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Abstract— Shared data centers and clouds are gaining popu-
larity because of their ability to reduce costs by increasing the
utilization of server farms. In a shared server environment, a
careful assignment of request streams (e.g., all requests from
a customer may constitute a stream) to servers is necessary to
ensure good ’end user’ performance. In this work, we investigate
the assignment of streams to servers in order to minimize an
objective function, while ensuring that load is balanced across
all the servers. The objective functions we optimize in thiswork
include the overall expected waiting-time, overall probability of
the wait exceeding a given value, and stream-weighted versions
of these measures.

We obtain the optimal algorithm for a farm with 2 servers,
if sharing of streams among servers is allowed. Based on the
insights obtained, we design an efficient algorithm for the multi-
server case. By rounding off this solution, we obtain a solution
to the case where sharing of streams is not allowed. Our trace-
driven evaluation study shows that our algorithms significantly
outperform baseline methods. Our work enables high perfor-
mance for web hosting services as well as emerging Application
as a Service (AaaS) clouds. We also show that solutions in areas
such as task-level scheduling and file assignment fall within our
framework.

I. I NTRODUCTION

Shared web hosting platforms that allow a large number of
small customers to host their web applications have become
very prevalent. The unique advantage provided by the shared
hosting platforms is their ability to provide high performance
to applications at very low cost. Emerging Application as a
Service (AaaS) clouds are the next generation of shared data
centers that provide different popular application services on
a shared application cloud. Google App Engine [10] is a pop-
ular application cloud for hosting web applications. Amazon
Elastic Compute Cloud (EC2) is a popular Infrastructure as a
Service (IaaS) cloud platform. However, even EC2 allows use
of many application services like IBM DB2 or IBM Websphere
to host customer applications [1].

The benefit of sharing servers on server farms is not just
savings in the hardware/software cost (these are slowly becom-
ing commodities), but also to distribute system maintanence
costs across several E-businesses. High performance in such
a shared hosting platform requires a careful assignment of
customers or request streams to servers in the farm. In this
work, we look at this problem of deciding which clients
(streams) to place on the same server so that some overall
performance measure is optimized.

We consider a server farm, where different streams of
requests arrive according to the Poisson process with certain
arrival rates. Each stream of requests has its own service time
distribution with a known mean. For service times with finite
variance, the variance is assumed to be known. For some cases

of heavy-tailed service times the variance may be infinite; in
that case a quantity called the “tail-integral” (defined later)
is assumed to be known. Each server is modeled as a single
server queue that uses the first-come-first-served (FCFS) ser-
vice discipline. We address the problem of assigning streams to
the servers in order to minimize the overall expected waiting-
time, the overall probability that the waiting-time exceeds a
certain value (exceedance probability), and stream-weighted
versions of these performance measures. The stream-weighted
versions of the problem capture differentiated SLA settings,
where multiple customers may pay different revenue to the
provider. We investigate both the continuous problem (sharing
of streams among servers is allowed) and the discrete version.
An alternate scenario is when the same server provides dif-
ferent levels of service to different customer classes by using
priority schemes and/or generalized processor sharing (GPS;
see e.g. [3]). For optimization under this scenario the reader
is referred to [17] and references therein.

We can consider a stream to be the aggregated requests from
one large client or all clients of a particular service class.
There is significant empirical support from many fields that
aggregated arrival processes are Poisson processes (see, e.g. ,
[2], [18]). It is also well known that the rate of such Poisson
process are not constant but vary with time of the day, day of
the week, etc., i.e., this is what is called a non-homogeneous
Poisson process. However, the time scale of change in the rate
of the non-homogeneous Poisson process is usually one order
of magnitude higher than the time scale of arrival of requests,
and one of the ways of modeling such systems is to use
piecewise constant rates. Indeed, in our optimization approach
one would solve an optimization problem for each length of
time that the rates are assumed constant. Alternatively, one
may solve the optimization just at the peak rates.

The service-time distribution of request classes are allowed
to be arbitrary. An important case that we consider is when
they are heavy-tailed. These are random variables whose
tail decays at a rate heavier than exponential (e.g., Pareto,
lognormal, etc.). The heavy-tails manifest themselves in large
variances and probability of exceedances that decay at a sub-
exponential rate, e.g., polynomial, in contrast to exponential.
There is significant evidence from the World Wide Web that
lengths of service times (e.g., session durations), or some
quantitities that determine length of service times (e.g.,file
transfer size) have this property (see, e.g., [5], [16] among
many others). The trace service time data that we used for
experiments in this paper turned out to lognormal, which
is moderately heavy-tailed. Lognormal distributions are also
found to fit service times in other related fields like telephone
call-centers ([2]).
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Finally, we work under the assumption that the load (uti-
lization) on each server is equal. While it is true that the
assignment which gives the best overall performance measure
may not be the one where the load is balanced at each server, it
is usually difficult to convince system administrators to keep
the load at different servers unbalanced. Most performance
analysis and optimization studies in the task-scheduling area
(e.g., [12], [15]) have also relied on this assumption.

A. Contribution

In practice, the naive way to assigns servers to streams,
would be to distribute them arbitrarily over the servers, so
as to maintain a balanced load (also, called utilization) on
servers. The main contribution of the paper is to show that
even under the constraint of maintaining balanced load on the
servers, one can still improve the overall performance measure
by significant amounts, by clever assignment of streams. We
present an algorithm that is optimal for a farm with2 servers.
We use this algorithm to design an efficient heuristic for
the general case. The efficacy of our proposed algorithm is
established using both theoretical and experimental evidence.

Our work also unifies existing work in settings as diverse
as task assignment on parallel servers and file assignment
problem, which have deterministic service times. We show
that these techniques become special case for our proposed
algorithm that is designed for stochastic arrival and service
times. Our optimization procedure can also be used for server
provisioning in web-server farms and AaaS clouds in order
to meet certain service level agreements (SLAs), under the
scenario that all customer classes with the same service level
guarantee are served exclusively by the same set of servers
(this seems like a possible, practical scenario). For example,
one type of service level guarantee (see, e.g., [17]) specifies
that the probability of the waiting-time exceeding a certain
value should be below a certain value. Using the optimization
procedure presented in this paper, one can minimize this
probability for an initial number of servers, and then increase
the number of servers and repeat the optimization until the
optimal probability falls below the required level.

The rest of the paper is organized as follows. In Sec-
tion II we define the model and the performance measures,
and describe the optimization problem in great generality.In
Section III we show how to solve the optimization under the
different settings, for the two server case. We use the solution
for the two server case as a basis to formulate an algorithm for
the general multi-server case. We establish the efficacy of our
algorithms using a trace-driven simulation study in Section IV.
We extend our model to differentiated QoS and exceedance
probability in Sec. V. We present the related work in this area
in Section VI and conclude in Sec. VII.

II. M ODEL AND OPTIMIZATION SETTINGS

Consider a queueing system withn arriving request streams
(or equivalently,n request classes), andm servers. Each
stream, say Streami, is characterized by(λi, E(Si), E(S2

i ))
where λi is mean arrival rate of streami and Si is the
random service time. The service timeSi is asssumed to be

generally distributed. Each server has its own independent
queue and serves requests on a first-come-first-served (FCFS)
basis. As mentioned before, arrivals of streams are assumed
to be Poisson processes.

