RI 08017, 4 November 2008 Computer Science

IBM Research Report

The Telecom Web Application Framework

Arun Kumar
IBM Research - India
ISID Campus, 4, Block - C,
Institutional Area, Vasant Kunj,
New Delhi - 110 070, India

Sheetal K. Agrawal
IBM Research - India
Embassy Golf Links Business Park,
Block D, Intermediate Ring Road,
Bengaluru 560071 INDIA.

Priyanka Manwani
IBM Software Group
ISID Campus, 4, Block - C,
Institutional Area, Vasant Kunj,
New Delhi - 110 070, India

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably
be copyrighted is accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In
view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited
to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally
obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center,
Publications, P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reportsQus.ibm.com). Some reports are available on
the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

The Telecom Web Application Framework

Arun Kumar
IBM Research - India
ISID Campus, 4, Block - C,
Institutional Area, Vasant Kunj,
New Delhi - 110070, INDIA.

kkarun@in.ibm.com

ABSTRACT

The World Wide Telecom Web (WWTW) (also known as
Spoken Web) is emerging as an alternate web for the under-
privileged, navigable entirely through a voice based interface
using an ordinary telephone. A node in the WWTW graph
is a voice application called a VoiceSite and is accessible over
a simple phone call. VoiceSites are hyperlinked through Hy-
perspeech Transfer Protocol (HSTP).

However, several challenges need to be addressed for large
scale development, deployment, interworking and usability
of such VoiceSites. First and foremost, the set of users that
need to be supported vary from software developers to illit-
erate rural farmers. Second, the fact that the primary user
interface is voice based and over telephony presents its own
challenges and opportunities. Third, most voice applica-
tion frameworks currently available make it hard to separate
navigational flow from process flow which makes systematic
application development even harder.

This paper presents Telecom Web Application Framework

(TWAF) — an application development and deployment frame-

work that is designed to support rapid development of Tele-
com Web applications (i.e. VoiceSites) while addressing the
issues and requirements mentioned. We present the archi-
tecture, end-to-end design and a proof-of-concept implemen-
tation of the TWAF framework.

Keywords

Developing regions, Web Application Frameworks, Voice Ap-
plications, VoiceSites, World Wide Telecom Web

1. INTRODUCTION

Barely 22% of the world’s population has access to Inter-
net [21]. It implies that the impact of the World Wide Web
has not been able to reach a large percentage of human pop-
ulation which is characterized by unaffordability, illiteracy
and lack of locally relevant content. This essentially means
that most of the innovative applications of the Web such as
email, instant messaging, websites, blogs, mashups etc. are
unavailable to them.

One of the major causes of this situation is expressed suc-
cintly in [16] that "most designers of the world are focussed
on designing for the wealthiest 10 percent”. Several exam-
ples in [20] illustrate how designing for the other 90 percent
can achieve innovative results that would benefit a much

Sheetal K. Agarwal
IBM Research - India
ISID Campus, 4, Block - C,
Institutional Area, Vasant Kunj,
New Delhi - 110070, INDIA.

sheetaga@in.ibm.com

Priyanka Manwani
IBM Software Group
ISID Campus, 4, Block - C,
Institutional Area, Vasant Kunj,
New Delhi - 110070, INDIA.

pmanwani@in.ibm.com

larger segment of human population and make their lives
better.

Addressing this problem in the information technology do-
main and more specifically, in the context of online informa-
tion and services, we have proposed World Wide Telecom
Web (WWTW) [12] (also known as Spoken Web or Telecom
Web) as an alternate web for the underprivileged. WWTW
is envisioned as being complementary to the existing Web
and is navigable entirely through a voice based interface us-
ing an ordinary telephone. A node in the WWTW graph
is a voice application called a VoiceSite [11] and is acces-
sible over a simple phone call. VoiceSites are created by
end users through a voice based interface [11], hyperlinked
through Hyperspeech Transfer Protocol (HSTP) [1] and can
be browsed through a Telecom Web Browser [2]. Such a
web of applications, driven by spoken commands, opens up
tremendous opportunities for billions of people in develop-
ing countries to whom the existing Web is inaccessible due
to illiteracy, language barriers, infrastructural problems [5],
low disposable income and lack of content or services that
are locally relevant.

