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Abstract 

A method to progressively refine the orientation and speed 

of a gravitational wave or plane wave is described based on 

a coordinate system that is oriented along the detectors that 

successively detected the wave in time. A set of normalized 

wave propagation constraints are determined for the 

successive wave traversal events through the detectors 

based on the time of arrival at the detectors, to estimate the 

orientation and speed of the wave based on the number of 

detectors available for measurement. When multiple 

detectors are available, additional normalized wave 

propagation constraint equations can be used or different 

coordinate systems can be constructed to refine the 

estimates for the wave orientation and the wave speed. It is 

hoped that the presented approach with the normalized 

wave propagation constraints and choice of coordinate axes 

will be useful for efficient computations to determine wave 

orientation and speed for practitioners in this area. The 

described technique is applicable to any plane wave 

propagating through detectors successively in time. 

1. Introduction 

Gravitational waves [1][2][3][4][5] can be detected  by 
gravitational wave detectors [6][7] on the surface of the 
earth. Based on the location of the detectors, and the 
orientation of the wave in space, each detector may 
detect the wave at a different time. Source localization 
[1][8][9]10][11] of gravitational waves has been studied 
in the past with multiple detectors. The relative timing of 
the signals arriving at the detectors provides the most 
useful information for source localization.  Additional 
properties of the wave such as the signal amplitude, spin, 
and precession effects, or differences in the detectors 
such as antenna pattern asymmetry can also be utilized 
[1][8][9][10][11] to accomplish source localization. At 
times, only some detectors may be active to detect a 
wave. This paper focuses on source localization 
(determining the orientation of the wave) using a 
coordinate system aligned along these detectors that 
were involved in the detection of the wave, and to 
provide for a correction of the wave speed if desired. 
The approach presented in this paper for source 
localization and speed estimation utilizes the knowledge 
regarding the wave propagation in time successively 
through the detectors, to progressively refine the 
knowledge related to the orientation of the wave, and to 
then estimate the speed of the wave, based on the 
available measurements from the detectors. The work in 
[9] was the earliest effort to present a solution to the 
problem, where the focus was primarily on how best to 
utilize time-of-arrival difference information from 3 
detectors, and augment the information with additional 

information such as antenna pattern asymmetry, to 
determine the orientation of the wave. The work in [8] 
provides good intuition regarding the problem and 
focuses on a null-stream based technique to discriminate 
gravitational wave bursts from noise glitches. Timing 
accuracy and uncertainty related to the detector 
measurements are addressed in [10][11]. In [10], it is 
suggested that a precise form for localization with more 
than 3 detectors has not been calculated, which we hope 
to address in this paper, purely from the standpoint of 
the time of arrival information across multiple detectors. 
With a good number of detectors getting installed 
around the world [1], techniques for efficient 
computation and estimation across detectors can be 
expected to be useful.  We assume, in this paper, that a 
plane wave propagation through detectors or a 
gravitational wave burst propagation through detectors 
has been observed and isolated from any noise glitches. 
The paper then focuses purely on utilizing the time-of-
arrival information at the detectors to determine wave 
orientation and speed. For this objective, a set of 
normalized wave propagation constraints are 
determined for the wave traversal events through the 
detectors.  The coordinate system is oriented along the 
detectors that successively detected the wave in time.  
The difference in time arrival at the detectors and the 
relative location of the detectors are used to study the 
orientation and speed of the wave. With two detectors, 
an angle of arrival can be determined relative to the 
vector associated with the path between the two 
detectors (chosen as the +z direction in this paper), 
assuming that the speed of the wave is known. Given the 
relative time information for three detectors, the +x 
direction is chosen in the plane of the detectors based on 
the direction of propagation of the wave through the 
detectors in sequence.   The orientation of the wave 
relative the plane of the three detectors is determined. 
An ambiguity exists (in this paper, this translates to a 
determination of wave propagation relative to the +y or 
–y direction) related to this orientation which can be 
resolved [8][9] based on variations in signal amplitudes 
and the antenna pattern asymmetry in the detectors. 
Alternatively, a fourth detector may be used to 
determine the exact orientation of the wave (as 
suggested in [1] and [8]) to resolve the ambiguity. With 
four detectors, the speed of the wave can be validated as 
well. If the initial estimate on the speed of the wave is 
incorrect, then the wave speed can be scaled to refine 
the values of both the speed and the orientation of the 
wave in space. When multiple measurements from more 
than 4 detectors are available, different coordinate 
systems may be constructed using different sets of 
detectors, or additional constraint equations can be 



