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Abstract— Shared data centers and clouds are gaining popu- of heavy-tailed service times the variance may be infinite; i
larity because of their ability to reduce costs by increasig the that case a quantity called the “tail-integral” (definedetht
utilization of server farms. In a shared server environment a is assumed to be known. Each server is modeled as a single

careful assignment of request streams (e.g., all requestsom . .
a customer may constitute a stream) to servers is necessarg t S¢' V€l qUeUe that uses the first-come-first-served (FCHS) se

ensure good 'end user’ performance. In this work, we invesgate Vice discipline. We address the problem of assigning stssam
the assignment of streams to servers in order to minimize an the servers in order to minimize the overall expected wgitin
objective function, while ensuring that load is balanced amss time, the overall probability that the waiting-time exceeal
all the servers. The objective functions we optimize in thisvork  ¢etain value (exceedance probability), and stream-vieigh
include the overall expected waiting-time, overall probaldity of - fth f The st dight
the wait exceeding a given value, and stream-weighted veesis vers!ons orthese perlormance mea_sures._ € stream-w _Ig
of these measures. versions of the problem capture differentiated SLA setting
We obtain the optimal algorithm for a farm with 2 servers, where multiple customers may pay different revenue to the
if sharing of streams among servers is allowed. Based on the provider. We investigate both the continuous problem (siar
insights obtained, we design an efficient algorithm for the ralti- of streams among servers is allowed) and the discrete versio

server case. By rounding off this solution, we obtain a solibn An alt t S hen th des dif
to the case where sharing of streams is not allowed. Our trace n alternateé scenario IS wnen the same server provides dit-

driven evaluation study shows that our algorithms significatly ~ferent levels of service to different customer classes liygus
outperform baseline methods. Our work enables high perfor- priority schemes and/or generalized processor sharing{GP

mance for web hosting services as well as emerging Applicati  see e.g. [3]). For optimization under this scenario the eead
as a Service (AaaS) cloud_s. We als_o shovy that solutlon_s ina® s referred to [17] and references therein.
such as task-level scheduling and file assignment fall withiour .
framework. We can consider a stream to be the aggregated requests from
one large client or all clients of a particular service class
There is significant empirical support from many fields that
|. INTRODUCTION aggregated arrival processes are Poisson processes.(see, e
Shared web hosting platforms that allow a large number [#], [18]). It is also well known that the rate of such Poisson
small customers to host their web applications have becommcess are not constant but vary with time of the day, day of
very prevalent. The unique advantage provided by the shatbd week, etc., i.e., this is what is called a non-homogesieou
hosting platforms is their ability to provide high perforntc Poisson process. However, the time scale of change in tee rat
to applications at very low cost. Emerging Application as af the non-homogeneous Poisson process is usually one order
Service (AaaS) clouds are the next generation of shared datanagnitude higher than the time scale of arrival of reggiest
centers that provide different popular application seesion and one of the ways of modeling such systems is to use
a shared application cloud. Google App Engine [10] is a popiecewise constant rates. Indeed, in our optimization @gugr
ular application cloud for hosting web applications. Amazoone would solve an optimization problem for each length of
Elastic Compute Cloud (EC2) is a popular Infrastructure astime that the rates are assumed constant. Alternatively, on
Service (laaS) cloud platform. However, even EC2 allows useay solve the optimization just at the peak rates.
of many application services like IBM DB2 or IBM Websphere The service-time distribution of request classes are atbw
to host customer applications [1]. to be arbitrary. An important case that we consider is when
The benefit of sharing servers on server farms is not jubiey are heavy-tailed. These are random variables whose
savings in the hardware/software cost (these are slowlgrhec tail decays at a rate heavier than exponential (e.g., Pareto
ing commodities), but also to distribute system maintaeenlognormal, etc.). The heavy-tails manifest themselvesiigd
costs across several E-businesses. High performance ln swariances and probability of exceedances that decay at-a sub
a shared hosting platform requires a careful assignmentexfponential rate, e.g., polynomial, in contrast to expdiaén
customers or request streams to servers in the farm. In tfisere is significant evidence from the World Wide Web that
work, we look at this problem of deciding which clientdengths of service times (e.g., session durations), or some
(streams) to place on the same server so that some ovegathntitities that determine length of service times (efitg,
performance measure is optimized. transfer size) have this property (see, e.g., [5], [16] agnon
We consider a server farm, where different streams ofany others). The trace service time data that we used for
requests arrive according to the Poisson process withicertaxperiments in this paper turned out to lognormal, which
arrival rates. Each stream of requests has its own serviee tiis moderately heavy-tailed. Lognormal distributions alsa
distribution with a known mean. For service times with finitéound to fit service times in other related fields like telepho
variance, the variance is assumed to be known. For some casdkcenters ([2]).



Finally, we work under the assumption that the load (utgenerally distributed. Each server has its own independent
lization) on each server is equal. While it is true that thqueue and serves requests on a first-come-first-served JFCFS
assignment which gives the best overall performance measbasis. As mentioned before, arrivals of streams are assumed
may not be the one where the load is balanced at each servdn ibe Poisson processes.
is usually difficult to convince system administrators t@ge The problem we will first try to solve is to find the fraction
the load at different servers unbalanced. Most performansieach stream to assign to each server in order to:
analysis and optimization studies in the task-schedulieg a

(e.g., [12], [15]) have also relied on this assumption. 1) Minimize the overall expected waiting time

2) Minimize the overallP(Waiting Time> ) for any w.

A Contribution .We consider the cases where all thgs are both light-

' tailed (e.g., exponential, gamma, etc.) and heavy-tailegise

In practice, the naive way to assigns servers to streamge distributions for which no exponential moments exiss,, e
would be to distribute them arbitrarily over the servers, S8g-normal, Pareto). The equations for the expected vegitin
as to maintain a balanced load (also, called utilization) Qe remains the same in both the light-tailed and heavy-
servers. The main contribution of the paper is to show thgfjed case (as long aB(S2) < oo for all i in the heavy-
even under the constraint of maintaining balanced load en fjled case); the heavy-tailedness of the streams reflsets i
servers, one can still improve the overall performance oreasip, higher E(52)'s. However, the equations for the exceedance
by significant amounts, by clever assignment of streams. Wﬁbbability are very different. Remarkably, the structurie
present an algorithm that is optimal for a farm witlservers. the optimization problem in the exceedance probabilityimin
We use this algorithm to design an efficient heuristic fatization of the heavy-tailed case, is the same as that for the
the general case. The efficacy of our proposed algorithmdgnected waiting time minimization (more on this later).
established using both theoretical and experimental @¢ele  \ote that in the above formulation, we assume that sharing