Proliferation of websites, web applications and web based
services took place due to availability of easy-to-use tools,
development environments and frameworks. Specifically, a
web tier application framework is meant to manage the in-
teraction between web clients and the application’s business
logic [19]. It typically generates HTML, XML or XMl-based
content to be rendered to the user. Web application frame-
works strive to separate business logic from Ul navigational
logic.

Given the envisioned scale of deployment of VoiceSites in
the World Wide Telecom Web and the special character-
ists of the target user segment listed above, a framework
is needed to enable rapid creation and deployment of Voic-
eSites through a simplified mechanism. In this paper, we
present Telecom Web Application Framework (TWAF) that
is designed to fulfil these needs.

The Telecom Web Application Framework (TWAF) is an
application framework for creating, deploying and manag-
ing interactive Telecom Web applications (i.e. VoiceSites)
as well as meta-Telecom Web applications. A meta-Telecom
Web application is a Telecom Web application that enables
the end-user to create another Telecom Web application
through a voice based interface, in addition to GUI/API
interface as supported by traditional web application frame-
works. Intuitively, meta-VoiceSites are VoiceSites that en-
able the end users to create their desired VoiceSites.

Traditional web application frameworks such as Apache Struts [§],

JavaServer Faces', J2EE BluePrints Web Application Frame-
work (WAF) [19], Microsoft ASP.NET [7] etc., are meant to
be used by developers to code up the web applications as
seen and experienced by the end users. Compared to that,
TWAF serves two distinct goals. First, developers can use
it to create meta-VoiceSites through an Application Pro-
gramming Interface (API) and/or a Graphical User Inter-
face (GUI). Second, end users can utilize TWAF to create
their VoiceSites through a Voice User Interface (VUI) [6]
and/or a GUI, conforming to the structure laid out by one
of the meta-VoiceSites.

The contributions of this paper are as follows:

e The paper presents TWAF, an application framework
for rapid development and deployment of VoiceSites
for World Wide Telecom Web (WWTW) — an alterna-
tive web for the underprivileged that is complementary
to the existing one.

The TWAF framework supports voice over telephony
as the primary interface for creation of VoiceSites to
support non IT-literate users, in addition to support-
ing APIs and GUIs for the developers.

The TWAF framework’s application development model
enables creation of meta-applications (i.e. creator of
other applications) as well.

e We follow a principled four-stage approach to perform
the entire development process in a systematic and
structured manner.

strates (1) specification of a schema for describing Voic-
eSite components (2) definition of a meta-application
(i.e. VoiceSite Template) (3) creation and deployment
of a VoiceSite on a runtime engine.

2. MOTIVATION

2.1 Background

In this sub-section, we briefly describe World Wide Telecom
Web [12] — our vision of a web of VoiceSites which we believe
has the potential to become the mainstream information web
for the underprivileged in developing regions.

VoiceSites are voice driven applications that are created by
the subscribers and hosted in the network [11]. A Voice-
Site is represented by an associated phone number and can
be accessed from any phone instrument, mobile or landline
through an ordinary phone call to that number. A Voice-
Site could be an individual’s VoiceSite in which case it gets
deployed against his phone number. In situations, where
a VoiceSite represents a group, it gets deployed against a
phone number accessible to the entire group. What makes
them compelling for the underprivileged is the fact that
VoiceSites themselves can be created through a voice in-
terface over an ordinary phone call [11]. Usability wise this
means that even illiterate or low IT-literate users can also
easily create and manage their VoiceSites. Technology wise
this means that VoiceSites can be created through the use of
other special VoiceSites. These creator VoiceSites are called
meta- VoiceSites.

"http://java.sun.com/javaee/javaserverfaces/overview.html

We describe an end-to-end working prototype that demon-

VoiceSites thus are analogous to websites in the WWW in
terms of functionality and differ primarily in their user in-
terface i.e. voice based interaction over a phone call. Similar
to Hypertext Transfer Protocol (HTTP) links in the Web,
VoiceSites can also be linked to other VoiceSites through Hy-
perspeech Transfer Protocol (HSTP) [1]. Such an intercon-
nection of VoiceSites opens several possibilities for telephony
voice applications and can potentially create a web parallel
and complimentary to the existing World Wide Web, called
World Wide Telecom Web (WWTW) [12] as shown in Fig-
ure 1.

TelecomWeb
O Surfer

P"lone Call®~, PhoneCall
- ~ . -~
1

‘s~
Contextual Call ﬁr‘a&sfer
1 .