The problem we will first try to solve is to find the fraction
of each stream to assign to each server in order to:

1) Minimize the overall expected waiting time
2) Minimize the overallP (Waiting Time> u) for any u.

We consider the cases where all theSi’s are both light-
tailed (e.g., exponential, gamma, etc.) and heavy-tailed (these
are distributions for which no exponential moments exist, e.g.,
log-normal, Pareto). The equations for the expected waiting
time remains the same in both the light-tailed and heavy-
tailed case (as long asE(S2

i ) < ∞ for all i in the heavy-
tailed case); the heavy-tailedness of the streams reflects itself
in higherE(S2

i )’s. However, the equations for the exceedance
probability are very different. Remarkably, the structureof
the optimization problem in the exceedance probability mini-
mization of the heavy-tailed case, is the same as that for the
expected waiting time minimization (more on this later).

Note that in the above formulation, we assume that sharing
of streams is allowed, i.e., one can assign fractions of streams
to servers. We also consider the case where no sharing of
streams is allowed. We will call this the ‘discrete’ problem, in
contrast to the former, which we call the ‘continuous’ problem.
Such discrete optimization problems are usually extremely
difficult to solve and NP hard. We find that in the solution
to the continuous problem, the number of streams that are
shared is of the same order as the number of servers. Hence
if the number of streams is much higher than the number
of servers, then rounding off the continuous solution usually
gives a good solution to the discrete problem. Note that
the optimal solution to the continuous problem, is infeasible
for the discrete problem, but yields an objective function
value that upperbounds the optimal objective value of the
discrete problem. The solution we obtain by rounding off the
continuous solution is sub-optimal and gives a lower bound to
the optimal objective value of the discrete problem. In most
experimental examples we saw that the two were very close,
indicating that the rounding off technique usually yields good
results.

A. Minimizing Expected Waiting Time

Let α
(j)
i be the fraction of streami assigned to serverj.

Then the total arrival rate to serverj is

λ(j) =

n
∑

i=1

λiα
(j)
i

Also, the expected service time and the expected square of the
service time faced by serverj is given by

E(S(j)) =

∑n
i=1 λiα

(j)
i E(Si)

λ(j)
and

E([S(j)]2) =

∑n
i=1 λiα

(j)
i E(S2

i )

λ(j)
,
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repectively. Then using standard queueing theory (see, e.g.,
[11]), the expected waiting at nodej is given by

E(W (j)) =
λ(j)E([S(j)]2)

1 − λ(j)E(S(j))
=

∑n
i=1 λiα

(j)
i E(S2

i )

1 −
∑n

i=1 λiα
(j)
i E(Si)

and hence the overall expected waiting is given by

E(W ) =
∑m

j=1

(

λ(j)

λtotal

)

E(W (j))

=
∑m

j=1

(
∑

n

i=1
λiα

(j)

i
∑

n

i=1
λi

)
∑

n

i=1
λiα

(j)

i
E(S2

i )

1−
∑

n

i=1
λiα

(j)
i

E(Si)

Hereλtotal =
∑n

i=1 λi is the total arrival rate to the system.
Note that λ(j)E(S(j)) is the load faced by Serverj (also
known as the utilization, or the traffic intensity). For stability
we needλ(j)E(S(j)) =

∑n
i=1 λiα

(j)
i E(Si) ≤ 1 for eachj.

The problem then becomes minimizeE(W ), subject to the
constraints

α
(j)
i ≥ 0 ∀i, j,

m
∑

j=1

α
(j)
i = 1 ∀i,

n
∑

i=1

λiα
(j)
i E(Si) ≤ 1 ∀j

Hence we have an optimization problem where the decision
variables are theα(j)

i ’s. Note that we have convex linear
constraints, but a very complicated objective function. The
objective function can be shown to non-convex, so most
standard non-linear programming packages cannot be used
here. Also, the problem hasnm variables andmn + n + m
constraints.

B. Mapping to a Space with Fewer Dimnesions

Our original problem is an optimization problem withmn
dimensions. We now reforumlate the problem to a version that
has significantly fewer number of dimensions and is easier to
visualize geometrically. We define

• X(j) =

∑

n

i=1
λiα

(j)

i

λtotal

• Y (j) =
∑n

i=1 λiα
(j)
i E(S2

i )

• Z(j) =
∑n

i=1 λiα
(j)
i E(Si)

We also make the following simplification in notation:ai ≡
λi/λtotal, bi ≡ λiE(S2

i ), ci ≡ λiE(Si). We can regard
(ai, bi, ci) as the initial data for the optimization problem.
Then the optimization problem becomes

Minimize
m
∑

j=1

X(j)Y (j)

1 − Z(j)
subject to

X(j) =
n
∑

i=1

α
(j)
i ai, Y (j) =

n
∑

i=1

α
(j)
i bi, Z(j) =

n
∑

i=1

α
(j)
i ci; ∀j

α
(j)
i ≥ 0 ∀i, j,

m
∑

j=1

α
(j)
i = 1 ∀i,

n
∑

i=1

α
(j)
i ci ≤ 1 ∀j,

(1)
DefineA ≡

∑n
i=1 ai, B ≡

∑n
i=1 bi, andC ≡

∑n
i=1 ci. Note

thatC is the total load on the system, and we assumeC < m
for stability.

The usual way of viewing this problem, as suggested by
our initial formulation, would be to view it as a minimization

problem on the feasible set of theα(j)
i ’s. Another way as sug-

gested by the later formulation, is to view it as a minimization
problem on the feasible set of the(X(j), Y (j), Z(j))’s (note
that only these are present in the objective function). Whereas
the former feasible space is inmn dimensions, the feasible
space in the latter formulation is just in3m dimensions.
The main problem in the latter approach, of course, is to
identify this feasible set of the(X(j), Y (j), Z(j))’s, since they
are expressed not in terms of each other, but in terms of
“supplementary variables”, i.e., theα(j)

i ’s.

C. Unconstrained and Constrained Formulations

High load on servers increase the probability of failure in
a system. Hence, system administrators often prefer to load
balance all the servers in their server farm. To capture this
aspect of the problem, we add the following constraint

Z(j) = C/m ∀j (2)

and denote it byConstrained Problem Optimization. Typical
data centers often exhibit very low average utilization (aslow
as10% in a study reported in [20]). We call these phenomenon
as light traffic situation and handle it differently. This version
of the problem is not only interesting in its own right but also
provides an insight to solve the general problem. Recall that
C is the total load on the system. The light traffic situation is
whenC ≈ 0. Since

∑m
i=1 Z(j) = C, we have thatZ(j) ≈ 0 for

all j. Since the balanced load constraint is absent for the light
traffic problem, we denote this problem as theUnconstrained
Problem Optimizationand capture is as

Minimize
m
∑

j=1

X(j)Y (j) subject to the constraints of (1).

(3)
(the constraint

∑n
i=1 α

(j)
i ci ≤ 1 is now redundant).

III. O PTIMIZATION METHODOLOGY

A. Method Overview

In order to solve the problem, we first consider the uncon-
strained problem for the case where there are only2 target
servers for placing the streams. It is easy to see that the
constrained version has the same objective function. However,
it needs to satisfy an additional constraint (of load balancing)
and may have a much smaller feasible space.

