, unlike the Edge
Architecture, but it only requires application-level server and client
hosts, where the clients assist in the distribution of packets. It is, es-
pecially, suitable for a network infrastructure with large-scale switch-
ing hubs. The article also shows some implementation examples and
experimental results performed on an actual network in commercial
environments.

1 Introduction

In general, server overload and network bandwidth consumption are serious
issues especially in “one-to-many” distributions of digital media such as
video and audio. If a server duplicates a one-to-one communication by
sending the same data set to each client, thus n sets for n clients, then the
server may suffer from overload as the number of clients grows increasingly
large. In addition, network may be wasted or congested between routers
when some clients are located in the same direction seen from the server.

IP Multicast [1] is a sophisticated architecture that addresses the issues
of server overload and network congestion in wide area networks. It is imple-
mented at the IP layer, where a server sends out a single set of data which is
forwarded by routers to other routers without any duplication until it is re-
ceived by subscribed hosts. This architecture has been widely accepted and
recently implemented in many routers, however, it contains several draw-
backs which have prevented it from being deployed. First, in order to keep
forwarding tables up-to-date for calculating an optimized distribution tree,
all routers have to maintain information of host group membership, even
though membership may be changing rapidly. This creates overhead for
updating membership information and for re-calculating the distribution
tree. Second, it requires a global address assigned from the multicast ad-
dress space [2] which must be unique throughout routers and host group
members. This may lead to another scalability problem. Third, it may re-
quire substantial replacement of network infrastructures such as routers and



switches, because every router and switch must be capable of IP Multicast
between server and client hosts.

Some application-level multicast approaches [3, 4] have been proposed to
overcome one or more of such drawbacks in the IP Multicast system. Unlike
IP Multicast, they are implemented at the application layer instead of the
IP layer, and thus have no need for any infrastructure supports. However,
these application-level multicast systems possess overhead from having to
maintain group membership and re-calculate an optimized distribution tree.

Edge Architecture [5, 6] provides another technique to realize efficient
data distributions. It introduces secondary servers near the client group in
order to reduce load on the primary servers and network traffic between the
primary servers and secondary servers. In other words, it uses many replica
servers near the clients. However, efficient data distributions in this system
is gained only at the expense of higher initial investments and maintenance
costs to support the secondary servers.

In this paper, we present our new scheme, Peer-to-Group (P2G) Dis-
semination, which provides reliable one-to-many distributions without the
need for network infrastructures support or secondary servers. P2G dis-
semination allows a server to transmit just one full sef of data packets to
a host group regardless of the number of members in the group, through
connection-oriented communications. The members then copy and share
the data packets with each other, typically in a local network, thus compen-
satory for each other without the need for a “leader” or secondary servers.
Because copying and distribution of data packets are spread evenly, any
client can join and leave at any time without affecting the others. In P2G
dissemination, server overload would be shared and distributed by exploit-
ing client’s computing and networking resources, which are now adequate for
such tasks. The scheme is not exclusive but compatible with IP Multicast
or the Edge Architecture, and so it can coexist to further make use of their
advantages.

In Section 2, we present two sub-schemes, Peer-to-Group Unicast and
Group Packet Sharing, and how they work for multicast. In Section 3, we
present an optimization of packet flow and introduce an error recovery and
discuss a basic performance of the scheme regarding scalability and reliabil-
ity. In Section 4, we show some implementation examples and experimental
results on an actual network in commercial environments. Finally, we con-
clude in Section 5.

2 Peer-to-Group Dissemination of Packets

Peer-to-Group (P2G) Dissemination refers to the communications between
a peer (server) and a host group (clients), in which the data packets are not
necessarily delivered directly to each client, but may take additional hops



until destinations. It consists of two sub-schemes, Peer-to-Group Unicast
and Group Packet Sharing, which enables the server to multicast data pack-
ets to group members with significantly reduced network congestion and
server overload even in a rapidly changing group environment.

2.1 Peer-to-Group Unicast

For data distributions based on P2G dissemination, as well as the other
distribution services such as streaming through RTP [7], original data such
as video and audio is segmented into packets, to each of which is attached a
serial number, before they are sent out to clients. In IP Multicast, all data
packets are sent to a virtual host group through a single multicast address
to which clients subscribe.