1256 484 437

Figure 1: The World Wide Telecom Web

WWTW has tremendous implications for the underprivi-
leged people in developing countries. It enables the non-1T
literate people to access and offer information and services
that were hitherto inaccessible to them, through affordable
means. The ease of creation of VoiceSites enables the sub-
scribers to become information providers as opposed to be-
ing simply information consumers. Several applications of
Telecom Web and similar voice-based systems are emerging.
Knowledge sharing tools taken for granted in the Web world
could be made available to the underprivileged through a
voice based interface. For instance, a voice based version of
Wikipedia? — the online, community created encyclopedia is
presented in [18]. A village community portal VoiceSite [3]
creates an ecosystem of a closely knit rural community and
provides them a channel for sharing locally relevant informa-
tion as well as to network socially. VoiceSites could be used
to remove inefficiencies in the current operational models
of various unorganized sectors prevalent in the developing
regions [10]. A voice based Wiki software is presented in [9)].

2.2 Framework Requirements

It is evident that for rapid creation and deployment of Voic-
eSites in the Telecom Web, an application framework similar
to the ones available for World Wide Web such as Struts,
JSF, etc. would be needed. Next, we describe the technical
and social requirements expected to be fulfilled by such an
application framework. These include the following:

e First and foremost, an application framework for WWTW

needs to cater to different kinds of users. It needs to
provide an Application Programming Interface (API)

http://www.wikipedia.org

and/or a Graphical User Interface (GUI) to be able to
create VoiceSites in a systematic and structured man-
ner. Second, it needs to provide a Voice User Interface
(VUI) to naive, non-IT savvy users to be able to create
their VoiceSites. Such VUlIs for creating VoiceSites are
also VoiceSites called meta- VoiceSites.

e The application framework should also provide an API
and/or a GUI to developers for creating these meta-
VoiceSites.

e The APIs/GUIs of the framework should be capable
of generating website equivalents of the VoiceSites for
better integration of Telecom Web with the existing
World Wide Web.

e In addition to the development life-cycle, the appli-
cation framework needs to support automatic deploy-
ment of generated VoiceSites (and equivalent websites)
on a runtime engine.

e Finally, the compile time VoiceSite creation aspects of
the framework as well as the runtime engine should
both be able to integrate with existing IT systems
such as databases, web services, etc. Also, the frame-
work should be flexible to allow third party providers
to add new modules to the framework for extension,
customization and for differentiation among compet-
ing providers.

The requirements listed above are non-trivial to achieve and
are somewhat different from the requirements fulfilled by
existing web application frameworks.

2.3 A Running Example

A VoiceSite can belong to and represent an individual or it
could represent a group or an entire community. Here, we
take the example of a community VoiceSite that serves the
purpose of a Village Portal [3].

The Village Portal VoiceSite is meant to be a local infor-
mation sharing hub for a village and is managed by a lo-
cal resident designated as the Village Portal administrator.
A Village Portal could offer information and services such
as an updated local bus/train schedule, doctor’s visit tim-
ings in the local health center, movies being played in the
nearby theatre, new government schemes launched, upcom-
ing events for the village and classifieds for jobs, matrimo-
nials, equipment rentals etc., among others. For illustrative
purposes we take a simplified view of a Village Portal as
depicted in Figure 2. It shows the overall structure of the
application which consists of the following options:

e Agricultural Consultancy Service : allows villagers to
browse an agriculture FAQ applicable for the village
and post their questions to be answered by qualified
experts. Systems such as COMMON-Sense Net [14]
utilize environment monitoring data collected through
the use of wireless sensor networks, to provide agricul-
tural advice to farmers.

e Health Center Service : provides announcements re-
lated to upcoming health camps, disease outbreak no-
tifications and other health related messages. Also,
includes a locally relevant medical FAQ.

Village Portal

We/cor%e Message

Main Menu
Agrialllture Services Healt/l Services Classifieds|
FAQ FAQ
Discussion Forum Announcements

Expert Advice

Figure 2: A Simplified Village Portal VoiceSite

o (lassifieds : a section where people can record their
professional and personal advertisements and browse
through advertisements posted by other villagers.

We shall use this example throughout the paper to illustrate
the working of the TWAF framework and its components.

3. SYSTEM ARCHITECTURE

The TWAF framework has an ambitious target to achieve
in terms of integration. It needs to enable application in-
tegration to compose VoiceSite functionality from existing
business logic components. Second, it needs to perform in-
tegration of Ul components. Both of these need to be done
differently as illustrated in [22, 13]. This is non-trivial es-
pecially given the fact that TWAF needs to cater to naive
users in addition to developers and voice based interfaces
form a primary component of the user interface.