Our work also unifies existing work in settings as diversgs sireams is allowed, i.e., one can assign fractions o&stee
as task assignment on parallel servers and file assignmgkervers. We also consider the case where no sharing of
problem, which have deterministic service times. We shoWreams is allowed. We will call this the ‘discrete’ probleim
that these techniques become special case for our propogggkrast to the former, which we call the ‘continuous’ peshl
algorithm that is designed for stochastic arrival and Srvig,cpy discrete optimization problems are usually extremely
times. Our optimization procedure can also be used for 8ergsicult to solve and NP hard. We find that in the solution
provisioning in web-server farms and AaaS clouds in OrdgS the continuous problem, the number of streams that are
to meet certain service level agreements (SLAs), under @,req is of the same order as the number of servers. Hence
scenario that all customer classes with the same servieé 1Y the number of streams is much higher than the number
guarantee are served exclusively by the same set of serg§eryers, then rounding off the continuous solution Ugual

(this seems like a possible, practical scenario). For e¥@Miyives a good solution to the discrete problem. Note that
one type of service level guarantee (see, e.g., [17]) specCifihe gptimal solution to the continuous problem, is infetesib

that the probability of the waiting-time exceeding a certait,; the discrete problem, but yields an objective function

value should be below a certain value. Using the optimiratiQ5,e that upperbounds the optimal objective value of the
procedure presented in this paper, one can minimize thigcrete problem. The solution we obtain by rounding off the
probability for an initial number of servers, and then i@ .4 ninyous solution is sub-optimal and gives a lower boand t

the number of servers and repeat the optimization until thgs optimal objective value of the discrete problem. In most
optimal probability falls below the required level. experimental examples we saw that the two were very close,

~The rest of the paper is organized as follows. In Seggicating that the rounding off technique usually yield®d
tion Il we define the model and the performance measureggts.

and describe the optimization problem in great generdility.
Section Il we show how to solve the optimization under the
different settings, for the two server case. We use theisolut
for the two server case as a basis to formulate an algorithm
the general multi-server case. We establish the efficacyuof o Let az(.j) be the fraction of stream assigned to servey.
algorithms using a trace-driven simulation study in Sectd.  Then the total arrival rate to servgris

We extend our model to differentiated QoS and exceedance n

probability in Sec. V. We present the related work in thisaare 2@ = Z )\iagj)

in Section VI and conclude in Sec. VII. =

1%. Minimizing Expected Waiting Time

Also, the expected service time and the expected square of th

I[l. MODEL AND OPTIMIZATION SETTINGS service time faced by serveris given by
Consider a queueing system witharriving request streams " oD ES
(or equivalently,n request classes), anch servers. Each E(S(J‘)) - 2ic1 i% (Si) and
stream, say Strean) is characterized by\;, E(S;), E(S?)) AG)
where )\; is mean arrival rate of stream and S; is the . Sl B(S2)

random service time. The service tinse is asssumed to be E([SY)) = NG ,



repectively. Then using standard queueing theory (see, eggoblem on the feasible set of tbéf)’s. Another way as sug-
[11]), the expected waiting at nodeis given by gested by the later formulation, is to view it as a minimiaati

. . N , problem on the feasible set of the& ), Y () Z())s (note
A(J)E([S(J)]é) - 2iz1 /\io‘l('J)E(Siz) that only these are present in the“objective functiz)n). \Waer
1= ADE(SW) 1 > )\ia?)E(Si) the former feasible space is imn dimensions, the feasible
space in the latter formulation is just i8m dimensions.
The main problem in the latter approach, of course, is to
identify this feasible set of thex ), Y1), Z())'s, since they

E(W(j)) _

and hence the overall expected waiting is given by

EW) =37, (Q(ill) E(WW) are expressed not in terms of each other, but in terms of
B YT e\ YT xelE(S?) “supplementary variables”, i.e., the”)’s.
=2 Z" . /\1 1722":1 xia E(S;)

Here \yup) — Z;L:l \; is the total arrival rate to the system.c' Unconstrained and Constrained Formulations

Note that A\ E(S()) is the load faced by Server (also High load on servers increase the probability of failure in
known as the utilization, or the trafflc intensity). For dtip @ system. Hence, system administrators often prefer to load
we need\DE(SW) = 3 )\ a E(S) < 1 for eachj. balance all the servers in their server farm. To capture this

The problem then becomes m|n|m|E5(W) subject to the aspect of the problem, we add the following constraint

constraints 7)) — C/m Vj 2)
o) >0 Vi, j, Za(” =1 Vi Z/\ o E(S;) <1 Vj and denote it byConstrained Problem Optimizatiofypical
j=1 i=1 data centers often exhibit very low average utilization|¢as

Hence we have an optimization problem where the deC|S|3ﬁ10% in a study reported in [20]). We call these phenomenon
variables are then! ()'s. Note that we have convex linear®s light traffic situation and handle it differently. Thisrsmn

constraints, but a very complicated objective funcUoneThOf the problem is not only interesting in its own right butals
Efovides an insight to solve the general problem. Recatl tha

objective function can be shown to non-convex, so mo

standard non-linear programming packages cannot be u %65 the total load on the system The light trafﬁc situation is

here. Also, the problem hasm variables andnn +n +m Wnenc = 0. Since) ;") Z) = C, we have thag ") ~ 0 for

constraints. all j. Since the balanced Ioad constraint is absent for the light
traffic problem, we denote this problem as theconstrained

Problem Optimizatiorand capture is as
B. Mapping to a Space with Fewer Dimnesions

m
Our original problem is an optimization problem withn ~ Minimize >~ X@WY ) subject to the constraints of (1)
dimensions. We now reforumlate the problem to a version that j=1
has significantly fewer number of dimensions and is easier 1o ( ) . 3)
visualize geometrically. We define (the constram@ ¢; < 1 is now redundant).