One may note that our objective function is non-convex,
which makes our problem difficult to solve. We identify the
feasible space and divide into regions. We observe that the
optimal falls in one of the regions. Further, we show that the
objective function has convex level sets in this region. Hence,
our methodology performs a greedy search in this region and
terminates when it finds a local optimal. The convex level set
property ensures that the local optimal in this region is the
global optimal as well, leading to our optimality result for
the 2-server unconstrained problem. The objective function
for the constrained problem is same as the unconstrained
problem and the feasible space is a subset of the unconstrained
problem. Hence, the convex level set property is satisfied for
this problem as well. We use a stream swapping technique to
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find a local optimal in this reduced feasible space and use
the convex level set property to argue that our solution is
also the global optimal. Our2-server algorithms are then used
iteratively to find a heuristic solution for the generalm-server
scenario.

B. Two Server Case

1) Optimizing the Unconstrained Problem:We start with
the case of exactly two servers, and give the exact optimal for
this case. Then we extend the algorithm for them server case.

Consider (3) for the case of two servers. Note thatX(1) +
X(2) =

∑n
i=1 ai ≡ A andY (1)+Y (2) =

∑n
i=1 bi ≡ B. Using

this fact, (3) reduces to

Minimize X(1)Y (1) + (A − X(1))(B − Y (1)) s.t.

X(1) =

n
∑

i=1

α
(1)
i ai, Y (1) =

n
∑

i=1

α
(1)
i bi

0 ≤ α
(1)
i ≤ 1 ∀i (4)

So, one can view the above problem as one on two dimensional
space (i.e., the space of(X(1), Y (1))). We solve the problem
by the following appraoch. We find the feasible region first.
We then characterize the objective function in a part of the
feasible space that contains the optimal.
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Fig. 1. Feasible region for Unconstrained Optimization

Identifying the feasible region: The following algorithm
determines the feasible region.

• Compute the slopebi/ai of the vector (ai, bi) corre-
sponding to streami. Note that for case of the expected
delay, this ratio is justE(S2

i ), and and for the case of
exceedance probability in the heavy-tailed case, this ratio
is just

∫ u

s=0(1 − Fi(s))ds.
• Order the streamsi in the order of decreasing slopes.

Without loss of generality, henceforth assume that the
streams were ordered in this manner from the beginning.

• Plot the piecewise linear curve L1 joining(0, 0), (a1, b1),
(a1 + a2, b1 + b2), . . ., (

∑n−1
i=1 ai,

∑n−1
i=1 bi), (A, B)

and curve L2 joining(A, B), (
∑n−1

i=1 ai,
∑n−1

i=1 bi), . . .,
(a1, b1), (0, 0) as shown in Figure 1.

Lemma 1:The feasible region for this problem is the region
R between the two curvesL1 andL2 as shown in Figure 1.

We now show that the objective function has convex level
sets in the regionX(1) ≤ A/2 and Y (1) ≥ B/2, and the
optimal solution can be be obtained in this region. Therefore
the optimal solution lies on the boundary of the restricted
feasible region. This can be obtained by moving on the
boundary of the region along the direction of improvement of
objective function until it cannot be improved. The algorithm
to find optimum begins at point(0, 0) and adds streams to
the first server in decreasing order of their slopes untilY (1)

becomesB/2. After this it continues to add streams to the
first server until the objective function stops improving.
A useful property of the objective function in the region
that contains the optimal: The following lemma can be
shown using standard techniques:

Lemma 2:The functionf(x, y) = xy + (A − x)(B − y)
has convex level-sets in the regionx ≤ A/2, y ≥ B/2.

Note also that the values of the function in the regionx ≤
A/2, y ≥ B/2 is symmetric to those on the regionx ≤ A/2,
y ≤ B/2 and the regionx ≥ A/2, y ≥ B/2. Therefore the
optimal solution lies on the boundary of the feasible region
restricted to the quadrantx ≤ A/2, y ≥ B/2. This can be
obtained by moving on the boundary of the region along the
direction of improvement of objective function until it cannot
be improved. In particular the algorithm begins at point(0, 0)
and adds streams to the first server in decreasing order of their
slopes untilY (1) becomesB/2. After this it continues to add
streams to the first server until the objective function stops
improving.

2) Constrained Problem Optimization:Again, we first give
an optimal algorithm for the two-server case, and then use it
in a heuristic for them-server case.

Note that now we have to add the balanced load constraint,
i.e.,

∑n
i=1 α

(1)
i ci = C/2 to the minimization problem given

by (3). To simplify notation we will denoteα(1)
i by αi. If we

make the change in variablẽαi = αici, then the new constraint
set becomes:

X(1) =

n
∑

i=1

α̃iãi and Y (1) =

n
∑

i=1

α̃ib̃i

n
∑

i=1

α̃i = C/2 and 0 ≤ α̃i ≤ ci ∀i (5)

whereãi = ai/ci andb̃i = bi/ci. Let vi be the vector(ãi, b̃i).
Let wij = vi − vj .

For simplicity, we will assume that the(ãi, b̃i, ci)’s are
sufficiently arbitrary, so that

Assumption 1:(a) No combinations ofci’s will sum up to
exactlyC/2, i.e., all feasible stream allocations need to share
at least one stream between servers. (b) No two vectors in the
set V = {vi : i ∈ (1, . . . , n)} have the same direction. (c)
No two vectors in the setW = {wij : i ∈ (1, . . . , n), j ∈
(1, . . . , n), i 6= j} have the same direction.

The addition of the balanced load constraint makes it much
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Fig. 2. Finding optima in two server case of Constrained Optimization

more difficult to identify thenew feasible regionR in the
(X(1), Y (1)) space. Of course, we know that it is subset of
the R in the light-traffic case, and that it has piecewise-
linear boundaries. Instead of determining the feasible region
explicitly as in the light-traffic case, we adapt an approach
based on a (continuous) exchange of streams between the two
servers such that feasibility is always preserved (i.e., the load
on each server remains equal). The problem at each step is to
select two streams (one on each server) where an exchange of
these two streams between the two servers results in decrease
in the objective function. Of course, we start with an initial
solution that satisfies the balanced load constraint and is trivial
to find (see later). We have identified the following property
that helps us define swapping any pair of streams between a
pair of servers reduces the objective function or not.

Definition 1: Define two serversj andl to be satisfying the
exchange property if∃i, k such thatα(j)

i > 0, α
(l)
k > 0 and

(ãk − ãi)(Y
(j) − Y (l)) + (b̃k − b̃i)(X

(j) − X(l)) < 0.

We have proved the following result on the exchange
property that helps us terminate our procedure.

Theorem 1:A feasible solutioñα is a local minima, if any
only if the two servers do not satisfy the exchange property.

Since the objective function in the two server case has
convex level sets in the desired region, the local minima is
also its global minima. In order to find a optimal solution,
we first find an initial feasible solution and then refine this
solution successively using the exchange property, until the
property is no longer satisfied.

Represent the stream vectorsvi’s as points in in the first
quadrant of the XY plane as shown in Figure 2. At every stage
the algorithm maintains a feasible solution by partitioning the
set of streams between the two servers using a straight line.
All the streams strictly above the line are assigned to the first
server (̃αi = ci) and the streams strictly below the line are
assigned to the second server (α̃i = 0). The streams on the
line are divided between the two servers.