used, to refine the estimates for the orientation and 
speed of the wave. When multiple measurements from 
a given set of detectors that form a coordinate system 
are available, then additional wave propagation 
constraint equations can be obtained for each new set of 
measurements. When measurements from multiple 
detectors are available, or when multiple measurements 
are available for the detectors, then a pseudo-inverse 
can be computed to obtain a least-squares estimate for 
the orientation and the speed based on the wave 
propagation constraints arising from each of the 
detectors. The method described in the paper is general 
and it can be applied to any plane wave or plane wave 
train that traverses a sequence of detectors successively 
in time. It is hoped that the presented approach with the 
normalized wave propagation constraints and choice of 
coordinate axes will be useful for efficiently determining 
wave orientation and speed for practitioners in this area.  
 

2. Determination with 2 detectors                 

(informal geometrical interpretation) 

Let us assume that a gravitational wave is detected by 
two gravitational wave detectors D1 and D2 on the 
surface of the earth, where the wave first reaches 
detector D1 and then reaches detector D2. Let the 
detectors D1 and D2 subtend an angle α at the center of 
the earth. Then the straight line distance, d, between 
them (through the earth) is given by the following 
equation, where R is the radius of the earth    d   =  2 R 
sin ( α / 2 )  (assuming that the earth is a perfect sphere). 
In practice, the exact distance d between the detectors 
in space needs to be determined.  The wave traverses the 
distance d from detector D1 to detector D2 as it 
propagates, arriving at the detectors at different times 
relative to the detectors. Let us assume that the 
detectors detect the same signal at a time interval Δt 
relative to each other, and that the speed of the 
gravitational wave is v. Let the wave arrive at an angle θ 
relative to the direct path between the two detectors. 
Then the additional distance traveled by the wave front 
to reach detector D2 after reaching detector D1 is given 
by v Δt.   Then, cos θ   =   v Δt /  d.  Therefore, the angle 

of arrival θ relative to the  vector  𝐷1𝐷2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is given by    θ   = 
cos-1 (v Δt /  d  ).  

 
Figure 1: 2 Detectors separated by distance d 

 
Figure 2:  Incident Gravitational Wavefront 

 
For example, if d = 3000km,  Δt = 7ms, and v = c (speed 
of light in vacuum) = 3 x 108 m/s, then  θ   = cos-1 (0.7)  = 
45.57 degrees.    If v = (1/0.7) c, then θ   = cos-1 (1) = 0 
degrees.   If v = 0.9 c, then θ   = cos-1 (0.63)  = 50.94 
degrees.  It can be seen that as the speed varies, the 
orientation of the wave relative to the direct path 
between the detectors can vary as well. Intuitively, this 
resolves the orientation of the source to be lying on the 
surface of a cone that is centered around the direct path 
between the detectors. 
 

3. Progressive Wave Orientation and Speed 

determination with Multiple Detectors 

Let us assume that a gravitational wave (or any plane 
wave for that matter) passes through n detectors at 
locations 𝐷1, 𝐷2, 𝐷3 ,.... 𝐷𝑙, 𝐷𝑙+1,.... 𝐷𝑛   in sequence in 
time. We will interchangeably use the same 
representation for the location of the detector and the 
index associated with the detector.  Let us assume that 
the wave propagates with speed v. Let the signal (such as 
a peak associated with a gravitational wave burst) be 
received at detector 𝐷2 at a time ∆𝑡1,2 relative to 

detector 𝐷1. The signal is subsequently detected at 
detector 𝐷3 at a time ∆𝑡2,3 relative to detector 𝐷2. In 

general, the signal is detected at detector 𝐷𝑙+1 at a time 
∆𝑡𝑙,𝑙+1 relative to the detector 𝐷𝑙. 

3.1  Choosing a coordinate system oriented along 
the detectors 

Without loss of generality, let us assume an x-y-z 
coordinate system, where the unit vector 𝑧  along the z-

axis is oriented along the vector  𝐷1𝐷2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and that the z-x 
plane is formed by the plane consisting of the points 𝐷1, 
𝐷2,  and 𝐷3,corresponding to the first three detectors 
that the wave passed through in sequence.  