3.1 System Overview

As shown in Figure3, TWAF has a 4-stage architecture to
enforce a systematic approach for the entire VoiceSite de-
velopment process.

Each stage covers an important part of the VoiceSite devel-
opment lifecycle. The first stage is involved with providing
a language for VoiceSite designers to specify new VoiceSite
designs. In that context, TWAF acts as a template frame-
work. It includes a VoiceSite Template Definition language
(VTDL) for creating VoiceSite Template Definitions. These
template definitions capture the UI and functional aspects
of the desired class of VoiceSites to be generated. The later
stages enable generation of end-user VoiceSites based upon
these templates.

Once a VoiceSite template definition has been created, TWAF
uses it to generate a meta-VoiceSite (or a meta-website) that
enables an end-user to create his desired VoiceSite. This step
essentially configures the Template Definition with end-user
specific information and results into generation of a Tem-
plate Instance. The template instance is specification of a
deployable VoiceSite. The last stage of the TWAF archi-
tecture uses this template instance specification to generate
the appropriate content for the runtime engine. TWAF’s
template engine is capable of generating VXML (for gener-
ating VoiceSites) as well HTML (for generating equivalent
web sites).

3.2 VoiceSite Template Definition Language

Template
Schema

Template
Definition

Template
Instance

Running

Instance

Instdntiate

Create a) Template
Defipition

Create a| Template
Insfance

Figure 3: TWAF - High Level Design

VoiceSite Template Definition Language (VTDL) is an XML
based language using which the VoiceSite Template design-
ers can define the template structure for a desired class of
VoiceSites to be generated. Figure 4, depicts the important
elements of the schema for the VI'DL. As shown, VIDL
consists of various elements pertaining to different aspects
of the structure of a VoiceSite Template. It consists of a
TemplateDefinition and a library of Components. Templat-
eDefinition consists of a CompositeComponent (refer Fig-
ure 6) which is a choice between a sequence of one or more
Composite-Components, a choice of one or more Composite-
Components and a LeafComponent. This recursive nature of
the CompositeComponent provides the flexibility needed for
creating different kinds of template designs.

TemplateDefinitionLanguage

AppComponent..----==""""""

CompositeSequence
CompositeChoicey
LeafComponeni

1

CompositeComponent

NavigationalProp

Help HyperLink
Forward HyperLink | 1
Back HyperLink .-

HyperLink

T

Hom
ErrorHandler HyperLink

HyperLinl &

/ / K 1.
OutputComponent ," <EE > / kY
/ / DBSourceType \
———— ileSystemSourceType
Choicainpi] 7 eennpiiy

A¢--B: B subclass of A
Ae—B : B component of A

bl E Choice

Figure 4: Template Definition Schema

:l ‘ TexlUserInpu*“\ ‘ Audio‘UserInpu?
SpeechRecolnpul

<element name="TemplateDefinition" type="tns:TemplateType"></element>
<complexType name="TemplateType">
<sequence>
<element name="CompositeComponent" type="tns:CompositeComponentType"
minOccurs="1" maxOccurs="1"> </element>
</sequence>
<attribute name="Name" type="string"></attribute>
<attribute name="Version" type="string"></attribute>
</complexType>

Figure 5: Template Type

As shown in the figure, the component library consists of
three types of components AppComponent, UIComponent
(vefer Figure 7) and DataSourceComponent. A LeafCompo-
nent, however, is composed of one or more UIComponent-
Types alone. A VoiceSite template is therefore essentially a
collection of various kinds of UIComponents knit together

<complexType name="CompositeComponentType">
<choice maxOccurs="unbounded" minOccurs="1">
<sequence>
<element name="CompositeSequence" type="tns:CompositeComponentType"
minOccurs="1“ maxOccurs="unbounded"> </element>
</sequence>
<choice>
<element name="CompositeChoice" type="tns:CompositeComponentType"
minOccurs="1“ maxOccurs="unbounded"> </element>
</choice>
<element name="LeafComponent" type="tns:ComponentType*
maxOccurs="unbounded" minOccurs="1"> </element>
</choice>
<attribute name="Name" type="string"></attribute>
<attribute name="Description" type="string"></attribute>
<attribute name="Label" type="string"></attribute>
</complexType>

Figure 6: Composite Component Type

in an interaction hierarchy as specified by the designer. A
UIComponentType is designed to capture the nuances of
user interface controls specific to the modality specified, i.e.
speech or text. In addition, a UIComponentType typically
contains a reference to one or more AppComponentTypes
and/or one or more DataSourceComponentTypes.