P2G dissemination also employs the concept of a host group, however,
unlike IP Multicast a server explicitly and exclusively sends data packets
to each client in a group. Since it is a unicast per packet to each client
address, no additional multicast global address is required. The transmission
is connection-oriented for reliable communication between the server and
clients. Another important point is that no clients receive packets with the
same serial numbers, which means no packet is ever duplicated between the
server and the group. The server decides which client each packet should
be sent to. The details are discussed in Section 3.1 below. Since the server
exclusively scatters packets, we call it a spreading server.

Note that P2G dissemination provides no dynamic routing to the host
group, because it does not depend on routing. Instead, it utilizes unicast
routes to one or more predefined subgroups provided by conventional net-
work infrastructure such as routers, as shown in Figure 1.

2.2 Group Packet Sharing

As a result of the exclusive unicasts, each host subgroup will receive a single
set of data packets, but each client will receive only a partial incomplete
set of the packets from the server. Thus, it is necessary for each client to
compensate by receiving and sharing the packets with peer clients in the
same group. Each client receives source packets directly from the server
and copied packets from peer clients, and assembles them into the original
complete data sets. Since each client collects data packets from the server
and peers, and it reproduces a single set of data, we call it a sink client.

When clients receive source packets, they have to copy and send them
to their peer clients as quickly as possible. In this way, the packets are
relayed in multiple steps to reach their destination, hence the term, dissem-
ination of packets, as shown in Figure 2. Below, we introduce two forms of
dissemination of packets, according to the network infrastructures used.



Server Switch Router Router

Router

Switch

Switch

Switch

Client

Host

Client

Host

Client

Client

Host

Client

ClientSwitch
Host
Host
Host

(a) IP Multicast: No packet duplicates by using a minimum span-
ning tree that connects all clients. Line width indicates the required
bandwidth if “one-to-one” transmissions are used for multiple clients.

Server

Client

(Host)

Client

(Host)

Client

Client

(Host)

Client

Client

…

(b) Peer-to-Group Unicast: A single set of packets is transmitted to each sub-
group, in which clients directly and exclusively receive the packets. Routes to
subgroups are fixed or provided by conventional routers.

Figure 1: IP Multicast and Peer-to-Group Unicast

2.2.1 Multicast in Local Network

When a host group is configured in a collision domain such as a wireless
network, then multicast in the local network [2] may be adequate for ex-
changing data packets within the group. Because the data exchange does
not go beyond any routers, no router support or globally-assigned IP address
is required.

When a client receives source packets from the server, it copies and
sends them to a local multicast address. There is one set of source packets
as unicasts coming in from the server, and one set of copied packets relayed
from the clients. Each client receives one set of data packets and transmits
1/n set of packets on average, where n is the number of clients in the group.

Broadcast in the local network also works for sharing data packets within
group members, but broadcast consumes the computing resources of hosts
who aren’t participating in the service, and so it may not be appropriate to
employ broadcast for sharing data packets.



Server

Client

Client

Client

Client

Client

Server

Client

Client

Client

Client

Client

Figure 2: Packet dissemination based on evenly distributions

It should also be noted that the exchange of data packets here may not
be reliable and may lead to data loss since the multicast or broadcast is
connectionless.

2.2.2 Peer-to-Peer Unicast

When host subgroup members are directly connected to a single switching
hub, connection-oriented peer-to-peer unicast becomes much better suited
than the multicast, because it is guaranteed that they can communicate
with each other and no collision or congestion will occur. In other words,
all of the clients under a single switching hub can simultaneously exchange
data with no interference from the other client pairs. Thus data packets
can be smoothly and reliably exchanged via peer-to-peer unicast for a single
switching hub. For example, a 100-Mbps switching hub would be capable of
handling 4-Mbps of video packets, which is near TV-quality.