Let us assume that the distance between detectors 
𝐷𝑙  and 𝐷𝑙+1 is given by dl,l+1 where l = 1,2, 3, …(n-1).    

Let �̂�𝑙,𝑙+1 denote the unit vector in the direction 𝐷𝑙𝐷𝑙+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  



 

Figure 3: A coordinate system aligned along the 
detectors 

Let �̂�𝑙,𝑙+1 have unit vector components (𝑒𝑙,𝑙+1,𝑥,  𝑒𝑙,𝑙+1,𝑦, 

𝑒𝑙,𝑙+1,𝑧  ) in the x, y, and z directions.  Then,  

 𝐷𝑙𝐷𝑙+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     =    𝑑𝑙,𝑙+1 (𝑒𝑙,𝑙+1,𝑥 �̂�𝑥 +  𝑒𝑙,𝑙+1,𝑦 �̂�𝑦 +

𝑒𝑙,𝑙+1,𝑧  �̂�𝑧 )               ………………………………………………….. (1) 

Let us also define the wave propagation ratios 

  𝜂𝑙,𝑙+1 =  
𝑣 ∆𝑡𝑙,𝑙+1

𝑑𝑙,𝑙+1
  …………………………………..……..(2) 

Then �̂�1,2 ≡ (0, 0, 1) . Therefore,  𝐷1𝐷2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = d12   �̂�𝑧  …..(3) 

 Let the vector 𝐷2𝐷3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  be oriented at a non-zero angle δ23  

relative to the vector 𝐷1𝐷2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in the z-x plane, where the �̂�𝑥 

direction is chosen orthogonal to �̂�𝑧 (in the plane 
consisting of 𝐷1, 𝐷2,  and 𝐷3) such that 0 < δ23 < 𝜋. The 
unit vector �̂�𝑦 is chosen in the direction of the vector 

product �̂�𝑧   x  �̂�𝑥  . 

Then �̂�2,3  ≡ ( sin (δ23), 0, cos (δ23))     

⇒   𝐷2𝐷3 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = d23 ( cos (δ23) �̂�𝑧   +  sin (δ23)  �̂�𝑥  )  ………...(4) 

Let the direction of propagation of the gravitational wave 

be given by the unit vector �̂�,  where  

�̂�  = cos(𝜃𝑘) �̂�𝑧 + sin(𝜃𝑘) cos(𝜑𝑘)  �̂�𝑥 

+ sin(𝜃𝑘) sin(𝜑𝑘) �̂�𝑦 ………………(5) 

  =   cos(𝜃𝑘) �̂�𝑧 + sin(𝜃𝑘) �̂�𝑥𝑦     

where  �̂�𝑥𝑦  =  cos(𝜑𝑘) �̂�𝑥 + sin(𝜑𝑘) �̂�𝑦  

Here �̂�𝑥𝑦 is a unit vector component in the x-y plane,  

𝜃𝑘 is the angle made by the vector �̂� with the z-axis, and, 

 𝜑𝑘  is the angle made the vector   �̂�𝑥𝑦   with x-axis in the 

xy-plane. Based on the chosen directions for the axes, 
and the fact that the wave propagation was intercepted 

by the detectors 𝐷1, 𝐷2 and 𝐷3 in sequence (in time), we 
have  cos(𝜃𝑘) ≥ 0,  and cos(𝜑𝑘)  ≥ 0.  

3.2 Wave propagation constraints for successive 
traversal  through the detectors 

Since the amount of time taken by the wave to reach 
detector 𝐷𝑙+1 from detector 𝐷𝑙  is based on the 

component of the vector 𝐷𝑙𝐷𝑙+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     in the direction of the 

propagation vector �̂�, we have the set of propagation 

constraints through the detectors given by,  �̂� . 𝐷𝑙𝐷𝑙+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      
=  v ∆𝑡𝑙,𝑙+1   or alternatively, 