. el
e XU = 721?:1 i I

total

. OPTIMIZATION METHODOLOGY

e YO =3 Aiagf))E(Sf) A. Method Overview
e 20 =37 o B(S)) In order to solve the problem, we first consider the uncon-
We also make the following simplification in notatiom; = strained problem for the case where there are @ntarget

i/ Motal, bi = ME(S?), ¢; = ME(S;). We can regard servers for placing the streams. It is easy to see that the
(as, bi,¢;) as the initial data for the optimization problemconstrained version has the same objective function. Hewev

Then the optimization problem becomes it needs to satisfy an additional constraint (of load bailzg)c
Ny 6) and may have a much smaller feasible space.
Minimize Z : subject to One may note that our objective function is non-convex,
.7

which makes our problem difficult to solve. We identify the
" feasible space and divide into regions. We observe that the
xG = Zaz(j)ai, y ) = Zaz(‘j)bi' 7)) — Zal(j)ci; v; optimal falls in one of the regions. Further, we show that the
» objective function has convex level sets in this region. ¢éen
m n our methodology performs a greedy search in this region and
o >0 Vij, Za§j> =1 Vi Z%('j)ci <1 vj, terminateswhen it finds a local optimal. The convex level set
property ensures that the local optimal in this region is the
(1) global optimal as well, leading to our optimality result for
DefineA=>"  a;,, B=Y ,b,andC =>" , ¢;. Note the 2-server unconstrained problem. The objective function
that C is the total load on the system, and we assdfme m for the constrained problem is same as the unconstrained
for stability. problem and the feasible space is a subset of the uncorestrain
The usual way of viewing this problem, as suggested Iproblem. Hence, the convex level set property is satisfied fo
our initial formulation, would be to view it as a minimizatio this problem as well. We use a stream swapping technique to



find a local optimal in this reduced feasible space and use and curve L2 joining(A, B), (Z;‘:—ll a;, Z;‘:—ll bi)y -

the convex level set property to argue that our solution is (a1,b1), (0,0) as shown in Figure 1.
also the global optimal. Our-server algorithms are then used | emma 1: The feasible region for this problem is the region
iteratively to find a heuristic solution for the generatserver p petween the two curveil and L2 as shown in Figure 1.
scenario. We now show that the objective function has convex level
sets in the regionX™™ < 4/2 andY(® > B/2, and the
optimal solution can be be obtained in this region. Thersfor
the optimal solution lies on the boundary of the restricted
1) Optimizing the Unconstrained ProblenWe start with feasible region. This can be obtained by moving on the
the case of exactly two servers, and give the exact optimal fsoundary of the region along the direction of improvement of
this case. Then we extend the algorithm for theserver case. objective function until it cannot be improved. The alglonit
Consider (3) for the case of two servers. Note that) + to find optimum begins at poinf0,0) and adds streams to
XA =%" a,=AandYM+Y@ =3"" b, = B.Using the first server in decreasing order of their slopes urifil
this fact, (3) reduces to becomesB/2. After this it continues to add streams to the
L Dr(1 1 1 first server until the objective function stops improving.
Minimize Xy + (A- xt (B - vt ) st A useful property of the objective function in the region
i " that contains the optimal: The following lemma can be
X = Zagl)aiv Yy = Zo‘gl)bi shown using standard techniques:
=l =l Lemma 2:The function f(z,y) = zy + (A — z)(B — y)
0<alV <1 Wi (4) has convex level-sets in the regien< A/2, y > B/2.
Note also that the values of the function in the regiog

B. Two Server Case

So, one can view the above problem as one on two dimensio;;@l2 y > B/2 is symmetric to those on the regian< A/2
space (i.e., the space 6K (), Y (1)), We solve the problem = PR

. i - .=y < B/2 and the region: > A/2, y > B/2. Therefore the
by the following appraoch. We find the feasible region fIrSg@ptimal solution lies on the boundary of the feasible region

We then characterize the objective function in a part of tr} stricted to the quadrant < A/2, y > B/2. This can be

feasible space that contains the optimal. obtained by moving on the boundary of the region along the
direction of improvement of objective function until it gaot
X(2) |Feasible Region (R) be improved. In particular the algorithm begins at pginto)

C and adds streams to the first server in decreasing orderiof the
slopes untily") becomesB/2. After this it continues to add
% streams to the first server until the objective function stop
Ly % // -
/ 7 / Note that now we have to add the balanced load constraint,
ik / e, >, ag“q = (/2 to the minimization problem given

;
Isometric |
|

2) Constrained Problem Optimizatioigain, we first give
an optimal algorithm for the two-server case, and then use it
in a heuristic for then-server case.

Y(2) improving.
Y() / Isometrid by (3). To simplify notation we will denotezz(.l) by ;. If we

make the change in variablge = «;c¢;, then the new constraint
L2 set becomes:
n n ~
A XW=%"aa and YO =3 ab
1=1 1=1
Fig. 1. Feasible region for Unconstrained Optimization n
Y a=C/2 and 0<d&<c¢ Vi (5)
Identifying the feasible region: The following algorithm i=1
determines the feasible region. whered; = a;/c; andb; = b;/c;. Letv; be the vectofa,, b;).

« Compute the slopé;/a; of the vector(a;,b;) corre- Letw;; =v; —wv;. ~
sponding to stream. Note that for case of the expected For simplicity, we will assume that théa;,b;,c;)'s are
delay, this ratio is justZ(S?), and and for the case of sufficiently arbitrary, so that
exceedance probability in the heavy-tailed case, this rati Assumption 1:(a) No combinations of;’s will sum up to
is just [ (1 — Fy(s))ds. exactlyC'/2, i.e., all feasible stream allocations need to share
« Order the streams in the order of decreasing slopesat least one stream between servers. (b) No two vectors in the
Without loss of generality, henceforth assume that tleetV = {v; : i € (1,...,n)} have the same direction. (c)
streams were ordered in this manner from the beginnirgo two vectors in the setV = {w;; : i € (1,...,n),j €
« Plot the piecewise linear curve L1 joinir{g, 0), (a1,b1), (1,...,n),i¢ # j} have the same direction.
(a1 + a2,b1 + b2), ..., (Z;‘:‘f a;, Z?;ll b;), (A,B) The addition of the balanced load constraint makes it much



current
partition

first server . \\\

the origin with a slope&3 such that:

Z Ci§0/2and Z 01§0/2

Such a line can be made to pass through a pointksand
> @y, can be appropriately assigned such that:
~ > citar=C/2
b’s target by />3

partition Now, the algorithm maintains two partitions: (i) a current
¢ partition that represents the current feasible solutiot @i
. streams a target partition that represents the direction in whicé th
second server current partition should be modified to obtain a better felasi

solution. At any stage, the algorithm also keeps a tab on the
5 stream (sayk) that is shared between the two servers.
S Without loss of generality, assume th&t? > X1, The

Fig. 2. Finding optima in two server case of Constrained @iatition target partition is defined by the line of slopgassing through
the pointk, where~ is given by:
- _— : o y=®-yW)(x® - x®)

more difficult to identify thenew feasible regionR in the
(XM, Yy () space. Of course, we know that it is subset ofhe next two theorems establish the condition for optimalit
the R in the light-traffic case, and that it has piecewise- Theorem 2:If the current partition is same as the target
linear boundaries. Instead of determining the feasibléoreg partition then the solution is optimal.
explicitly as in the light-traffic case, we adapt an approach Theorem 3:If current partition is not the same as the target
based on a (continuous) exchange of streams between the padition, then the solution is not optimal.
servers such that feasibility is always preserved (i.,ldlad For the case of deterministic service times, note that
on each server remains equal). The problem at each step i€(®?) = E?(S;) and hence one sorts the streams based on
select two streams (one on each server) where an exchangdesfreasingE (S;). In that casep, = E(S;) is a decreasing
these two streams between the two servers results in decressjuence and], = 1/E(S;) is an increasing sequence. One
in the objective function. Of course, we start with an iditiacan then check that the initial partition is the same as tigeeta
solution that satisfies the balanced load constraint anévialt partition, and is thus optimal, thus giving support to theute
to find (see later). We have identified the following propertin [15].
that helps us define swapping any pair of streams between &/e now present an algorithm to find the optimum solution in
pair of servers reduces the objective function or not. two server case. Without loss of generality assume ghat~.