A single group should not extend over two or more large-scale switching
hubs (e.g., with 196 ports), because, in that case, many packets may go
through the uplinks of the hubs, which may lead to network congestion in
uplinks since the hubs are shared by all the down clients. When a group
of clients is limited within a single switching hub, then the congestion case
described above can be avoided. When small switching hubs (e.g., with 5-8
ports) are attached to the large-scale switching hub so that more clients can
be connected, which is common in actual network configurations, though



Switching
Hub

Switching
Hub

ClientClient ClientClient ClientClient …

A single set 
of packets

a group

(uplink shared)

Figure 3: Peer-to-peer unicast under a large-scale switching hub

the uplinks of the small hubs, which are also shared, congestion should not
occur when exchanging data packets among the clients as long as traffic
does not exceed the capacity of their uplinks, as shown in Figure 3. Each
client receives one set of packets and it transmits about one set of copied
packets to his/her peers. However, within a single switching hub, only n sets
of data packets go through, which is the same as in the Edge Architecture
and IP Multicast, where n is the number of clients in a group, because the
outgoing packets from the clients are identical to the packets coming in to
them. Therefore, each client in a single switching hub, receives one set of
source packets and makes n − 1 sets of copied packets.

2.3 Dynamic Configuration to Group Membership

A server is responsible for transmitting each source packet to one of clients,
and so it has to know which clients are currently active in the service. When
using peer-to-peer unicast for sharing packets, each client also has to know
which peer clients have recently joined the group because it is responsible
for transmitting copied packets to them.

When a new client joins, the protocol to establish new connections is as
follows:

1. The new client requests to join in the service,

2. The server determines which group the new client should belong to,

3. The server notifies the clients that have already joined at the group
about the new client,

4. The server and the group’s clients establish connections with the new
client and also update their own peer list to include it,



5. The new client accepts the connections, and builds its own peer list
about them.

The peer lists track two types of connections, the source-packet provider,
and the copied-packet receivers. When clients receive a packet from the
source-packet provider, they copy and send it to the copied-packet receivers
and return an acknowledgment packet to the source-packet provider, which
is used for measuring the round-trip time, as described in Section 3.1.

For peer-to-peer unicast for sharing packets, when a client stops or leaves
the service, the other running clients and server will notice the discontinua-
tion of the connection. This is a trigger for each client to update their peer
list and to remove the disconnected peer. Note that clients and the server
are able to sense the disconnection even when the peer has abnormally ter-
minated (e.g., by access violation) because they are connection-oriented. In
this design, disconnection between any two clients implies that one or both
of them have stopped, and so the server is supposed to sense one or two
disconnections so that the connection graph should remain complete. We
assume that disruptions of connections that make the graph incomplete will
not occur or will be so rare that error recovery can handle them.

When sharing packets via local multicast or broadcast, each client does
not have to know the peer’s state but just sends copied packets into the
multicast or broadcast address even when there are no peers in the group.
On the other hand, the server is still responsible for maintaining connections
to all of the clients.

Thus, simple peer lists and connections make it easy to manage a con-
figuration while allowing clients to enter and exit at any time.

3 Basic Performance of P2G Dissemination

We present how to schedule and optimize the flow of packets in P2G dis-
semination, which makes the system stable and reliable. We also discuss
performance factors regarding scalability and error recovery.

3.1 Dynamic Optimization of Packet Flow

Ideally, in P2G dissemination, clients have an evenly distributed workload,
however, the situation may change due to different client performance levels
— slower and faster. Some clients might be not able to process a full set of
data packets in time because of their limited CPU and memory computing
resources. Some clients might temporarily not be able to receive any packets
because other processes need more computing resources in the same machine.
Thus, the system should be able to adapt not only to clients but also to
temporary changes, P2G dissemination optimizes the destinations of each
packet using per-packet optimization.



A client has no choice of packet destinations because it is supposed to
send copied packets to all peers in the same group as soon as it receives
source packets. On the other hand, the server is able to select destinations
for each source packet, which would control the reliability and the stability
of the packet flow in the system, because some packets might be blocked
if slow clients receive a lot of source packets from the server and they are
upstream of the others.

Thus, the server’s main role is to select destination clients for each packet,
according to the following steps:

1. The server chooses clients which are ready to receive packets,

2. Assigns priorities to the chosen clients,

3. Probabilistically selects one of them according to their priorities.

More precisely, the readiness of a client means that the server is able to send
the next packet to the client, or the server’s kernel that handles networking
tasks is ready to accept the next packet for transmitting it to the client even
though it might be blocked in the kernel. We denote the set of ready clients
as S. The priority for the i-th client is calculated by using the round-trip
time (RTT) to it and the copy rate from it to the others, or

pi =
Ci/Ri

∑

i∈S Ci/Ri

, (1)

where pi is the priority (0 ≤ pi ≤ 1), Ci is the success ratio of copying
(0 ≤ Ci ≤ 1) from the client to its downstream clients, and Ri is the RTT
including not only the time for a packet to be transmitted to the client and an
acknowledgment to be returned to the server, but also the client’s response
time that is controlled by the client’s computing resources. Note that Ci/Ri

represents the effective throughput, that is, the number of packets which
have successfully reached downstream clients through the i-th client in a
unit of time. The copy rate is periodically sent to the server from each
client. When sharing packets via local multicast or broadcast, Ci = 1 is
used for all clients. Finally, the server sends the next packet to the selected
client, and then repeats the steps for new packets.