The initial feasible solution is found using a line through

the origin with a slopeβ such that:
∑

i:b̃i/ãi<β

ci ≤ C/2 and
∑

i:b̃i/ãi>β

ci ≤ C/2

Such a line can be made to pass through a point, sayk, and
α̃k can be appropriately assigned such that:

∑

i:b̃i/ãi>β

ci + α̃k = C/2

Now, the algorithm maintains two partitions: (i) a current
partition that represents the current feasible solution and (ii)
a target partition that represents the direction in which the
current partition should be modified to obtain a better feasible
solution. At any stage, the algorithm also keeps a tab on the
stream (sayk) that is shared between the two servers.

Without loss of generality, assume thatX(2) > X(1). The
target partition is defined by the line of slopeγ passing through
the pointk, whereγ is given by:

γ = (Y (2) − Y (1))/(X(1) − X(2))

The next two theorems establish the condition for optimality.
Theorem 2:If the current partition is same as the target

partition then the solution is optimal.
Theorem 3:If current partition is not the same as the target

partition, then the solution is not optimal.
For the case of deterministic service times, note that

E(S2
i ) = E2(Si) and hence one sorts the streams based on

decreasingE(Si). In that case,b′i = E(Si) is a decreasing
sequence anda′

i = 1/E(Si) is an increasing sequence. One
can then check that the initial partition is the same as the target
partition, and is thus optimal, thus giving support to the result
in [15].

We now present an algorithm to find the optimum solution in
two server case. Without loss of generality assume thatβ > γ.
The algorithm finds a pointi in the shaded region (Figure 2)
that maximizes the slope of the vectorvi − vk. Formally, it
choosesi such thatα̃i = 0 and b̃i − b̃k < β(ãi − ãk) and
(b̃i − b̃k)/(ãi − ãk) is maximized.

It then rotates the line defining the current partition clock-
wise until either, one of the pointsi andk is no longer shared
between the two servers, or the current partition becomes same
as the target partition. Formally, let

δ = min

(

ci, α̃k,
1

4

(

Y (2) − Y (1)

bi − bk
+

X(2) − X(k)

ai − ak

))

The quantityδ is added toα̃i and removed from̃αk. In case,
the current partition is still different from the target partition,
the new shared stream becomesi if δ = ck − α̃k andk if δ =
ci. The process is repeated with the new shared stream. This
continues till the target partition becomes same as the current
partition. Figure 3 gives the formal details of the algorithm.

Theorem 4:The algorithm terminates inO(n2 log n) steps.

C. Multi Server Case

1) The Unconstrained Problem:Now consider the case
with m > 2 servers. We first graphically represent
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algorithm SWEEP
Y =

∑n

i=1
b̃i; X =

∑n

i=1
ãi

Find β, k and α̃k such that:
∑

i:b̃i/ãi>β
ci + α̃k = C/2

Y (1) =
∑

i:b̃i/ãi>β
b̃i + α̃k b̃k; Y (2) = Y − Y (1)

X(1) =
∑

i:b̃i/ãi>β
ãi + α̃kãk; X(2) = X − X(1)

γ = (Y (2)
− Y (1))/(X(1)

− X(2))
while γ < β

i = arg maxl:b̃l/ãl<β(b̃l/ãl)

δ = min
(

ci, α̃k, 1
4
(Y (2)

−Y (1)

b̃i−b̃k
+ X(2)

−X(k)

ãi−ãk
)
)

α̃i = α̃i + δ; α̃k = α̃k − δ

X(1) = X(1) + δãi − δãk; X(2) = X − X(1)

Y (1) = Y (1) + δb̃i − δb̃k; Y (2) = Y − Y (1)

γ = (Y (2)
− Y (1))/(X(1)

− X(2))

β = (b̃i − b̃k)/(ãi − ãk)
if α̃k = 0 then k = i
else if β = γ then done

end while
end algorithm SWEEP

Fig. 3. Algorithm SWEEP for finding optima in balanced load two server
case
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Fig. 4. Feasible region for light traffic: Multiple Servers

the feasible region and feasible solutions. In any solu-
tion, order the servers such thatY (1)/X(1) ≥ Y (2)/X(2)

. . .Y (m)/X(m). Any solution can be represented as a sequence
of m − 1 points (X(1), Y (1)), (X(1) + X(2), Y (1) + Y (2)),
. . .(
∑m−1

j=1 X(j),
∑m−1

j=1 Y (j)).
Lemma 5:A solution is feasible iff all the corresponding

m − 1 points lie inside the regionR.
A geometric proof of this lemma is presented in Fig. 4 and
the detailed proof is available in the appendix. The proof is
by induction and works by taking an assignment tom servers,
removing the streams assigned to the first server and reducing
it to a problem withm − 1 servers (the region starting from
P1 in Fig. 4). We state the following intuitive result next
(proof in appendix).

Lemma 6:The optimal solution will have all them − 1
points on the boundary of the regionR.

The heuristic starts with a initial feasible solution wherethe
m−1 points are placed equally spaced on the boundary of the
feasible region. Then the algorithm successively improvesthis

solution by considering adjacent servers and optimizing the
stream allocation locally within these two servers. It begins
with optimizing the first two servers, then second and third
server and so on, till them − 1th andmth server. Each such
pass of the optimization improves the objective function value
and gives another solution on the boundary. These passes
are repeated until the improvement in the objective function
value is zero or insignificant (in our experiments, we define
insignificant as being less than 1 %).

Lemma 7: If feasible solution cannot be improved locally
usinganypair of two adjacent servers, then it is a local optima
in the feasible region.

In the 2-server case, sorting the stream takesO(n log n)
time, whereas assigning the stream takesO(n) time. Hence
the total running time isO(n log n). For the m-server case,
the running time isO(k

∑m
j=1 nj lognj) ≤ O(knlogn) where

k is the number of passes andnj is the number of streams
allocated to serverj andj+1. In all our experiments,k turned
out to be less than5.

2) Constrained Problem Optimization:We use the two-
server optimal algorithm in a heuristic for the general m-
server problem. As before, the algorithm begins by sorting the
streams based on decreasingb̃i/ãi. It then allocates streams to
the first server until the workload on it reachesC/m (typically,
the last stream allocation to the server is a fractional one).
This is done sequentially on the other servers, so that in the
end each server has workloadC/m. This constructs an initial
feasible allocation. Then, the two-server algorithm is applied
on the first two servers. Once the two-server algorithm returns
a new allocation for serverj andj + 1, it is applied again on
serverj + 1 andj + 2 until j + 2 = n. In this way, one pass
of the heuristic is completed. The algorithm now traces back
from n to 1 for a second pass. The procedure can be repeated
until any further application of the procedure does not leadto
any significant improvement in the objective function.

The worst case running time of the above algorithm is
O(k

∑m
j=1 n2

j log nj) wherek is the number of passes,nj is
the total number of streams shared between serversj andj+1.
In the worst case, the running time could beO(kn2 log n).
However, in our experiments,k was always less than5 and
the total number of steps taken bySWEEP in each pass of
the algorithm never went beyond10n even forn as large as
1500. Hence the actual running time turned out to be almost
linear for large values ofn.

IV. EXPERIMENTAL RESULTS

We conducted experiments to study the effectiveness of our
algorithms against competing methodologies that are likely to
be used in practice.