Definition 1: Define two serverg and! to be satisfying the The algorithm finds a point in the shaded region (Figure 2)

exchange property ifi, k such thato'” > 0,0\’ > 0and  that maximizes the slope of the vector — v;.. Formally, it
choosesi such thata; = 0 andb; — b, < B(a; — ax) and

(@, —a) (Y9 =y 0) 4 (b = bi) (XY = xU) <0. (b; — bx)/(a; — ay) is maximized.
We have proved the following result on the exchange |t then rotates the line defining the current partition clock
property that helps us terminate our procedure. wise until either, one of the poinisand is no longer shared

Theorem 1:A feasible solutionx is a local minima, if any between the two servers, or the current partition beconras sa
only if the two servers do not satisfy the exchange propertys the target partition. Formally, let
Since the objec_tive functic_m in th_e two server case ha}s L /y® vy x@ _ x®k)
convex level sets in the desired region, the local minima is § = min (ci,dk, - ( ))
also its global minima. In order to find a optimal solution, 4
we first find an initial feasible solution and then refine thi$he quantitys is added tod; and removed frondv. In case,
solution successively using the exchange property, unél tthe current partition is still different from the target tiéon,
property is no longer satisfied. the new shared stream becomeét o = ¢, — Gy, andk if § =
Represent the stream vectorgs as points in in the first ¢;. The process is repeated with the new shared stream. This
quadrant of the XY plane as shown in Figure 2. At every stagéntinues till the target partition becomes same as theentirr
the algorithm maintains a feasible solution by partitignthe ~partition. Figure 3 gives the formal details of the algarith
set of streams between the two servers using a straight lineTheorem 4:The algorithm terminates i®(n? log n) steps.
All the streams strictly above the line are assigned to tls fir
server {; = ¢;) and the streams strictly below the line are )
assigned to the second server, (= 0). The streams on the C- Multi Server Case
line are divided between the two servers. 1) The Unconstrained ProblemNow consider the case
The initial feasible solution is found using a line throughvith m > 2 servers. We first graphically represent

b; — by, a; — ay



al gorithm SVEEP
Y=>3" b X=3" a

1=

Find 8, k and & Such that:

solution by considering adjacent servers and optimizirey th
stream allocation locally within these two servers. It Ibsgi

S i+ 6 = C/2 with optimizing the first two servers, then second and third
i:b; /a;>8 & k= ; th th
YO =S b abY® =y -y ® server and so on, till thex — 1** andm*" server. Each such
0 Zz:zii/apﬁ i &kd;‘ x@ _ x _ x® pass of the optimization improves the objective functioluga
e iﬁbiy/fﬁf)/(;(m X’<2)) and gives another solution on the boundary. These passes

\X/hTI e v <p are repeated until the improvement in the objective fumctio

i = argmax,;, 5 - 5(bi /) value is zero or insignificant (in our experiments, we define

5 mi ey x @) x k) insignificant as being less than 1 %).

b =min (e, Gk, 1 (T + TR )) Lemma 7:1f feasible solution cannot be improved locally

Qi = & + 05, = G — 0 usingany pair of two adjacent servers, then it is a local optima

XU = XW 4 §a; — dap; X@ =X — xO®
YO =v® 4 6b; —5b; YD =y —y®
v = (y(2) — y(l))/(X(l) — X@)

B = (bi — bx)/(@: — ax)

if ax=0then k=1

in the feasible region.

In the 2-server case, sorting the stream takks logn)
time, whereas assigning the stream takds) time. Hence
the total running time iD(nlogn). For the m-server case,

else if 3=+~ then done the running time iO(k 3=, njlogn;) < O(knlogn) where
end while k is the number of passes amg is the number of streams
end al gorithm SWEEP allocated to servej and;+1. In all our experimentsy turned

out to be less thah.
Fig. 3. Algorithm SWEEP for finding optima in balanced loadbtaerver 2) Constrained Problem OptimizationWe use the two-
case server optimal algorithm in a heuristic for the general m-
server problem. As before, the algorithm begins by sortireg t
C streams based on decreas&gg&i. It then allocates streams to
the first server until the workload on it reach@gm (typically,
the last stream allocation to the server is a fractional .one)
This is done sequentially on the other servers, so that in the
end each server has worklo&fm. This constructs an initial
feasible allocation. Then, the two-server algorithm islop
on the first two servers. Once the two-server algorithm netur
a new allocation for servefr andj + 1, it is applied again on
serverj + 1 andj + 2 until j + 2 = n. In this way, one pass
of the heuristic is completed. The algorithm now traces back
from n to 1 for a second pass. The procedure can be repeated
until any further application of the procedure does not l#ad
any significant improvement in the objective function.
The worst case running time of the above algorithm is
O(k X7, n3logn;) wherek is the number of passes; is
the total number of streams shared between sefvanslj+1.
In the worst case, the running time could B&kn?logn).
the feasible region and feasible solutions. In any sol#towever, in our experimentg, was always less thah and
tion, order the servers such that)/X®) > Y2 /X the total number of steps taken ISWEEP in each pass of
...Y(m) /X (m) Any solution can be represented as a sequeng® algorithm never went beyoridn even forn as large as
of m — 1 points (X, Y (M), (XM + X@ y® +y@), 1500. Hence the actual running time turned out to be almost

/Feasmle Region
i

0 A
Fig. 4. Feasible region for light traffic: Multiple Servers

(X O ety O, linear for large values of.
Lemma 5: A solution is feasible iff all the corresponding
m—1 pOintS lie inside the regiOIR. IV. EXPERIMENTAL RESULTS

A geometric proof of this lemma is presented in Fig. 4 and We conducted experiments to study the effectiveness of our

the_ deta|l_ed proof is avallablg in the appendlx. The proof Egorithms against competing methodologies that areylit@l
by induction and works by taking an assignmenticervers, be used in practice

removing the streams assigned to the first server and reglucin
it to a problem withm — 1 servers (the region starting from .
P1 in Fig. 4). We state the following intuitive result nextA- Experimental Procedure