 �̂� . �̂�𝑙,𝑙+1  =  𝜂𝑙,𝑙+1 ,    ∀l ∈ {1, 2, 3, ….., (n-1)} …………..(6) 

where 𝜂𝑙,𝑙+1 = 
𝑣 ∆𝑡𝑙,𝑙+1

𝑑𝑙,𝑙+1
  

It should be noted that the above normalized wave 
propagation constraints can be applied to any pair of 
detectors 𝐷𝑖  and 𝐷𝑗, where the wave reaches detector 𝐷𝑗 

at a later time ∆𝑡𝑖,𝑗  relative to detector 𝐷𝑖. This results in 

the wave propagation constraint  �̂� . 𝐷𝑖𝐷𝑗 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    =  v ∆𝑡𝑖,𝑗   , or 

alternatively, 

 �̂� . �̂�𝑖,𝑗  =  𝜂𝑖,𝑗 ,      where 𝜂𝑖,𝑗 = 
𝑣 ∆𝑡𝑖,𝑗

𝑑𝑖,𝑗
 . ………………..….(7) 

However, it should be noted that any such constraint for 
an arbitrary pair of detectors would merely be a linear 
combination of the constraints in equation (6), so that 
such constraints for any other arbitrary pair of detectors 
do not provide any additional information, once the 
constraints in equation (6) are specified. 

3.3 Progressively Refining the Orientation of the 
wave 

Let us assume that v = v0 , where v0 can be set equal to c 
(the speed of light in vacuum) if desired.  

Now let us successively apply these constraints in the 
chosen coordinate system described above. 

�̂� . 𝐷1𝐷2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    =  v ∆𝑡1,2     or alternatively, 

 �̂� . �̂�1,2  =  𝜂1,2 ………………………….....…….………(8) 

where 𝜂1,2 = 
𝑣 ∆𝑡1,2

𝑑1,2
 

 ⇒  cos(𝜗𝑘)  =  𝜂1,2  

              Let   𝛽 =  𝑐𝑜𝑠−1(𝜂1,2)     such that  𝛽 ∈ [ 0,
𝜋

2
 ] 

 Then,𝜗𝑘 = ±𝛽………………………………………….…(9) 

Thus, with two detectors, we estimate an angle of arrival 

𝜗𝑘   relative to the vector 𝐷1𝐷2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  . 



Also, �̂� . 𝐷2𝐷3 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    =  v ∆𝑡23  ,  or alternatively, 

 �̂� . �̂�2,3  =  𝜂2,3 …………………………………………………..….(10) 

where 𝜂2,3 = 
𝑣 ∆𝑡2,,3

𝑑2,3
 

cos(𝜗𝑘)  cos (𝛿23 ) + cos(𝜑𝑘) sin(𝜗𝑘)  sin (𝛿23 ) = 𝜂2,3 

⇒  sin(𝜗𝑘) cos(𝜑𝑘) =  
𝜂2,3 − cos(𝜗𝑘)  cos (𝛿23 ) 

 sin (𝛿23 )
 

Since cos(𝜑𝑘) ≥ 0, the sign of 𝜗𝑘  is chosen based on the 
sign of the RHS.  Thus,  

If   
𝜂2,3− cos(𝜗𝑘) cos (𝛿23 ) 

 sin (𝛿23 )
   ≥ 0,   then  𝜗𝑘 = +𝛽,   

else 𝜗𝑘 = −𝛽 ………………….(11) 

Now, cos(𝜑𝑘)  may be determined, using the equation 

  cos(𝜑𝑘) =  
𝜂2,3− cos(𝜗𝑘) cos (𝛿23 ) 

 sin (𝛿23 ) sin(𝜗𝑘)
 

Let  𝛾 =  𝑐𝑜𝑠−1 ( 

𝑣 ∆𝑡23
𝑑23

− cos(𝜗𝑥) cos (𝛿23 ) 

sin(𝜗𝑥) sin (𝛿23 )
 )     

where   𝛾 ∈ [ 0,
𝜋

2
 ] 

Then,  𝜑𝑘  =  ± 𝛾 …………………………………………….…….(12) 

Intuitively, with 𝜗𝑘  determined as specified in equation 
(11), the remaining choice of 𝜑𝑘  =  ± 𝛾 effectively 
reduces to that of determining whether the wave is 
propagating in the +y or the –y direction in the chosen 
coordinate system. As noted in [8][9], this ambiguity can 
be resolved for gravitational waves by accounting for 
variations in the signal amplitudes, and the antenna 
pattern asymmetry in the data. However, let us continue 
the determination using relative time arrivals at 
detectors only, assuming that an additional fourth 
detector is available, so that the treatment is applicable 
to any plane wave traversing detectors in time as well. 
Let us use the arrival time ∆𝑡3,4  at the fourth detector 

𝐷4  relative to the detector 𝐷3. Let the vector 𝐷3𝐷4 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   be 
given by 

𝐷3𝐷4 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   =   𝑑3,4 (𝑒3,4,𝑥 �̂�𝑥 +  𝑒3,4,𝑦 �̂�𝑦 + 𝑒3,4,𝑧  �̂�𝑧 ) 

where 𝑒3,4,𝑥, 𝑒3,4,𝑦, and 𝑒3,4,𝑧  are components of the unit 

vector �̂�3,4 in the direction 𝐷3𝐷4 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  . 