A. Experimental Procedure

We tried our algorithm on different sets of traces obtained
from different webservers. The traces were obtained from the
Internet Traffic Archive. Each trace consists of a group of IP
addresses that send a request stream to a particular web-server.
We consider requests from each IP address to be a customer
class or equivalently, a stream, and denote it as before byi. For
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each IP address, the absolute times of the requests arrival at
the server, and the data transfer sizes when the requests were
made, was recorded. We assume that the sevice time for a
request is proportional to the data transfer size. Hence we use
the sequence of data tranfer sizes as ourSi’s and estimate the
E(Si) andE(S2

i ), by the sample mean of theSi’s andS2
i ’s,

respectively. We checked for autocorrelation of various lags in
the sequence of service times and found them to be at most 0.2,
which is small, even though not negligible. For simplicity we
assume these sequences to be un-autocorrelated. The absolute
times of the request arrivals was used to estimateλi, the arrival
rate of requests from that IP address. After estimating theλi,
E(Si), andE(S2

i ), we then calculated the data of our problem,
i.e., the ai, bi, ci values that were defined before. We used
two traces that were of different nature. The first trace is a
day’s worth of all HTTP requests to the EPA WWW server
located at Research Triangle Park, NC [7]. The second trace
contains all the HTTP requests made to the Clarknet WWW
server (Clarknet is a full Internet access provider for the Metro
Baltimore-Washington DC area) for one week [4]. We picked
up requests from900 IP addresses from the first trace and call
it Set A. Similarly, we picked up the requests from1500 IP
addresses from the second trace and labelled it as Set B.

B. Unconstrained Optimization Results

In order to evaluate our algorithm forUnconstrained Op-
timization, we also implemented the following baseline algo-
rithms and performed a comparative study.
Random Pick Algorithm (RPA):For each stream, the algorithm
picks one of the servers randomly.
Minimum Delay Algorithm (MDA):For each stream, it picks
the server which has the least current (i.e., using all the streams
picked so far) performance measure value (i.e.,E(W j) in
the case of expected delay minimization). Ties are resolved
randomly.

For the light traffic case, the average delays reported are
relative, as we do not take the load factor into consideration.
However, the results are useful for a comparative study of the
various algorithms, which is the aim of these experiments. In
order to get the integral solution from the continous solution,
we simply move a fragmented stream to the server that has
the higherYi/Xi ratio.

We note that our algorithm comprehensively outperforms
the other algorithms considered (Fig. 5). Another important
observation we would like to make is the fact that the integer
case and the continous case report very similar numbers.
Hence, even a trivial rounding technique leads to an integral
solution that has an objective balue very close to that of the
continous solution. Moreover, the performance improvement
is significant, reaching even an order of10 in some cases. We
also note that the performance improvement is fairly consistent
with varying number of servers as well. Recall that in the 2-
server case, our algorithm is provably optimal, whereas, inthe
k-server case, our algorithm is only a heuristic. However, the
performance improvement, when we increase the number of
servers from2, does not decrease. This leads one to believe
that our algorithm terminates fairly close to the global optimal,
even fork > 2.

C. Constrained Optimization Results

We now present an evaluation of our proposed algorithm
for Constrained Optimization. We again compare the perfor-
mance of our proposed algorithm with the follwoing baseline
algorithms. The baseline algorithm also ensure that each server
gets approximately equal load in the end.
Minimum Delay Algorithm (MMDA):For each stream, it
picks the server which has the least current performance
measure value (i.e.,E(W j) in the case of expected delay
minimization) using all the streams picked so far. Ties are
resolved randomly. Servers whose load reaches or exceeds
C/m are not considered in further iterations.
Minimum Load Algorithm (MLA): The algorithm assigns
streams to servers taking one stream at a time. It sends each
stream to a server which has the leastZ(j) value (using the
streams assigned so far). Note that in the end, each server will
roughly have the same load.
Fill Algorithm (FA): The algorithm takes one stream at a time
in an arbitrary order. It assigns streams to a server until the
workloadZ(j) reachesC/m. After the threshold is reached,
it moves on to the next server.
Equal Partitioning Algorithm (EPA): The algorithm partitions
each stream into equal parts and assigns one partition to each
server. Note that even in this case, each server will get a load
of exactlyC/m.

We conducted experiments to study the performance of our
algorithms vis-a-vis the above algorithms under a load factor
C/m of 0.9. We varied the number of servers from2 to 100
to study the performance with varying number of servers.
The results (Fig. 6) show the superiority of our algorithm
against any of the competing algorithms, i.e., our algorithm
shows a performance improvement upto a factor of10 over
the competing algorithms. The performance improvement is
significant for both the web-traces.

We also note that the integral solution is better than any
other comparative method for all cases other than the100
server case, even though some of the other methods report
a non-integral solution. Also, when the number of servers
are small, the performance loss in moving from a continous
solution to an integral one is very small. However, this penalty
becomes significant as the number of servers is increased.
This is not because of any scaling problem that the algorithm
may have but because of the fact that an increase in the
number of servers leads to a small number of sessions being
allocated to each server. As a result, moving even a single
session can change the load on a server significantly that in
turn may also change the objective function. One may also
note that theMMDA and theMLA algorithm does not even
return a feasible solution in such a scenario. This essentially
leads one to believe that the integral solutions are very far
off from their continous counterparts when the number of
sessions per server is low. This is not surprising because in
such a scenario, addition of a single session can increase the
workload to close to1 or even beyond1, as was also seen in
the case ofMMDA and MLA. However, typical servers often
serve multiple customer sessions and a low session per server
scenario can be ignored for all practical purposes. As one
may note, when the number of sessions per server is high,
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our integral solution is very close to the continous case and
comfortably outperforms all other algorithms, both continous
and integral.

Note that in the 2-server case, our algorithms yield the exact
optimal solution and the performance is the best possible.
However, even for them server case (m > 2), we see a
fairly marked performance improvement. This suggests that
even whenm > 2, our algorithms are fairly close to the
optimal solution.
Convergence Speed: We also estimated the running time
of our proposed algorithm. We observed that the method
SWEEP was never called for more than10 steps in the 2-
server sub-optimizations, and we never needed to run more
than 5 passes. Another interesting fact was that the initial
solution constructed by our algorithm was also very close to
the optimal. We never observed it to be more than10% away
from the final solution. This leads us to an important insight
that even sorting the streams based onbj/aj and allocating
streams gives a very good solution as compared to the naive
methods. The simplicity of the initial solution makes it a
good choice for system managers who are not aiming for an
optimal solution and would sacrifice a bit of performance for
simplicity.

V. M ODEL EXTENSIONS

A. Minimimizing Exceedance Probability

We now look at the related problem of minimizingP (W >
u) for someu. Of course, in queueing theory no exact results
exist for the waiting time ofM/G/1 server, so we make use
of a heavy-traffic approximation. The term heavy traffic means
that the load of each server, i.e.,Z(j) = λ(j)E(S(j)) is close

to 1. For any serverj, heavy traffic approximation (valid also
for non-Poisson arrivals) says that

P (W (j) > u) ≈ exp

{

−
[1 − λ(j)E(S(j))]u

λ(j)E([S(j)]2)

}

Hence

P (W > u) ≈
∑m

i=1 λ(j) exp
{

− [1−λ(j)E(S(j))]u
λ(j)E([S(j)]2)

}

=
∑m

i=1 X(j) exp
{

− [1−Z(j)]u
Y (j)

} (6)

The new optimization problem is obtained by replacing the
objective function in (1) by the new objective function given
by (6). This is also a non-convex objective function that has
properties very similar to the earlier one.