(proof in appendix). We tried our algorithm on different sets of traces obtained
Lemma 6:The optimal solution will have all then — 1 from different webservers. The traces were obtained fraen th
points on the boundary of the regidi Internet Traffic Archive. Each trace consists of a group of IP

The heuristic starts with a initial feasible solution whéte addresses that send a request stream to a particular weady:ser
m—1 points are placed equally spaced on the boundary of th\ée consider requests from each IP address to be a customer
feasible region. Then the algorithm successively imprakiss class or equivalently, a stream, and denote it as befoiefyr



each IP address, the absolute times of the requests artivaCa Constrained Optimization Results

the server, and the data transfer sizes when the requests wefye now present an evaluation of our proposed algorithm
made, was recorded. We assume that the sevice time fofpa Constrained Optimizatiariwe again compare the perfor-
request is proportional to the data transfer size. Hences&e ynance of our proposed algorithm with the follwoing baseline
the sequence of data tranfer sizes as $itg and estimate the g|gorithms. The baseline algorithm also ensure that easkise
E(S;) and E(S?), by the sample mean of the’s and S?’s, gets approximately equal load in the end.
respectively. We checked for autocorrelation of variogs|a  Minimum Delay Algorithm (MMDA):For each stream, it
the sequence of service times and found them to be at most @i2ks the server which has the least current performance
which is Sma”, even thOUgh not negllglble For SimpliCitﬁWmeasure value (|eE(WJ) in the case of expected de|ay
assume these sequences to be un-autocorrelated. Thetabsgiihimization) using all the streams picked so far. Ties are
times of the request arrivals was used to estimaféhe arrival resolved randomly. Servers whose load reaches or exceeds
rate of requests from that IP address. After estimating\the ¢/, are not considered in further iterations.
E(S;), andE(S7), we then calculated the data of our problemMinimum Load Algorithm (MLA) The algorithm assigns
i.e., thea;, b;, c; values that were defined before. We usegtreams to servers taking one stream at a time. It sends each
two traces that were of different nature. The first trace isslream to a server which has the le&sf) value (using the
day’s worth of all HTTP requests to the EPA WWW servestreams assigned so far). Note that in the end, each server wi
located at Research Triangle Park, NC [7]. The second traggighly have the same load.
contains all the HTTP requests made to the Clarknet WWW|| Algorithm (FA): The algorithm takes one stream at a time
server (Clarknet is a full Internet access provider for thetfd  in an arbitrary order. It assigns streams to a server urgil th
Baltimore-Washington DC area) for one week [4]. We pickedorkload Z() reachesC/m. After the threshold is reached,
up requests from00 IP addresses from the first trace and calt moves on to the next server.
it Set A. Similarly, we picked up the requests frarfi00 IP  Equal Partitioning Algorithm (EPA)The algorithm partitions
addresses from the second trace and labelled it as Set B. each stream into equal parts and assigns one partition to eac
server. Note that even in this case, each server will get@ loa

B. Unconstrained Optimization Results of exactly C'/m.

In order to evaluate our algorithm fddnconstrained Op-  We conducted experiments to study the performance of our
timization we also implemented the following baseline algoalgorithms vis-a-vis the above algorithms under a loadofact

rithms and performed a comparative study. C/m of 0.9. We varied the number of servers fratrto 100
Random Pick Algorithm (RPAFor each stream, the algorithmto study the performance with varying number of servers.
picks one of the servers randomly. The results (Fig. 6) show the superiority of our algorithm

Minimum Delay Algorithm (MDA)For each stream, it picks against any of the competing algorithms, i.e., our algarith
the server which has the least current (i.e., using all tteasis shows a performance improvement upto a factor @fover
picked so far) performance measure value (i(JV7) in the competing algorithms. The performance improvement is
the case of expected delay minimization). Ties are resolvsignificant for both the web-traces.
randomly. We also note that the integral solution is better than any
For the light traffic case, the average delays reported arvher comparative method for all cases other than lib@
relative, as we do not take the load factor into considematicserver case, even though some of the other methods report
However, the results are useful for a comparative study ®f ta non-integral solution. Also, when the number of servers
various algorithms, which is the aim of these experimemts. &re small, the performance loss in moving from a continous
order to get the integral solution from the continous sohiti solution to an integral one is very small. However, this pigna
we simply move a fragmented stream to the server that Hamcomes significant as the number of servers is increased.
the higherY;/X; ratio. This is not because of any scaling problem that the algorithm
We note that our algorithm comprehensively outperfornmay have but because of the fact that an increase in the
the other algorithms considered (Fig. 5). Another impdrtanumber of servers leads to a small number of sessions being
observation we would like to make is the fact that the integaflocated to each server. As a result, moving even a single
case and the continous case report very similar numbessssion can change the load on a server significantly that in
Hence, even a trivial rounding technique leads to an integtarn may also change the objective function. One may also
solution that has an objective balue very close to that of tiete that theMMDA and theMLA algorithm does not even
continous solution. Moreover, the performance improvemereturn a feasible solution in such a scenario. This essntia
is significant, reaching even an orderldfin some cases. We leads one to believe that the integral solutions are very far
also note that the performance improvement is fairly caests off from their continous counterparts when the number of
with varying number of servers as well. Recall that in the Zessions per server is low. This is not surprising because in
server case, our algorithm is provably optimal, whereathén such a scenario, addition of a single session can increase th
k-server case, our algorithm is only a heuristic. Howeues, t workload to close ta or even beyond, as was also seen in
performance improvement, when we increase the numbertbé case oMMDA and MLA. However, typical servers often
servers from2, does not decrease. This leads one to beliegerve multiple customer sessions and a low session perrserve
that our algorithm terminates fairly close to the globalimati, scenario can be ignored for all practical purposes. As one
even fork > 2. may note, when the number of sessions per server is high,
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our integral solution is very close to the continous case atm 1. For any servef, heavy traffic approximation (valid also
comfortably outperforms all other algorithms, both coatie for non-Poisson arrivals) says that
and integral. \G) )

Note that in the 2-server case, our algorithms yield thetexac ~ P(WY) > u) ~ exp {— L (Ji\ E((i 2””}
optimal solution and the performance is the best possible. ADE([SV]2)
However, even for then server casenf¢ > 2), we see a Hence
fairly marked performance improvement. This suggests that M () {_[1_k<j)E(s<j))]u}
even whenm > 2, our algorithms are fairly close to the PW >u) 3 im A exp AV E(ST) (6)
optimal solution. _ o =Y" XUWexp {—W}
Convergence SpeedWe also estimated the running time o ) ) )
of our proposed algorithm. We observed that the methdd!® New optimization problem is obtained by replacing the
SWEEP was never called for more thard steps in the 2- objective f.un_ct|0n in (1) by the new (_)bje_ctlve fun.ctlon give
server sub-optimizations, and we never needed to run m&# (6)- This is also a non-convex objective function that has
than 5 passes. Another interesting fact was that the initiQrOPerties very similar to the earlier one.