Then    �̂� . 𝐷3𝐷4 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    =  v ∆𝑡34   or, 

 alternatively �̂� . �̂�3,4  =  𝜂3,4, where 𝜂3,4 = 
𝑣 ∆𝑡3,4

𝑑3,4
 

⇒ cos(𝜗𝑘) 𝑒3,4,𝑧   + sin(𝜗𝑘) cos(𝜑𝑘) 𝑒3,4,𝑥  +

sin(𝜗𝑘) sin(𝜑𝑘)  𝑒3,4,𝑦  =  𝜂3,4 

 
⇒ sin(𝜑𝑘)    

=  
𝜂3,4 − cos(𝜗𝑘) 𝑒3,4,𝑧   −  sin(𝜗𝑘) cos(𝜑𝑘) 𝑒3,4,𝑥

sin(𝜗𝑘) 𝑒3,4,𝑦
  

Since all the quantities on the RHS are known, the sign of 
𝜑𝑘  can be determined and chosen based on the sign of 
the RHS.  Thus,  

If   (
𝜂3,4− cos(𝜗𝑘) 𝑒3,4,𝑧  − sin(𝜗𝑘)cos(𝜑𝑘) 𝑒3,4,𝑥

sin(𝜗𝑘)𝑒3,4,𝑦
)  ≥ 0,   

then 𝜑𝑘  =  + 𝛾, else 𝜑𝑘  =  − 𝛾 ……………….(13) 

Now, with the knowledge of both 𝜗𝑘   and 𝜑𝑘, from 
equations (11) and (13), the direction of propagation 

(equation (5)) of the wave �̂� (its orientation in space) is 
known relative to the chosen coordinate system.   

If the direction of propagation in any alternate 
coordinate system is desired, then the appropriate 
coordinate transformation may be performed. 

3.4 Progressively refining the estimate of the  
wave speed and the orientation 

Now, we can validate whether the speed of the wave 
that was assumed earlier to determine both 𝜗𝑘   and 𝜑𝑘 is 

correct or not. Since �̂� . �̂�3,4  =  𝜂3,4  =  
𝑣 ∆𝑡3,4

𝑑3,4
, then 

based on the known value of �̂�3,4  and based on the 

current estimated value of �̂� , one can determine v, using 

     v = (�̂� . �̂�3,4) .
𝑑3,4 

∆𝑡3,4
………………………….(14) 

Equation (14) can be used to validate whether the initial 
setting of v = v0  = c (say) is indeed valid. If this setting is 
not valid, then one would have to scale v to refine the set 
of constraints in equation (6), until equations are valid, 
or the until the mean squared error difference between 
the RHS and the LHS is minimized for the system of 
equations (6), to obtain the best possible estimate for 
the orientation and wave speed. Since the wave speed is 
fixed in value, there is only one solution that minimizes 
the mean squared error, and the system of equations can 

be expected to converge.  In general, if �̂�   ≡

(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧)
𝑇 and  �̂�𝑙,𝑙+1 ≡  (𝑒𝑙,𝑙+1,𝑥 , 𝑒𝑙,𝑙+1,𝑦  , 𝑒𝑙,𝑙+1,𝑧)

𝑇    

∀l ∈ {1, 2, 3} , then the set of equations (6) for the 4 
detectors for the chosen coordinate system reduces to 
the set of equations,  

 𝑒1,2,𝑧  𝑘𝑧  =  𝜂1,2,      𝑒2,3,𝑦  𝑘𝑦 + 𝑒2,3,𝑧 𝑘𝑧   =  𝜂2,3,   and  

𝑒3,4,𝑥 𝑘𝑥 + 𝑒3,4,𝑦 𝑘𝑦 + 𝑒3,4,𝑧  𝑘𝑧   =  𝜂3,4,   …………….…(15)    