The situation may change rapidly in each client, because a client process
shares computing resources with other processes in the same machine, which
might temporarily and unexpectedly require more computing resources. In
order to be adaptive and robust to such temporal changes, the RTT and
copy rate should be time-sensitive. They should reflect more of the recent
situation than the past. A time-average with a forgetting factor might be
better for representing both short and long term states, for example, as

Ri(k) =
1

2

(

Ri(k) + Ri(k − 1)
)

, (2)



where Ri(k) indicates the k-th (or at time k) RTT measured for the i-th
client, and Ri(k) indicates the time average in which the recent measure-
ments are weighted more heavily.

The dynamic per-packet optimization described so far is for maximiz-
ing the total throughput of data moving towards clients. Accordingly, it
maximizes the error tolerance and stability of the system. It is also rea-
sonable to assume that a system that acts on a per-packet basis can be
robust enough to group membership dynamics. Clients may can join and
leave rapidly, because per-packet operations are of smaller granularity than
per-client operations.

3.2 Scalability

As described so far, the server sends a single set of data packets to each
group, even when the group contains two or more clients. So, the amount
of packet transmitted from the server does not depend on the number of
clients but rather on the number of groups, which can be determined prior
to starting the service.

At the same time, the server must connect to all of the joined clients
and select one of them as a destination for the next source packet for each
group. The number of connections and optimization steps depends linearly
on the number of clients, which may be a limitation of P2G dissemination.

For sharing packets via peer-to-peer unicast, each client must connect to
the others and build a complete graph of all of them. Since the number of
clients under a single switching hub can be limited to at most a few hundreds,
it is reasonable to say that a server can remain stable while handling such
numbers of clients.

Assuming that a server transmits m source packets in a time unit and
they are equally delivered to n clients, then each client receives m/n source
packets and relays them to n−1 peer clients (thus, m−m/n copied packets)
when using peer-to-peer unicast. The copied output packets are identical
to some of the copied input packets of the peer clients. Thus, m packets go
through each client, which means that the total number of packets depends
linearly on the number of clients for each group, which is the same as in IP
Multicast and the Edge Architecture. Even if packet delivery is not equally
divided among clients, the linear relationship between number of packets
and clients still holds. This is different from the case of local multicast or
broadcast, where there are m source packets and m copied packets regardless
of the number of clients.

Distributed evenly, the number of packets that each client has to process
in a unit time includes: m/n source packets, m − m/n copied packets for
input, and m − m/n copied packets for output, amounting to a total of
2m−m/n packets. Since the range spans from m (for one client) up to 2m
(for an infinite number of clients), it is obvious that total number of packets



processed per client does not depend on the number of clients. Thus, the
even packet distribution feature of P2G dissemination also makes the system
scalable.

In actual situations, according to the per-packet flow optimization, pack-
ets are not always delivered equally to each client. Differences among client
computing resources leads to uneven distribution for the sake of maximizing
total throughput, as described in the previous section. Under extreme cases
where all of the packets are delivered to a single client, forcing it to send mn
copied packets to peers, scalability is violated. In that case, the client should
drop some of the copied packets. However, in all purpose normal cases, the
per-packet optimization tends to balance out and distribute evenly within
the system, and thus satisfying scalability.

3.3 Reliability

For reliable delivery of the original data, every client should receive enough
packets to recover the data. If the throughput to the i-th client is smaller
than the number of the packets provided in a time unit, or

Ci/Ri < m, (3)

then some of the packets will be lost due to transmission timeouts and the
client may not be able to receive all of the original data. Because this is due
to limitations of the client’s computing resources, there are no countermea-
sures for the client to get the complete set of data. However, our concern
should be how to avoid spreading or propagating the effects of packet losses
to the other clients. Note that the situations mentioned above might tem-
porarily happen to any clients unless an appropriate amount of their comput-
ing resources are reserved for client processes, but such reservation can not
be relied on in actual situations. A solution, therefore, is the per-packet op-
timization scheme, which probabilistically places slower clients downstream,
thus decreasing the probability that packets are lost upstream. However,
the packet loss still may be above zero.