<complexType name="UIComponentType">
<complexContent>
<extension base="tns:ComponentType">
<sequence>
<element name="PreProcRef" type="tns:methodCallType*
maxOccurs="1" minOccurs="0"> </element>
<element name="PostProcRef" type="tns:methodCallType"></element>
<element name="InputToApp" type="tns:inputType"
maxOccurs="unbounded" minOccurs="0"> </element>
<element name="OutputToApp" type="tns:outputType"
maxOccurs="unbounded" minOccurs="0"></element>
<element name="Description" type="string"></element>
<element name="NavigationalProperties"
type="tns:NavigationalPropertiesType"> </element>
<element name="tag" type="string* maxOccurs="unbounded"
minOccurs="0"> </element>
</sequence>
<attribute name="Renderer" type="tns:RendererType"></attribute>
</extension>
</complexContent>
</complexType>

Figure 7: UIComponent Type

The AppComponentType captures the specification of com-
ponents that implement business logic and may be encap-
sulated in a locally available component or a remote en-
tity such as a web service. The DataSource ComponentType
provides a mechanism to specify various data sources that
can be utilized by the VoiceSite and may include databases,
filesystem, etc.

Separating the specification of UIComponent from AppCom-
ponent and DataSourceComponent enables business logic to
remain separate from presentation logic. TWAF, this way
enables Model-View-Controller architecture based VoiceSite
development.

Each UIComponentType consists of an attribute that speci-
fies the renderer to be used. VXML and HTML are currently
supported. A UIComponentType is composed of six compo-
nents namely InputType, OutputType (not shown in figure),
PreProfRef, PostProfRef, Tags and and optional Navigation-
alProperties element. The InputType and OutputType ele-
ments are meant to be references to those AppComponents
and DataSourceComponents associated with the template
that this component needs to use to get some input data
or to send some output data respectively. PreProcRef and

PostProcRef specify actions to be performed before and af-
ter the use of this component respectively. Not shown in the
figure but they consist of method calls to be invoked on an
AppComponent or fetch/store data from a DataSourceCom-
ponent available to the UlIComponent from the InputType
and OutputType elements. Tags provide a mechanism to
specify meta information about the component which could
be used later to index the VoiceSite for searching purposes.
Navigational Properties capture the standard navigational,
help or exception handling hyperlinks defined for this com-
ponent.

The UlIComponent element further gets derived into vari-
ous types. The OutputUIComponentType allows specifying
a Ul control that renders an output to the user in the form
of text, Audio, Video, SMS, MMS or an Image. It has an
attribute OutputResRef that points to the location of the
resource that is to be output to the user. A ListType com-
ponent represents single or multidimensional lists. A list can
be editable, sequential or a random (multi-)select list. The
attribute NumberofDimensions determines the dimensional-
ity of the list. An UnstructuredInputType is a Ul component
type for capturing input in the form of audio recording, free
text or speech input to be recognized. Finally, an important
subclass of UIComponent is a HyperLink component which
could either represent a HTTP link or an HSTP [1] link.
It has a LinkText attribute that represents the text that is
presented in a GUI application or the grammar that is used
in a voice application and is spoken to activate the link. It
also contains a LinkURI element that points to the resource
the hyperlink links to.

Third party vendors can extend this schema to define their
own components called Fxtended Templates, described later
in this paper.

3.3 Template Definition

Using VTDL, the developers create Template Definitions.
A Template Definition captures the structure of a class of
VoiceSites to be created and is essentially an XML document
that specifies the UI components of the application and how
they are interlinked to form an application flow. The Ul
components typically refer to other app components or data
source components that are defined in the VIDL and have
a realization available in the components repository of the
framework. The instances of these app components and data
source components, when included later, define the runtime
behaviour of the VoiceSite generated from the template. The
UI components in the template definition are abstract in
nature and are rendered based on the deployment platform.
For example, for a voice application the components are
rendered in VXML whereas for a web based application they
are rendered as HTML.