Alternatively,  �̂�  = 𝑈−1  𝑁 …………………….(16) 



where   U  =   (

𝑒3,4,𝑥 𝑒3,4,𝑦 𝑒3,4,𝑧  

0 𝑒2,3,𝑦 𝑒2,3,𝑧  

0 0 𝑒1,2,𝑧

)     and   N = (

𝜂3,4

𝜂2,3

𝜂1,2

)  

If additional detectors are available, one can continue to 
use the general formula 

�̂� . 𝐷𝑖𝐷𝑖+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      =  v ∆𝑡𝑖 (𝑖+1)  , or alternatively, 

   �̂� . �̂�𝑙,𝑙+1  =  𝜂𝑙,𝑙+1 …………………………………. (17) 

to derive additional wave propagation constraints 
through the detectors that can be used to further 
validate or check or improve the accuracy of the results 
(please see section 3.7). 

3.5 Correcting the wave speed if required 

Since �̂� is a unit vector, we require that ∥ �̂� ∥= 1.  
Therefore, if v = v0  = c (say)  for an initial setting, and if 

an estimate for the propagation vector  �̂�𝑒𝑠𝑡  is obtained 

using equation (16) for v = v0  where ∥ �̂�𝑒𝑠𝑡  ∥≠ 1, then v 

can be scaled using v = 
 𝑣0

∥�̂�𝑒𝑠𝑡∥
 , and correspondingly, �̂� can 

be scaled using �̂� =  
�̂�𝑒𝑠𝑡

∥�̂�𝑒𝑠𝑡∥
 to satisfy ∥ �̂� ∥= 1.  The 

corresponding values of the angular coordinates (such as 
in equation (5)) can be computed once the values for 
each of the components 𝑘𝑥 , 𝑘𝑦 ,   and 𝑘𝑧, are known.  

3.6 Coordinate systems based on alternate sets of 
detectors 

If the information from the first 4 detectors related to the 
relative time arrivals for the measured signal does not 
have any uncertainty, then no additional measurements 
or additional coordinate systems with additional 
detectors are required to refine the estimates on the 
wave orientation and speed. However, if the wave was 
detected by more than 4 detectors, and additional 
corroboration or reduction in uncertainty related to the 
estimates of the wave speed and orientation are 
required, then new coordinate systems can be 
constructed and the estimates obtained relative to each 
coordinate system. For example, a coordinate system 
based on detectors 𝐷2, 𝐷3, 𝐷4, and 𝐷5, can be 
constructed starting with the unit vector �̂�𝑧   chosen 

parallel to the vector  𝐷2𝐷3 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. If there are n detectors 
where n > 4, then there exist (n-3) sets of detectors that 
detected the wave successively in time, so that (n-3) such 
coordinate systems can be constructed to obtain 
estimates for the orientation and the speed of the wave 
in each of these coordinate systems. In general, one can 
choose any 4 detectors, to create a coordinate system, 
to estimate the orientation and speed of the wave in 
such a coordinate system (for example, when 7 detectors 

are available, a coordinate system based on detectors 
𝐷2, 𝐷4,  𝐷5 and 𝐷7, can be created to obtain an estimate 
for the orientation and the speed). When an arbitrary set 
of detectors are selected to create a coordinate system, 
then the general equation (7) is utilized to obtain the 
wave propagation constraints for wave traversal through 
the chosen detectors (it should be noted that constraint 
equations across non-successive detector pairs are 
merely linear combinations of constraints from 
successive detectors pairs). Additionally, when different 
sets of measurements are available (such as two bursts 
separated in time propagating through the detectors) for 
the same set of detectors forming a coordinate system, 
then alternate estimates can be obtained for the 
orientation and speed of the wave.  Processing related to 
each of the coordinate systems can be processed in 
parallel to estimate the results across the coordinate 
systems faster. When estimates from each of these 
coordinate systems are available, it would be desirable 
to transform coordinates from all coordinate systems to 
a common coordinate system, to then compare the 
estimates for the orientation and speed of the wave 
across the coordinate systems. To select a common 
coordinate system, one could utilize a coordinate system 
for which the angular deviation (𝜗𝑘) of the wave from 
the unit vector �̂�𝑧  across the systems is a minimum, so 
that estimates of (𝜗𝑘 , 𝜑𝑘  , 𝑣)  for the wave could be 
refined around this common coordinate system.  Among 
the detector coordinate subsets that are chosen, if the 
presence of a detector in a subset causes significant 
deviation from results predicted from other coordinate 
system detector subsets, then one could eliminate such 
a detector from further analysis, and from the detector 
sequence. If such an anomalous detector is found, one 
could check if there might have been a time 
synchronization or other error that needs to get fixed so 
that the estimates for (𝜗𝑘 , 𝜑𝑘  , 𝑣)  get closer to the 
alternate available estimates from other coordinate 
systems.  