Another possibility for packet loss is that one or more clients leave with-
out flushing the copied packets, which can happen by accident. Auto Repeat
Request (ARQ) is one of the solutions for recovering packet losses, but, ARQ
is likely to cause network congestion and overload a server, while delaying
packet arrival. Consequently, P2G dissemination should employ Forward
Error Correction (FEC) or erasure code technique [8] for recovering from
losses, which bypasses the need to communicate with the server for recover-
ing erasures.

Note that FEC does not necessarily recover all erasures when the erasure
rate exceeds the capacity of the code. In this case, the clients may have to
find and obtain the lost packets by themselves for recovering binary data
such as software packages. For continuous digital media such as MPEG2



and MPEG4 standards, they should temporarily stop playing when unre-
coverable erasures occur, or allow an error-resilient property of the media
format to overcome the erasures.

Packets do not necessarily arrive at each client in sequential order, rather
they may be temporally swapped because the unevenness of the peers po-
tentially produces variable delay. So, for receiving continuous digital media,
each client should buffer for the variance of delay so that it can decrease
the number of pending packets before reading. The length of the buffer (or
pre-buffer) should be long enough to hold most of the jittered delay so that
the FEC is able to recover the packets that have not arrived in time, or

Prob [d > L] < PFEC, (4)

where L is the length of the pre-buffer, d indicates the random variable
of delay, and PFEC is the maximum recovery rate of the erasure code. As
mentioned above, the FEC is also expected to recover erasures caused by low
computing resources and unflushed copied packets, and so an appropriate
margin should be used in the left hand side of the above inequality.

4 Implementation Examples and Experimental Re-

sults

We now show some implementation examples of P2G dissemination, and
also some experimental results and analysis. This concrete discussion is
based on an actual prototype implementation.

4.1 Large-Scale Switching Hubs and Shared Backbone

Consider a network where some large-scale (e.g., with 192 ports) 100-Mbps
switching hubs are connected to a 1-Gbps backbone that consists of a few
routers, as shown in Figure 4, which may be a typical configuration of the
network infrastructure for many commercial buildings. Each personal com-
puter (PC) connects to one of the switching hubs. In addition, some small
(∼ 8 ports) switching hubs with a few ports may be inserted between the
large-scale hub and the end PCs.

Even though the 1-Gbps backbone has high bandwidth, it is shared by
many end PCs, and so packet duplicates should be avoided on the back-
bone. For example, it is not possible to serve even 250 streams of 4-Mbps
bandwidth at the same time. On the other hand, the PCs are connected
to each other with 100-Mbps bandwidth under a single large switching hub,
but they cause no network congestion with 4-Mbps communication since the
communication is limited within the group of PCs under the switching hub,
even if the number of PCs exceeds 250.



SiSi SiSi

SiSi SiSi

Host
Host

:
Host

Host
Host

:
Host

Host
Host

:
Host

:
:

Internet

Host
Host

:
Host

Portal
server

Host
:

Host

Drain server

Drain server

Host
Host

:
Host

Host
Host

:
Host

1-Gbps 
Backbone

100-Mbps
Switching 
Hubs

100-Mbps
Switching

Hubs

firewall

Drain server

Figure 4: Implementation Example

In this configuration, one or more spreading servers are located in the
backbone and they may transmit as many sets of streaming packets as the
number of the switching hubs, because each switching hub forms a single
host group, where each spreading server serves one or more groups. When
there are N large switching hubs in the infrastructure, then at a maxi-
mum, N sets of streaming packets go through the backbone, even when the
number of clients increases to be much larger than N . Thus, streaming a
4-Mbps (i.e., TV quality) or an 8-Mbps (i.e., DVD quality) bandwidth (e.g.,
720×480-resolution video with 48-KHz audio) would be acceptable in this
configuration, where N is typically 20 to 50.