Another setting which one can investigate using the above
formulation is the heavy-tailed setting. Assume that theSi’s
are heavy-tailed, i.e.,E(eθSi) = ∞ for all θ > 0. In particular
assume thatSi’s belong to a particular class of heavy-tailed
distributions called sub-exponential distributions (see, e.g., [6]
for a precise definition). Most commonly used heavy-tailed
distributions, e.g., Pareto, log-normal, Weibull with shape
parameter less than 1, belong to this class. LetFi(s) be the
cumulative distribution function (cdf) ofSi. Since all arrrivals
are Poisson, the distribution function of the service time faced
by serverj is given by

F (j)(s) =

n
∑

i=1

λiα
(j)
i Fi(s)/λ(j). (7)

If Fi’s are subexponential thenF (j)(s) is also subexponential
(infact, F (j) acquires the tail of the heaviestSi that has
α

(j)
i > 0; see, e.g., [6]) A result forGI/G/1 queues with



10

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

2 4 10 20 50 100

E
xc

ee
da

nc
e 

P
ro

ba
bi

lit
y

Number of Servers

FA
MMDA

MLA
EPA

SWEEP(Cont)
SWEEP(Int)

Fig. 7. Exceedance probability for Different Algorithms onData Set B

FCFS discipline and sub-exponential service time ([19]) says
that

P (W (j) > u) ∼ λ(j)E(S(j))
(1−λ(j)E(S(j))

1
E(S(j))

∫ u

s=0
(1 − F (j)(s))ds (u → ∞)

In fact, this relationship is valid much more generally; see,
e.g., [13] for the case of Markov modulated arrivals. But we
restrict ourselves to theM/G/1 setting. Using the fact given
by (7), the above simplifies to

P (W (j) > u) ∼
X(j)Y (j)

1 − Z(j)
(u → ∞).

Here X(j) and Z(j) have the same definition as before, but
now

Y (j) =
n
∑

i=1

α
(j)
i λi

∫ u

s=0

(1 − Fi(s))ds.

Hence we have the same optimization problem as in (1),
but now the initial data(ai, bi, ci) is defined differently. In
particular (ai, bi, ci) = (λi, λi

∫ u

s=0(1 − Fi(s))ds, λiE(Si))
instead of(λi, λiE(S2

i ), λiE(Si), ).
1) Experimental Results:We also conducted experiments

to estimate the exceedance probability for requests of Trace
B. Using Q-Q plots we found that the data fitted a lognormal
distribution very closely. We estimated the shape and scale
parameters of the lognormal distribution for each IP address.
We then computed thebi for each IP address by numerically
integrating the cdf of the lognormal distribution. The experi-
ments were then run identically. For lack of space, we report
only the balanced load results with Data Set B in Fig. 7. The
exceedance probability results establish again the superiority
of our algorithm over a suite of baseline techniques. We also
note that our algorithm just provides a solution to problems
that are expressible in the form given by Eqn. 1 and does not
depend on whatai, bi, ci represent. Hence, our algorithm may
potentially be used for other assignment problems that can be
expressed in this canonical form.

B. Weighted Optimizations for Differentiated QoS

We next consider the case where the web-server farm incurs
a penalty for making a request wait, and the penalty per unit
wait time is different for different request classes. Letwi be
the penalty per unit of waiting time for classi. Then it is easy
to see that in this case, we have

E(W ) =

m
∑

j=1

(

λ
(j)
w

λtotal

)

λ(j)E([S(j)]2)

1 − λ(j)E(S(j))
(8)

whereλ
(j)
w =

∑n
i=1 λiα

(j)
i wi. Hence we get the same opti-

mization problem as in (1), where now the initial data for the
problem is(ai, bi, ci) = (λiwi/λtotal, λiE(S2

i ), λiE(Si)).
Similarly, in the case of exceedance probabilities for the

heavy-tailed case, one can have a different penaltywi for
making a request of classi wait for more thanu units of
time. Again it is easy to see that we get the same optimization
problem as in (1), but with the initial data(ai, bi, ci) =
(λiwi/λtotal, λi

∫ u

s=0(1 − Fi(s))ds, λiE(Si)). Since all these
problems have the same canonical form that we address,
we apply our algorithm in an identical fashion to solve the
differentiated QoS setting as well.

VI. RELATED WORK

The stream assignment problem has structural similaritiesto
the popular domains of task assignment and file assignment.
Task Assignment:There exists a significant amount of work
on heuristics and optimality proofs for task-level sceduling
(see, e.g., [12], [22]) and several references therein), both
for the case of known and unknown task durations. In
task-level scheduling, each arriving task is dispatched toa
server/processor based either on its actual service-time if
known, and/or the state of the different queues. Harchol-Balter
et. al. [12] (see also [22]) solve the task assignment problem
by. apriori partitioning the range of the possible service-times
into intervals. Each interval is assigned to one server. Each task
is sent to the server assigned to the interval, that its service-
time lies in. The intervals are chosen so that the load on each
server is equal. In a shared server farm or a cloud, each client
is usually assigned to one (or a small number of) servers.
Hence, stream assignment becomes a more pertinent problem
in this setting.
File Assignment:Lee et. al [15] considered the assignment of
files to disks for storage. Disk accesses to each file are assumed
to be Poisson with a known rate. The service time for each
file access is assumed to be deterministic. The problem is to
determine the subset of files to put on each server (without file
splitting) so that the load on each server is (roughly) equal,
and the overall expected response time for accessing the files
is minimized. The solution they propose is again ordering files
by their service times, and then partitioning this ordered set
so that the load on each server is equal.
Stream Assignment: There has been some work on stream
assignment as well ([17], citewhitt). The work in [22] is
closest to our setting. It shows through simple examples how
combining streams with similar variances (in order to be
assigned to the same server) may be beneficial, but does not
give specific algorithms for doing that. One may note that file
assignment becomes a special case of stream assignment if
all requests in a stream have the same service time. Similarly,
task assignment is a special case of stream assignment by
treating each task as a stream with deterministic service and
arrival time. It is also interesting to note that the structure of
the solutions to both these problems implicitly partition based
on service time (task or file size). One may also note that
our solution of partitioning based on variance degeneratesto
a partitioning based on service time if the service times are
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fixed. Hence, our algorithm is a generalization of all these
techniques for stochastic service times.

In view of the work in [15], our main methodological
contribution is going beyond the deterministic service time
assumption. It is also worth mentioning here that the extension
from deterministic service times to random service times is
non-trivial. Infact, the case of deterministic service times just
uses the initialization step of the algorithm that we propose.
Finally, we are not aware of any work, that formulates and
solves models similar to ours in the heavy-tailed setting. An
interesting new insight that one gains from this heavy-tailed
study, is the following. In the case of finite service-time
variance, the (natural) first step of our algorithm is to sortthe
streams based on the second moments of their service times (or
equivalently, just the service times, if they are deterministic,
as in [12], [15]). In the case of infinite variance, it turns out
that one needs to sort them on the basis of their tail-integrals.

VII. C ONCLUSION

In this work, we have investigated the problem of assiging
customer streams to a shared server farm. We precisely solve
this problem for the 2-server case and present algorithms for
the general case that have a stong theoretical standing. We
show by analytic experiments that our algorithms show a
significant performance improvement over other policies used
in practise and achieve close to optimal performance.