A template enables mass creation of a class of applications
with similar features and the template definition captures all
possible features of that application class. For creation of a
template instance, the developer or the end user simply spec-
ifies which features to retain and configures those with data
specific to him (through the interface provided). For each
of the components included, the corresponding component
realization, that renders or invokes this component should
be available in the components repository of the framework.
The template definition for the Village Portal scenario in-
troduced earlier, is shown in Figure 8 and 9.

TWAF Components for Template Extensions

Village Portal Template

Welcome Message (OutputComponent)

|
Main Menu (Menu Object):

+—— Agriculture Services (MenuObject)

FAQ (FAQType)
Discussion Forum (DiscussionForumType)

Expert Advice(DiscussionForumType)

—— Health Services(MenuObject)
r: FAQ (FAQType)

Announcements (ListType)

+——— Personal Advertisements (ListType)

Figure 8: Template Definition for Village Portal

<tns:CompositeChoice Name="KioskMainMenu* Label="">

<tns:CompositeSequence Name="AgriService"
Description="Agriculture discussion forums, announcements,FAQs and expert advice operation“ Label="">
<tns:CompositeChoice Name="Agri Menu">
<tns:LeafComponent Name="FAQList" xsi:type="tns:ListType" Label="“ NumberOfDimensions="2">
<tns:PreProcRef xsi:type="tns:ListMethodCallType">
<tns:methodName>getElements</tns:methodName>
<tns:methodParams>
<tns:category>OPEN</tns:category>
<tns:numberOfElementsin1Dim>5</tns:numberOfElementsIn1Dim>
<tns:numberOfElementsIn2Dim>1</tns:numberOfElementsIn2Dim>
</tns:methodParams>
</tns:PreProcRef>
<tns:PostProcRef> <tns:methodName>tns:methodName</tns:methodName> </tns:PostProcRef>
<tns:InputToApp Label=""></tns:InputToApp>
<tns:OutputToApp>
<tns:dataSink>tns:dataSink</tns:dataSink>
<tns:parameterList>tns:parameterList</tns:parameterList>
</tns:OutputToApp>
<tns:Description>This is an FAQ on agriculture that is maintained by the voicesite administrator
</tns:Description>
<tns:NavigationalProperties>
<tns:Help>http://tempuri.org</tns:Help>
<tns:Forward>http:/tempuri.org</tns:Forward>
<tns:Back>http:/tempuri.org</tns:Back>
<tns:Home>http://tempuri.org</tns:Home>
<tns:ErrorHandler>http:/tempuri.org</tns:ErrorHandler>
</tns:NavigationalProperties>
<tns:tag>VillagePortalFAQ</tns:tag>
</tns:LeafComponent>

Figure 9: Fragment of Template Definition from
PoC

TWAF provides support for extension of its Template Schema
to enable other developers and vendors to create Template
Definitions specific to their needs and requirements. For this
purpose, we define the notion of TWAF Component as a col-
lection of artifacts that put together enable new VoiceSite
functionality to be introduced into the TWAF framework.
These artifacts consist of schema extensions, as well as ex-
ecutable code and related configuration files needed for the
integration to happen.

3.4 Template Instance

A couple of actions need to be performed for creation of a
VoiceSite Template instance from the corresponding Voic-
eSite Template definition. First, the user needs to select
the components/ features available in the template defini-
tion that s/he needs in her VoiceSite. Second, each selected
component has to be configured if required by the compo-
nent. For instance, for a list of messages the component

may need to be configured to specify maximum number of
messages to hold. In addition, selected components need to
be customized by the user to reflect his/her organization,
business or own personality. For instance, the prompts (if
output is VUI) could be recorded in local language and may
speak out the name and address of the business that the user
owns. The interface provided to the user to perform these
actions could be a VUI or a GUI. In either case, the TWAF
framework needs to provide a meta-application (i.e. a meta-
VoiceSite or a meta-website) for exposing the user interface
to create a template instance. This meta-application could
be generated from the template definition or could be devel-
oped manually when a new template definition is created.
As a result of this selection and configuration process, a new
XML document is generated. In addition, the TWAF frame-
work also generates a few configuration files that specify the
mapping from component names used in the template to
actual code and data files that realize those components.
The XML document and the configuration file put together
form the Template Instance. A VoiceSite Template Instance
needs to be instantiated and executed in a runtime engine
for others to be able to access it.