Establishment of the service is as follows: First, a new client accesses
the portal server shown in Figure 4, and the portal determines the group to
which the client should belong, according to its IP address, and it assigns the
client to the corresponding spreading server. The spreading server notifies
the clients currently running in the group that a new client has joined, so
that they can establish new connections with the new client.

Spreading servers and sink clients are individually probing for discon-
nections from each other to maintain a complete graph, and if necessary,
they update their own peer lists for later transmission of copied packets.



4.2 Wireless network

P2G dissemination is also applicable to wireless networks such as “host
spots” in public spaces and a company intranet that consists of wireless-
networking PCs, as mentioned in Section 2.2.1. In this implementation
example, each client locally multicasts copied packets for its peers when it
receives source packets from a spreading server in order to share and recover
the original data. Because spreading servers establish connection-oriented
communications with clients, they are able to sense the end of the connec-
tions and stop transmitting packets, when some of the clients get out of the
“hot spot” area. The clients are also able to sense the disconnection. This is
one of the advantages over using an edge server that multicasts or broadcasts
data packets to possible clients through unreliable communications that may
not be able to detect the end of a connection.

The portal server and spreading servers are exactly the same as in the
previous implementation example, because they don’t need to know how to
share packets within peers in a group. Each client just ignores a new member
notification from the server. Thus, this configuration is able to coexist or
be integrated into the previous implementation example on typical company
networks.

4.3 Experimental Results

We conducted several medium-scale experiments which served 4-Mbps streams
of TV-quality sports programs to many end user PCs. The data source was
MPEG2-encoded in real-time and fed to a spreading server. The network
configuration was almost the same as in Figure 4, except that we had no
portal server but only one spreading server that served eight groups, each
of which corresponded to a single switching hub that maintains about 200
PCs.

The original MPEG2 was segmented into 4-KB packets with serial num-
bers, and then the packets were FEC-encoded so that 116 packets were ex-
tended to 128 packets, which means that up to 12 erasures can be recovered
from in every 128-packet block. The internal buffer for receiving packets is
2048 packets long, which is 16 seconds for 4 Mbps. The initial pointer for
playing the MPEG2 was set to the middle of the buffer, and so the length
of the pre-buffer was about half of the internal buffer (e.g., 8 seconds for 4
Mbps). Each client sent the copied packets to its peers on a last-in-first-out
basis, that is, each client sent the latest source packet first so that most of
the clients would receive the latest or almost-latest packets to synchronize
their internal buffers.

In total, 122 clients had joined the experiment from the eight pre-defined
groups, for 7544 seconds on average, with 50 clients served in the largest
group, and 25 clients in the second largest group at the same time.



Overall, the spreading server, which was equipped with an Intel Pentium-
III/500 MHz and 128 MBs of memory, needed no more than 50% of its CPU
resource to serve 102 clients simultaneously at maximum. The participat-
ing clients were equipped with Pentium-III/500 MHz to Pentium 4/2.2 GHz
CPUs. Most of the clients, except for some PCs with internal problems (see
below) played the streaming data smoothly, and most of the CPU resources
were spent on decoding and rendering the MPEG2 video and audio.

The reliability and stability of the system was measured in terms of
dropped and blocked packet, as follows:

4.3.1 Packet Dropped at Server

If the computing resources assigned to a spreading server or client was not
enough to transmit or receive packets, then the spreading server was not
be able to transmit source packets to some clients, but might drop some of
them, because the source data was a live video source with audio, and a
timeout was necessary. However, in our experiments, we didn’t observe this
situation. No packets were dropped at the server, and at least one client
was always ready to receive packets throughout our experiments.

4.3.2 Packet Dropped by Peers Upstream

If the computing resources assigned to a client were permanently or tem-
porarily insufficient to transmit or receive the copied packets, then some
packets would be dropped at clients upstream, because the internal buffers
have a limited size which causes timeouts when sending copied packets. De-
noting as ci the total copy rate of the i-th client for the time duration ti,

then the time-weighted copy rate or
∑

i=n

i=1
citi

/

∑

i=n

i=1
ti was measured to be

0.9987, where n is the number of clients. That indicates that 0.13% of the
copied packets didn’t flow to peers downstream, but this was small enough
to recover the dropped packets by using the 128/116-FEC decoding (i.e., up
to 9.375% losses are recoverable).