Our work also puts into perspective a lot of work that has
gone into fields as diverse as network queue management, task
management and file assignment on parallel storage servers.A
lot of researchers have proposed various partitioning policies
in these fields and shown experimentally that they significantly
improve performance. However, to our best knowledge, no
theoretical basis has been provided. Whitt [22] partitions
customers into service groups and shows that partitioning may
help improve performance. Partitioning based on service time
is suggested as one of the possiblities. Harchol-balter et al.[12]
propose another policy that groups tasks with similar service
times together. Lee et al.[15] address the problem of file
assignment on parallel storage servers and aim to minimize
variance by grouping files with similar access time (same as
service time in our scenario). At an algorithmic level, all these
approaches are essentially same.

The basic aim of all of these policies has been to reduce
variance on a server. However, inadvertently they are doing
exactly as the initial partition of our balanced load algorithm.
Hence, even though they have not characterized the optimal,
they have taken an important first step towards obtaining the
optimal solution. Similarly, even though Whitt [22] deals with
queues and split based on service times, they inadvertentlyuse
the correlation between the second order moment and the first
order in the distribution they use. Hence, Our work provides
a new insight on these policies and gives them a theoretical
standing. Also, we provide a unified framework that covers
both task-level and queue-level assignements and characterized
the optimal in either cases.
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APPENDIX

Lemma 1:The feasible region for this problem is the region
R between the two curvesL1 andL2 as shown in Figure 1.

Proof: Consider a pointP in the feasible region. Extend
the line joining origin toP to meet the line L1 at pointQ as
shown in Figure 1. Note theQ can be obtained by a convex
combination of firstk vectors. Also,P = βQ whereβ ∈ [0, 1].
So, P can also be obtained by a convex combination of first
k vectors and hence is feasible.

Now we show that no point outside the regionR can be
feasible. The maximum possible valueY max for any feasi-
ble solution(X, Y ) is given be successively adding vectors
(a1, b1), (a2, b2), . . . , β(ak, bk) (0 ≤ β ≤ 1) until the sum of
their x-components becomes equal toX . To see this, consider
any other combination of vectors such that

∑n
i=1 αiai = X

and
∑n

i=1 αibi = Y max. If there is a vectorl > k such
that αl > 0, then it can be swapped with another vector
h ≤ k, keepingX the same while increasingY . Similarly, the
minimum possible value ofY min is obtained by successively
adding the vectors(an, bn), (an−1, bn−1), . . .β(al, bl) (where
0 ≤ β ≤ 1), until sum of their x-components becomes equal to
X . These points are exactly the same given by curvesL1 and
L2. Therefore no feasible solution can lie outside the region
R.

Lemma 2:The functionf(x, y) = xy + (A − x)(B − y)
has convex level-sets in the regionx ≤ A/2, y ≥ B/2.

Proof: Let u = A/2− x, v = B/2− y. Now, f(u, v) =
AB/2+2uv. To minimize this,uv should be negative. Taking
one of the two symmetric solutions, setu ≥ 0 andv ≤ 0. This
givesx ≤ A/2 andy ≥ B/2.

It is sufficient to show thatf(u, v) has convex level-sets in
the regionu ≥ 0 and v ≤ 0, which is same as showing that
h(x, y) = −xy has convex level-sets in regionx ≥ 0, y ≥ 0.

Let x1y1 = x2y2 ≥ C, x1, y1, x2, y2 ≥ 0 and δ ∈ [0, 1].
Now,

C ≤ (δ + (1 − δ))2x1y1

= δ2x1y1 + (1 − δ)2x2y2 + δ(1 − δ)(x1y2 + x2y1 + (y1 − y2)(x1 − x2))

≤ δ2x1y1 + (1 − δ)2x2y2 + δ(1 − δ)(x1y2 + x2y1)

= (δx1 + (1 − δ)x2)(δy1 + (1 − δ)y2).

Therefore any convex combination of(x1, y1) and(x2, y2) is
also in the same level set. In caseC ≤ x1y1 ≤ x2y2, let
y′

2 = x1y1/x2 ≤ y2. Sincex1y1 = x2y
′

2, C ≤ (δx1 + (1 −
δ)x2)(δy1+(1−δ)y′

2) ≤ (δx1+(1−δ)x2)(δy1+(1−δ)y2). In
this case also the convex combination of(x1, y1) and(x2, y2)
is also in the same level set.

Theorem 1:A feasible solutioñα is a local minima, if any
only if the two servers do not satisfy the exchange property.

Proof: Let f(α̃) = X(1)Y (1) + (A − X(1))(B − Y (1))
whereX(1) andY (1) are given in terms of̃α as follows:

X(1) =

n
∑

i=1

ãiα̃i, X(2) = A − X(1) (9)

Y (1) =

n
∑

i=1

b̃iα̃i, Y (2) = B − Y (1) (10)

The functionf() represents the objective function value in
terms of the assignment variablesα̃.

We first prove the converse part of the theorem. Letα̃ be
a local minima. We show that the two servers do not satisfy
the exchange property. Assume for contradiction that servers
satisfy the exchange property using streamsi andi′. Construct
a new feasible solutionα′ from α̃ as follows:

α
′(1)
i = α̃

(1)
i − δ α

′(1)
i′ = α̃

(1)
i′ + δ

α
′(2)
i′ = α̃

(2)
i′ + δ α

′(2)
i = α̃

(2)
i − δ.

Change in objective function value while moving from̃α to
α′ is given by:

f(α′) − f(α̃) = δ[(ai′ − ai)(Y
(1) − Y (2)) + (bi′ − bi)(X

(1) − X(2))]

+2δ2(ai′ − ai)(bi′ − bi).

Since the servers satisfy the exchange property with respect
to streamsi and i′, the solutionα′ is feasible for sufficiently
small values ofδ. Also, the change in objective function
value is negative for sufficiently and arbitrarily small values
of δ. This means that̃α is not the local minima, contradicting
our assumption. Therefore, the two servers do not satisfy the
exchange property.

We now prove the first part of the theorem. Letw be a2n
dimensional vector specifying a direction of movement in the
solution spacẽα. Define gradient off() in directionw as:

g(α̃, w) =

n
∑

i=1

2
∑

j=1

∂f(α̃)

∂α̃
(j)
i

w
(j)
i

Consider a feasible solutioñα such that the two servers do
not satisfy the exchange property. Assume for contradiction
thatα̃ is not a local minima. Therefore there is a vectorw such
thatα̃+δw is a feasible solution for sufficiently and arbitrarily
small values ofδ andg(α̃, w) < 0. For the feasibility of̃α+δw
the following conditions must be satisfied:

∀i : w
(1)
i + w

(2)
i = 0 (11)

∀j :

n
∑

i=1

w
(j)
i = 0. (12)

Define the basis vectore(ik) as a vector with all the
components zero except the following:

e(ik)
(1)
i = −1 e(ik)

(2)
i = 1

e(ik)
(1)
k = 1 e(ik)

(2)
k = −1.

Note that the basis vectore(ik) represents the exchange of
streamsi andk between the two servers. We first decompose
w using these basis vectors and then show that there is a pair
of stream that satisfies the exchange property.