solution constructed by our algorithm was also very close to pongther setting which one can investigate using the above

the optimal. We never observed it to be more thafk away  formulation is the heavy-tailed setting. Assume that fhis
from the final solution. This leads us to an important insighf,o heavy-tailed, i.e E(e?5:) = oo for all 6 > 0. In particular

that even sorting the streams basedbgfiu; and allocating 455yme thas,'s belong to a particular class of heavy-tailed
streams gives a very good solution as compared to the nai{giributions called sub-exponential distributions (s&g., [6]
methods. The simplicity of the initial solution makes it o 5 precise definition). Most commonly used heavy-tailed
good choice for system managers who are not aiming for giktributions, e.g., Pareto, log-normal, Weibull with pka

optimal solution and would sacrifice a bit of performance fo&arameter less than 1, belong to this class. Egk) be the

simplicity. cumulative distribution function (cdf) of;. Since all arrrivals

are Poisson, the distribution function of the service timeefl
V. MODEL EXTENSIONS by serverj is given by

A. Minimimizing Exceedance Probability . n ) ‘

We now look at the related problem of minimizidg(W > FO(s) = Z A Fi(s) /A7), (7)
u) for someu. Of course, in queueing theory no exact results =l
exist for the waiting time of\//G/1 server, so we make uself F;’s are subexponential thefi")(s) is also subexponential
of a heavy-traffic approximation. The term heavy traffic nearfinfact, FU) acquires the tail of the heavies; that has
that the load of each server, i.&Z() = XD E(SW) is close o) > 0; see, e.g., [6]) A result foGI/G/1 queues with
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015 | l E where \/) = Dy /\ial(.j)wl-. Hence we get the same opti-
01T Wi # R - 1 mization problem as in (1), where now the initial data for the
’ 1 problem iS(ai, bi, Ci) = (/\iwi//\totaly AlE(SlQ), AlE(Sl))
Similarly, in the case of exceedance probabilities for the
heavy-tailed case, one can have a different penaltyfor

making a request of classwait for more thanu units of

013 .
01z ®
ok
o1}
0.09 |

Exceedance Probability

EPA e
0.08 -SVg@Egggggg e . . o] time. Again it is easy to see that we get the same optimization
007 2 4 10 20 50 100 problem as in (1), but with the initial datéa,,b;, Ci) =

Number of Servers (Niw; [ Meotal, Ni f;‘zo(l — F;(s))ds, \; E(S;)). Since all these

Fig. 7. Exceedance probability for Different Algorithms bata Set B problems have the same canonical form that we address,

o ) o we apply our algorithm in an identical fashion to solve the
FCFS discipline and sub-exponential service time ([19)ssagjfferentiated QoS setting as well.

that

. (€) (€]
PWO) >u) ~ (ﬁ;g{&;&) E(slm) VI. RELATED WORK

Jieg@=FO(s))ds  (u— o0) The stream assignment problem has structural similatities
In fact, this relationship is valid much more generally; ,se¢he popular domains of task assignment and file assignment.
e.g., [13] for the case of Markov modulated arrivals. But w@ask Assignment: There exists a significant amount of work
restrict ourselves to thé//G/1 setting. Using the fact given on heuristics and optimality proofs for task-level scedgli

by (7), the above simplifies to (see, e.g., [12], [22]) and several references therein)h bo
Xy ) for the case of known and unknown task durations. In
PWD > ) ~ 70 (u — o0). task-level scheduling, each arriving task is dispatchea to

server/processor based either on its actual service-time i
Here X and ZU) have the same definition as before, buknown, and/or the state of the different queues. HarchdteBa

now . et. al. [12] (see also [22]) solve the task assignment proble
vy — (_j)/\i/ 1 — Fy(s))ds. _by. apriori partmonlpg the range _of the possible senticees
; i s:O( (s))ds into intervals. Each interval is assigned to one serverhEask

L . _is sent to the server assigned to the interval, that its cervi
Hence we have the same optimization problem as in (}h,q jies in. The intervals are chosen so that the load on each
but now the initial data(a;, b;,¢;) is defined differently. In goer is equal. In a shared server farm or a cloud, eactt clien
particular (a;, bi, ¢i) = (A, Ai [i_o(1 = Fi(s))ds, N E(S))) is usually assigned to one (or a small number of) servers.

instead Of()_‘“ NE(57), ME(S5), ). _ Hence, stream assignment becomes a more pertinent problem
1) Experimental ResultsWe also conducted experiments,, this setting

o est.imate the exceedance probability for .requests ofeTre}_c"e Assignment: Lee et. al [15] considered the assignment of

B.' U_smg Q-Q plots we found tha_t the data fitted a Iognormﬁ es to disks for storage. Disk accesses to each file are assum

distribution very closely. We estimated the shape and sc

¥ be Poisson with a known rate. The service time for each

parameters of the lognormal distribution for each 1P a(_:kire%e access is assumed to be deterministic. The problem is to
We then computed thg; for each IP address by numerically

. : A ~“"Jdetermine the subset of files to put on each server (withaut fil
integrating the cdf of the lognormal distribution. The esipe ! “ ! by ver (wi :

. . splitting) so that the load on each server is (roughl ual
ments were then run identically. For lack of space, we repgﬁ 9) (roughly) eg

: o d the overall expected response time for accessing tise file
only tk:je balancel;j Ibo.?d resulltts W'ﬂt] Eﬁ“ﬁ Set .B 'trr]] Fig. _7' TWE minimized. The solution they propose is again orderiregfil
exceedance proba lity resulls establish again the UGN their service times, and then partitioning this ordered s
of our algorithm over a suite of baseline techniques. We aIg%

te that lorithm iust id lution t bl that the load on each server is equal.
tnhote at our agt?ln _mtrJIUSf brovides g SEU |0£1 odp[jo € ttream Assignment There has been some work on stream
at areé expressiple In the form given by Eqn. L and does rc1;1C)ssignment as well ([17], citewhitt). The work in [22] is
depend on what;, b;, ¢; represent. Hence, our algorithm may

otentially be used for other assianment oroblems that ean losest to our setting. It shows through simple examples how
P y be L ) 9 P ombining streams with similar variances (in order to be
expressed in this canonical form.

assigned to the same server) may be beneficial, but does not
give specific algorithms for doing that. One may note that file
B. Weighted Optimizations for Differentiated QoS assignment becomes a special case of stream assignment if
We next consider the case where the web-server farm incafkrequests in a stream have the same service time. Siyilarl
a penalty for making a request wait, and the penalty per utdisk assignment is a special case of stream assignment by
wait time is different for different request classes. ketbe treating each task as a stream with deterministic servide an
the penalty per unit of waiting time for clagsThen it is easy arrival time. It is also interesting to note that the struetof
to see that in this case, we have the solutions to both these problems implicitly partiticassbd
m o \G) A B([SO]2) on service time (task or file size). One may also note that
E(W) = Z ( w ) . : (8) our solution of partitioning based on variance degenerates
= Atotar ) 1= AV E(SW) a partitioning based on service time if the service times are




fixed. Hence, our algorithm is a generalization of all these
techniques for stochastic service times.