3.7  Progressive refinement using additional 
detectors or measurements 

In general, in any coordinate system, one can consider, 

wave propagation vector �̂�   ≡ (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧)
𝑇,    �̂�𝑙,𝑙+1 ≡

 (𝑒𝑙,𝑙+1,𝑥,  𝑒𝑙,𝑙+1,𝑦, 𝑒𝑙,𝑙+1,𝑧)
𝑇 ,  and 𝜂𝑙,𝑙+1 =  

𝑣 ∆𝑡𝑙,𝑙+1

𝑑𝑙,𝑙+1
 . Let the 

(n-1) x 3 matrix of pairwise detector unit vectors, 𝐸 ≡ 

( �̂�𝑛−1,𝑛, �̂�𝑛−2,𝑛−1, … . ., �̂�3,4, �̂�2,3, �̂�1,2)
𝑇, and the  (n-1) 

x 1 vector of wave propagation ratios Η ≡ 
(𝜂𝑛−1,𝑛 , 𝜂𝑛−2,𝑛−1 , ……… , 𝜂3,4,  𝜂2,3,  𝜂1,2)

𝑇, then one 

can write the matrix equation  

𝐸 . �̂�  =  Η …………………………………..…(18) 



so that    �̂� = (𝐸𝑇  𝐸 )−1𝐸𝑇Η ……………………..(19) 

Equation (18) may be refined by scaling the wave speed 
v. If v = v0  = c (say)  for an initial setting, and an estimate    

�̂�𝑒𝑠𝑡 is obtained with v = v0  where ∥ �̂� ∥≠ 1, then v and 

the terms in H, can be scaled using v = 
 𝑣0

∥�̂�𝑒𝑠𝑡∥
 to scale 

 �̂� correspondingly using �̂� =  
�̂�𝑒𝑠𝑡

∥�̂�𝑒𝑠𝑡∥
 to satisfy ∥ �̂� ∥=

1. When utilizing constraint equations from different 
coordinate systems for different sets of detectors, then 
it is necessary to transform coordinates into a common 
coordinate system, to then compute the pseudo-inverse 

to obtain a least squares estimate for �̂�.  If different 
measurements are available for each detector for 
different measured instances of a gravitational wave 
train (or any plane wave train for that matter) as it passes 
through the detectors, then the each of these instances 
produces corresponding constraints (of the form in 
equation (17)) that can be utilized (using equations (18) 
and (19)) to refine and estimate the orientation and 
speed of the wave.   

Summary 

The paper has described a technique to utilize a 
coordinate system aligned with the gravitational wave 
detectors that detected a gravitational wave in sequence 
in time, to progressively refine estimates related to the 
orientation and speed of the gravitational wave. A set of 
normalized wave propagation constraints relative to the 
detectors and the wave propagation vector are 
determined. With two detectors, the z-axis is oriented 
along the vector corresponding to the directional path 
between the two detectors, and an angle of arrival 
relative to this vector can be determined if the speed of 
the wave is known. With three detectors, the x axis is 
chosen based on the direction of wave propagation 
through the detectors in sequence, in the plane formed 
by the 3 detectors, and then the orientation of the 
detected wave relative to the z-x plane is determined. 
Four detectors can be used to determine the exact 
orientation of wave propagation in space (by resolving 
the wave orientation in the +y or –y direction), and the 
speed of the wave can be validated as well. The 
computations may be refined if the initial estimate of the 
wave speed did not satisfy the propagation constraints 
through the detectors. When more than 4 detectors are 
available, then additional coordinate systems can be 
used to obtain alternate estimates for the orientation 
and speed. Any additional detectors or available 
additional measurements on the detectors can provide 
additional propagation constraints through the 
detectors to further validate or improve the accuracy of 
the results based on the measurements. The technique 

described in the paper is generic enough to be applicable 
to any plane wave or plane wave train that traverses a 
sequence of detectors in time.  
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