Lemma 3:The vector w can be decomposed into basis
vectors asw =

∑

i,k wike(ik) such that:

wik ≥ 0 andwik > 0 ⇒ w
(1)
i < 0, w

(2)
k < 0. (13)

Proof: Consideri such thatw(1)
i < 0. Using (11) we have

w
(2)
i > 0. This, along with (12) implies that there existsk such
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that w
(2)
k < 0. Set wik = min(−w

(1)
i ,−w

(2)
k ). Updatew =

w−wike(ik). Note that by such an update eitherw
(1)
i or w

(2)
k

becomes zero. Also note that the signs ofw
(1)
i andw

(2)
k are

unchanged. Repeating this, gives the desired decomposition.

Lemma 4:Consider a decomposition ofw into basis vectors
satisfying (13). Ifα̃+ δw is feasible then so is̃α+ δwike(ik).

Proof: The above lemma is trivially true ofwik = 0.
Note that the solutioñα + δwike(ik) does not violate the
balanced load constraint (5). We only need to show that

α̃
(1)
i − δwik ≥ 0 and α̃

(2)
k − δwik ≥ 0

Sincewik is a decomposition ofw into the basis vectors
satisfying (13), ifwik > 0 thenw

(1)
i < 0 andw

(2)
k < 0. Since

α̃ + δw is feasible:

α̃
(1)
i + δw

(1)
i ≥ 0

⇒ α̃
(1)
i − δ

n
∑

l=1

wil ≥ 0

Since,wil ≥ 0 for all l, we have:

α̃
(1)
i − δwik ≥ 0.

Using a symmetric argument it can also be shown thatα̃
(2)
k −

δwik ≥ 0.
Sinceg(α̃, w) < 0, andw =

∑

i,k wike(ik) we have:

n
∑

i=1

n
∑

k=1

wikg (α̃, e(ik)) < 0

⇒ ∃i, k : wikg (α̃, e(ik)) < 0

Substituting the value of functiong(), vectorse(ik), and the
fact that:

∂f(α̃)

∂α̃
(j)
i

= ãiY
(j) + b̃iX

(j),

we get:

(−ãi)Y
(1)+akY (1)−biX

(1)+bkX(1)+aiY
(2)−akY (1)+biX

(2)−bkX(1) < 0

Simplifying the above expression gives:

(ãk − ãi)(Y
(j) − Y (l)) + (b̃k − b̃i)(X

(j) − X(l)) < 0.

Sincewik > 0 andα̃+δwike(ik) is a feasible solution,̃α(1)
i >

0 and α̃
(2)
k > 0. This means that the two servers satisfy the

exchange property. This is a contradiction to our assumption
that α̃ is not a local minima. Therefore,̃α must be a local
minima. This completes the proof.

Theorem 2:If the current partition is same as the target
partition then the solution is optimal.

Proof: Assume for contradiction that the solution is not
optimal. Therefore, there are two streamsi and l that satisfy
the exchange property i.e.̃αi > 0 and α̃l < cl and:

(ãi − ãl)(Y
(2) − Y (1)) + (b̃i − b̃l)(X

(2) − X(1)) < 0.

This givesb̃i − b̃l < γ(ãi − ãl). Sinceα̃i > 0 and the target
partition is same as the current partition,i lies above the
line defining the partition. Therefore,̃bi − b̃k ≥ γ(ãi − ãk).
Similarly, sinceα̃l < cl, l lies below the line i.e.̃bl − b̃k ≤

γ(ãl − ãk). This gives, b̃i − b̃l ≥ γ(ãi − ãl) which is a
contradiction to our assumption.

Theorem 3:If current partition is not the same as the target
partition, then the solution is not optimal.

Proof: Assume that streamk is shared between the two
servers in the partitions. If current partition is not same as
the target partition, then either (a) there is streami (not equal
to k) that is assigned entirely to the first server in the target
partition and to the second server in the current partition,or
(b) there is a streami assigned entirely to the second server
in the target partition and first server in the current partition.
Without loss of generality, we consider the former case. We
now show that streamsi andk satisfy the exchange property
in the current partition.

Since i belongs to the second server andk is shared in
the current partition,̃αi < ci and α̃k > 0. Since i belongs
completely to the first server in the target partition, it must
be strictly above the line defining the the target partition,i.e.
b̃i− b̃k > γ(ãi− ãk), which is same as the exchange property.

Since the streams satisfy the exchange property, the current
solution cannot be the optimal.

Theorem 4:The algorithm terminates inO(n2 log n) steps.
Proof: Initially, (from our assumption) the slope of the

current partition is larger than that of the target partition. The
two partitions become identical when their slopes become the
same. It can be verified that after each exchange the slope
of the target partition increases while the slope of the current
partition decreases. Each exchange is defined by exactly a pair
of two streams in the plane. There are at mostn(n−1)/2 such
pairs. Therefore there are at mostO(n2) exchanges.

For each exchange, we need to find a streami that max-
imizes the slope(b̃i − b̃k)/(ãi − ãk). This can be done in
O(log n) time by maintaining a sorted list ofn− 1 points for
every stream. The list corresponding to streamk is sorted by
(b̃i − b̃k)/(ãi − ãk). This gives the desired bound.

Lemma 5:A solution is feasible iff all the corresponding
m − 1 points lie inside the regionR.

Proof: Consider a solution wherekth point lies outside
the region R. Let X =

∑k
j=1 X(j). Using an argument

similar to that in proof of Lemma 1 it can be shown that any
other feasible solution with

∑k
j=1 X ′(j) = X , should have

Y min ≤
∑k

j=1 Y ′(j) ≤ Y max where Y max (and Y min) is
obtained by accumulating streams in decreasing (increasing)
order of slopes until the total x-component becomes equal to
X . Therefore, this cannot be a feasible solution.

Now, consider a solution consisting of a sequence ofm−1
points in decreasing order of their slopes as shown in Figure4.
Using induction we show that it is feasible. Consider the first
pointP1 in the solution. JoinO to P1 and extend it to meet the
boundary of the regionR at pointQ1. Now, remove the first
server and the streams assigned to it (which is a fraction of the
streams that formQ1) to get another problem of sizem − 1.
The origin of new region shifts to pointP1. The boundary
of new region remains unchanged afterQ1. The boundary
betweenP1 andQ1 becomes inflated as shown in the figure.
Since the slope ofP1−P2 (and all subsequent pairs after that)
is less than that ofO−P1, all the remaining points still remain
inside the new feasible region. From induction hypothesis,that
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the remainingm−2 points represent a feasible solution in the
new problem. Therefore them− 1 points represent a feasible
solution in the original problem.

Lemma 6:The optimal solution will have all them − 1
points on the boundary of the regionR.

Proof: Consider a feasible solution form servers sorted
according to slopes (Y/X) represented usingm − 1 points
as discussed earlier. Join thekth point to thek + 1st point
using the vectors of streams present on thek + 1st server in
decreasing order of their slopes. It suffices to show that the
curve so obtained is convex (since the convex curve obtained
by adding all the stream vectors is unique and is precisely the
boundary of feasible region).

We prove this using induction on number of servers. The
base case of two servers has already been shown to be true.
Now, the curve obtained from the firstm− 2 points is convex
using the induction hypothesis. Similarly the curve obtained
from the lastm − 2 points is also convex. Therefore, the
curve obtained from all them−1 points is convex. Therefore,
it has to be identical to the boundary of feasible region.
Therefore, points corresponding to the optimal solution lie on
the boundary of the feasible region.