In view of the work in [15], our main methodological .
contribution is going beyond the deterministic serviceeim 2]
assumption. It is also worth mentioning here that the extens
from deterministic service times to random service times is
non-trivial. Infact, the case of deterministic service dsrjust
uses the initialization step of the algorithm that we prapos 3]
Finally, we are not aware of any work, that formulates anoﬁ
solves models similar to ours in the heavy-tailed setting. A
interesting new insight that one gains from this heavyethil
study, is the following. In the case of finite service-time
variance, the (natural) first step of our algorithm is to shet
streams based on the second moments of their service times
equivalently, just the service times, if they are deterstinj
as in [12], [15]). In the case of infinite variance, it turnst ou
that one needs to sort them on the basis of their tail-integra [6]

(4]

g

(7]
VIl. CONCLUSION
(8]
In this work, we have investigated the problem of assiging
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APPENDIX YW =3 "ba;, YP=B-v® (10)
1=1

Lemma 1:The feasible region for this problem is the regior_1|_h ; ) he obiective f . ue i
R between the two curvebl and L2 as shown in Figure 1. @ function f() represents the objective function value in

. s . . terms of the assignment variablés
Proof: Consider a poinf in the feasible region. Extend : 9
Lo o . . We first prove the converse part of the theorem. &Lebe
the line joining origin toP to meet the line L1 at poin® as i~ .
- . a local minima. We show that the two servers do not satisfy
shown in Figure 1. Note th@ can be obtained by a CONVEXhe exchange property. Assume for contradiction that serve
combination of firsk vectors. Also,P = 5Q) wheres € [0, 1]. ge propery.

: P : -/

So, P can also be obtained by a convex combination of firgfmey the gxchangg pr?perty u~5|ng streara.BdZ - Construct
. . a new feasible solution’ from & as follows:

k vectors and hence is feasible.

Now we show that no point outside the regighcan be a;(l) = dgl) -6 aggl) = dg}) +4
feasible. .The maximum possible vall}f—!’f‘” for any feasi- a;@) _ 5‘5/2) +6 O/Z_(2) _ d§2) _s
ble solution(X,Y) is given be successively adding vectors
(a1,b1), (az,b2), ..., Blak, by) (0 < B < 1) until the sum of Change in objective function value while moving fraito

their x-components becomes equal¥o To see this, consider ¢’ is given by:
any other combination of vectors such thaf’ ; c;a; = X N &) = Slar —a)(y® —y® b — b (XD — x @
and >, a;b; = Y™ If there is a vectorl > k such fe') = f(a) [(a; a)( )+ (b = bi)( )
that a; > 0, then it can be swapped with another vector +20%(ay — ai)(bir — bi).

h < k, keepingX the same while increasing. Similarly, the  Since the servers satisfy the exchange property with réspec
minimum possible value of™*" is obtained by successivelytg streams and+’, the solutione’ is feasible for sufficiently
adding the vectorga,, b,.), (an—1,bn-1), ...B(ar, b)) (Where small values ofs. Also, the change in objective function
0 < 8 < 1), until sum of their x-components becomes equal iga|ue is negative for sufficiently and arbitrarily small wes
X. These points are exactly the same given by cuivesind of §. This means thaf is not the local minima, contradicting
L2. Therefore no feasible solution can lie outside the regiQﬂJr assumption_ Therefore, the two servers do not Sat|§y th
R. exchange property.
] We now prove the first part of the theorem. Letbe a2n
Lemma 2:The functionf(z,y) = a2y + (4 — z)(B —y) dimensional vector specifying a direction of movement ia th

has convex level-sets in the regien< A/2, y > B/2. solution spacei. Define gradient off () in directionw as:
Proof: Letu = A/2—x,v=B/2—y. Now, f(u,v) = n o 2 OF(E)

AB/2+4 2uv. To minimize this,uv should be negative. Taking g(d,w) = ZZ o wz@

one of the two symmetric solutions, set> 0 andv < 0. This == 04y

givesz < A/2 andy > B/2. _ Consider a feasible solutiaf such that the two servers do
Itis sufficient to show thaf(u, v) has convex level-sets in not satisfy the exchange property. Assume for contradictio
the regionu > 0 andv < 0, which is same as showing thatinat4 is not a local minima. Therefore there is a veatosuch

h(z,y) = —zy has convex level-sets in region> 0, y > 0. thati+dw is a feasible solution for sufficiently and arbitrarily
Let z1y1 = z2y2 > C, 71,y1,72,92 > 0 andd € [0,1]. small values of andg(a, w) < 0. For the feasibility ofv+dw
Now, the following conditions must be satisfied:
Vi : wgl) + w§2) =0 (11)

C < (0+(1—=68)xm & )

2ayys + (1= 6)2ways + 6(1 — 8)(w1y2 + mavn + (11 — y2) (w1 — 29)) VI Zwi =0 (12)
82x1y1 + (1 — 0)2mays + 6(1 — 6)(z1y2 + T2u1) =
= (0z1+ (1 —0)x2)(0yr + (1 — §)ya).

Therefore any convex combination ¢f1,y1) and (z2,y2) is NGO NG
: e(ik);’ = -1 e(ik),” =1

also in the same level set. In cagé < z1y1 < zays, let - )

Yp = T1y1/72 < yo. Sincexwiyr = w2ys, C < (dw1 + (1 — clk)e =1 elik)” =—1.