Since the packet dropping rate at the server and upstream peers repre-
sents the basic performance of P2G dissemination, the results show that P2G
dissemination operates well as a reliable one-to-many multicast distribution
system.

4.3.3 Packet Blocking

Final packet losses at the end clients may be brought by not only packets
dropped at upstreams mentioned in the previous sections, but also packets
blocked at the clients themselves.

Denoting as ei the total unrecoverable erasure rate occurred at the i-
th client for duration ti, the overall time-weighted average of the erasure



rate was 0.42%, but most clients experienced near zero rate. Therefore,
most of the erasures occurred in a limited set of problematic clients. in our
experiment, eight clients suffered from constant erasures. The erasure rate
for these eight PCs was 5.00%, but only 0.14% for the rest of the PCs. Note
that 0.14% erasures would result in one frame drop for every 24 minutes if
they are burst.

Out of the eight problematic clients, one client solved the problem by
adjusting networking parameters such as the Maximum Transmission Unit
(MTU) to appropriate values. It was also found that four clients were
equipped with improper network interface cards (NIC), for example, 100-
Mbps Ethernet PC-card with no CardBus support, which may not be suffi-
cient for double 4-Mbps streaming — 4 Mbps for input and almost 4 Mbps
for output of copied packets. The problems of the remaining three clients
were unknown, but they are most likely the result of the the PC’s own
problems.

Also note that some other clients temporarily showed unrecoverable era-
sures when other processes in the same PC consumed more computing re-
sources (e.g., in starting and reading from a mail program), but this is un-
avoidable unless some of the computing resources are reserved for the P2G
dissemination client process. Countermeasures on the player side might be
necessary to avoid this type of stream discontinuation.

5 Conclusions

We have presented a new reliable multicast scheme, Peer-to-Group Dissem-
ination, in which each client participates on an equal basis with no leaders
or secondary servers as found in the Edge Architecture. Furthermore, P2G
dissemination requires no network infrastructure support as opposed to IP
Multicast.

P2G dissemination is composed of two sub-schemes, Peer-to-Group Uni-
cast and Group Packet Sharing. The Peer-to-Group Unicast allows a single
set of packet transmissions from a server to a group of clients to avoid net-
work congestion and server overload. The Group Packet Sharing exploits
the peer-to-peer unicast capability guaranteed for clients connecting to a
single switching hub, so that they can smoothly and reliably exchange data
packets. For collision domains such as wireless networks, it utilizes multicast
or broadcast in a local network.

A server optimizes and determines destinations for each packet and then
sends it to one of the clients as a spreading source, while each client col-
lects source packets from the server and copied packets from peers as a sink
destination. The per-packet optimization by the server and the equal-basis
clients allow for dynamic group memberships, such as the entering and ex-
iting of several clients to occur without affecting the overall stability of the



system. In addition, connection-oriented communication and Forward Error
Correction (FEC) increase the system’s reliability and stability.

The equal-basis clients potentially cause variation in packet arrivals, and
so each client needs to pre-buffer packets to deal with delivery problems,
but this might make P2G dissemination unsuitable to real-time streaming
for such uses as video conferences.

From the experimental results performed on an actual network envi-
ronment in which a single small server simultaneously served more than a
hundred clients, we have observed no problems with the basic performance
of P2G dissemination.

References

[1] S. Deering, “Routing in internetworks and extended lans,” Tech. Rep.
STAN-CS-88-1214, Stanford University, Department of Computer Sci-
ence, July 1988.

[2] “RFC-3171: IANA guidelines for IPv4 multicast address assignments,”
2001.

[3] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel,
“ALMI: An application level multicast infrastructure,” in 3rd USENIX
Symposium on Internet Technologies and Systems (USITS), 2001, pp.
49–60.

[4] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang, “A case for end system
multicast,” in ACM SIGMETRICS 2000, Santa Clara, CA, June 2000,
ACM, pp. 1–12.

[5] W3C, “Edge architecture specification,” W3C Note 04 August 2001,
http://www.w3.org/TR/edge-arch.

[6] “Akamai,” http://www.akamai.com.

[7] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RFC 1889:
RTP: A transport protocol for real-time applications,” Jan. 1996.

[8] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuck-
erman, “An xor-based erasure-resilient coding scheme,” Tech. Rep.,
International Computer Science Institute, Berkeley, California, 1995.