6)x2)(0y1+(1-0)ys) < (dx1+(1—0)x2)(dy1+(1-6)y2). I Note that the basis vectexik) represents the exchange of

this case also the convex combination(of,y;) and(z2,y2) streamsi andk between the two servers. We first decompose

is also in the same level set. B using these basis vectors and then show that there is a pair

Theorem 1:A feasible solution is a local minima, if any of stream that satisfies the exchange property.

only if the two servers do not satisfy the exchange property. Lemma 3:The vectorw can be decomposed into basis

Proof: Let f(a) = XMWy ™ 4+ (4 - XxMW)y(B -yM) vectors asw = Zi,k wjre(ik) such that:

where XM andY (™) are given in terms ofv as follows: ) @)
wi > 0 andw;, > 0= w;’ <0,w,;” <0. (13)

(1) — Xn:didi, Xx@ — 4 _ xm 9) Proof: Consider such thaﬁugl) < 0. Using (11) we have
=1

IN

Define the basis vectoe(ik) as a vector with all the
components zero except the following:

wZ@) > 0. This, along with (12) implies that there exiégtsuch
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that w,(f) < 0. Setw;, = min(—wgl),—w,(f)). Updatew = ~(a; — @k?. This gives,El- - _Bl > ~(a; — a;) which is a
w —w;ke(ik). Note that by such an update eithejl) or w,(f) contradiction to our assumption. [
becomes zero. Also note that the signsmﬁ) and w](f) are  Theorem 3:If current partition is not the same as the target
unchanged. Repeating this, gives the desired decompusititition, then the solution is not optimal.
m Proof: Assume that strearh is shared between the two
Lemma 4: Consider a decomposition ef into basis vectors S€rvers in the partitions. If current partition is not sanse a
satisfying (13). Ifa + dw is feasible then so i& + dw;xe(ik). the target partition, then either (a) there is streafnot equal
Proof: The above lemma is trivially true ofy;; = 0. to k) that is assigned entirely to the first server in the target
Note that the solutiori + dw;e(ik) does not violate the partition and to the second server in the current partitarn,

balanced load constraint (5). We only need to show that (b) there is a stream assigned entirely to the second server
in the target partition and first server in the current piartit

071(-1) — dw;x > 0 and d,(f) — dw;, > 0 Without loss of generality, we consider the former case. We

Since w;y, is a decomposition ofv into the basis vectors now show that streamsand: satisfy the exchange property

e o (1) 2) . in the current partition.
?"’“‘SW'”.Q (13)’. ffwi, > 0 thenw; ™ < 0 andw;™ < 0. Since Since i belongs to the second server ahds shared in
& + dw is feasible:

the current partition; < ¢; and ai > 0. Since: belongs

071(.1) +5w§1) >0 completely to the first server in the target partition, it mus
n be strictly above the line defining the the target partitios,
= dgl) — 52 w; >0 b; — b > ~(a; — ay), which is same as the exchange property.
=1 Since the streams satisfy the exchange property, the ¢urren
Since,w;; > 0 for all I, we have: solution cannot be the optimal. [ |
() Theorem 4:The algorithm terminates i®(n? logn) steps.
a; = dwy, > 0. Proof: Initially, (from our assumption) the slope of the

current partition is larger than that of the target pamitidhe

two partitions become identical when their slopes becorae th
same. It can be verified that after each exchange the slope
of the target partition increases while the slope of theanirr

Using a symmetric argument it can also be shown &ff;ﬁ—
ow;i > 0. [ |
Sinceg (&, w) <0, andw =}, , wire(ik) we have:

n.n o partition decreases. Each exchange is defined by exactly a pa
Z Z wirg (& e(ik)) <0 of two streams in the plane. There are at mgst—1)/2 such
i=1 k=1 o pairs. Therefore there are at ma@3tn?) exchanges.
= Ji,k:wirg (@, e(ik)) <0 For each exchange, we need to find a streatiat max-
Substituting the value of function(), vectorse(ik), and the imizes the slope(b; — by)/(a; — ax). This can be done in
fact that: O(logn) time by maintaining a sorted list of — 1 points for
of(a) av® 4 b x every stream. The list corresponding to strelns sorted by
aaw ! ’ (b; — bg)/(a; — ax). This gives the desired bound. [ |

Lemma 5: A solution is feasible iff all the corresponding
m — 1 points lie inside the regiom.

(—a;)Y D4a, YD —p, XD 45, XDy a0,y P g,y D 4p, X ) —p, xProofy Consider a solut]ion wherkth point lies outside
o o the region k. Let X = > °  XU). Using an argument
Simplifying the above expression gives: similar to that in proof of Lemma 1 it can be shown that any
(@ — a)(YD — YOy 1 (5, — b)) (XY — xO) < 0. other feasible solution with ', X'0) = X, should have

_ ) o _ T ymin < Zle Y'0) < ymer where Y™ (and Y") is
S|ncewié€2)> 0 andé +dwire(ik) is a feasible solutiom; * > gptained by accumulating streams in decreasing (incrgpsin
0 and @, > 0. This means that the two servers satisfy thgrder of slopes until the total x-component becomes equal to
exchange property. This is a contradiction to our assumptio¢, Therefore, this cannot be a feasible solution.
that @ is not a local minima. Thereforey must be a local  Now, consider a solution consisting of a sequenceef 1

we get:

minima. This completes the proof. B points in decreasing order of their slopes as shown in Figure
Theorem 2:If the current partition is same as the targeUsing induction we show that it is feasible. Consider the firs
partition then the solution is optimal. point P1 in the solution. JoirO to P1 and extend it to meet the

Proof: Assume for contradiction that the solution is noboundary of the regio at pointQ1. Now, remove the first
optimal. Therefore, there are two streainand! that satisfy server and the streams assigned to it (which is a fractioheof t
the exchange property i.&; > 0 anda; < ¢; and: streams that forn)1) to get another problem of size — 1.

- 2 1 s 2 1 The origin of new region shifts to poinP1. The boundary

@ - a)(¥® = Y®) + b - )X - X) <0. of new region remains unchanged aft9i. The boundary
This givesBi —b < ~v(a; — a;). Since@; > 0 and the target betweenP1 and@1 becomes inflated as shown in the figure.
partition is same as the current partitiohlies above the Since the slope oP1— P2 (and all subsequent pairs after that)
line defining the partition. Thereforé; — by, > ~v(a; — ax). is less than that o®— P1, all the remaining points still remain
Similarly, sincea; < ¢, [ lies below the line i.eb, — b, < inside the new feasible region. From induction hypothekas,



the remainingn — 2 points represent a feasible solution in the
new problem. Therefore the — 1 points represent a feasible
solution in the original problem. ]

Lemma 6:The optimal solution will have all then — 1
points on the boundary of the regidi

Proof: Consider a feasible solution fer servers sorted

according to slopesY{/X) represented using: — 1 points
as discussed earlier. Join th&" point to thek + 1°* point
using the vectors of streams present on the 1°¢ server in
decreasing order of their slopes. It suffices to show that the
curve so obtained is convex (since the convex curve obtained
by adding all the stream vectors is unique and is precisay th
boundary of feasible region).

We prove this using induction on number of servers. The

base case of two servers has already been shown to be true.

Now, the curve obtained from the first — 2 points is convex
using the induction hypothesis. Similarly the curve obedin
from the lastm — 2 points is also convex. Therefore, the
curve obtained from all the: — 1 points is convex. Therefore,

it has to be identical to the boundary of feasible region.
Therefore, points corresponding to the optimal solutienolin
the boundary of the feasible region. [ ]
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