VoiKioskApplication
Welcom'e Message QutputComponeny

Main /\/)enu (Menu Object) :

Agriculture Services Agri

|: FAQ: Mahiti
Expert Advice: Prashna
Health :Aarogyam

Announcements (ListType)

Figure 10: Village Portal Instance

An instance of the village portal template created by select-
ing the Agricultural services and the Health service only, is
depicted in Figure 10. The services are labelled by the user
as Agri and Aarogyam respectively. Figure 11 shows the
screenshot of the corresponding XML file.

4. SYSTEM DESIGN AND IMPLEMENTA-
TION

In this section, we present further details of the design of
TWAF framework and our prototype implementation. As
shown in Figure 12, the framework needs a Template Schema
to start with. The framework also needs a library or repos-
itory of components and services that contains component
code and stub code respectively. The Template Definition
relies on this library to create the template. A binding file
contains the mapping from the component name to the code
module that realizes the component functionality. In addi-
tion, the framework has a component registry (not shown in
figure) which contains an entry for all components (default
components of TWAF as well as added by others). It can
be looked up to determine whether a particular component
exists in the repository.

1= [€] tns:Template

wmins:cal
wmins:tns
xmins:xml-method
wmins:xsi 1
xsiischemalocation http:/fwww.exar
= [€] tns:CompositeComponent B D =
MName VillageMain
= [€] tns:CompositeSequence ompositeseql
Name MainSequence
1+ [E] tns:LeafComponent eF f,F
= [E] tns:CompositeChoice mpositeSe
Name KioskMainMenu
Label KioskMenu
= [g] tns:CompositeSequence 3 ositeSe
MName AgriService
Description Agriculture discur
Label Vyavasaayam
= [e] ms:CompositeChoice JositeSe
Mame Agri Menu
= [8] tns:CompositeSequence 0
MName FAQ

@ Label Mahiti
[g] ms:LeafComponent Pref
[€] tns:LeafComponent
@ [e] tns:LeafComponent
= [8] tns:CompositeSequence JositeSeq
Name HealthService
@ Label Aarogyam
[g] tns:LeafComponent PreProcRef, Po

Figure 11: Instance Screenshot

Create a Template Create a Create a
Definition Meta-Sit iceSit

Running
Instance

Template Template
Schema Definition

Template

\" Instance]

—
Third Party | |00 nglueram
Componentg
Binding File] ripons

Figure 12: TWAF Detailed Design

TWAF’s runtime engine is based upon Speakright® — an
open source Java based framework for rapid development
of voice applications using VoiceXML (VXML) and web ap-
plications using HTML. We first briefly describe Speakright
to set the context for the remaining sections.

4.1 Speakright

Compared to other frameworks such as RDCs [4] and JSPs/VXML,
Speakright uses a code based approach for developing voice/web

applications. Applications are developed using Java which
produces the VXML/JSP/HTML code at runtime. This ap-
proach enables developers to focus on application logic as op-
posed to the underlying presentation language. Speakright
approach is more suitable for developing voice applications
where no visual components are involved and hence are more
amenable to the code generation approach. Web applica-
tions that are GUI intensive may not be suitable for this
method though simple web applications can be generated.
For our proof-of-concept implementation, we focussed on the
use of Speakright for developing voice applications only.

Figure 13 shows the stack for a typical voice application in-
volving Speakright. SpeakRight resides in the application
code layer and has a Model-View-Control architecture sim-

3http://speakrightframework.blogspot.com/

ilar to GUI frameworks.

. Web Serve N VoiceXMLBrowser
SpeakRight ‘eé‘a'
Application Qe“&
Code Output of
Exeeamon Generated VoiceXMLPlatform
VXML |

i
StringTemplate
Engine

Figure 13: Speakright architecture

4.1.1 Flow Objects

Speakright uses the concept of Flow objects that form the
basis of an application built using this framework. Flow ob-
jects form the view and control of the MVC architecture.
A flow object encapsulates an interaction with the system
where the user may be asked for an input or simply ren-
dered an output. Each flow object is rendered as one or
more VoiceXML pages during runtime. Flow objects can
be extended using inheritance or composition. They can be
nested to create larger flow objects. The application itself
is a flow object containing one or more flow objects.

Flow objects implement the IFlow interface as given below:

e IFlow getFirst():
this retuns the first flow object to be run. A flow object
with sub-flows would return its first sub-flow object. A
leaf object (one with no sub-flows) returns itself.

¢ IFlow getNext(IFlow current, SRResults results):

getNext returns the next flow object to be run. It is
passed the results of the previous flow object to help
it decide. The results contain user input and other
events sent by the VoiceXML platform.

e void execute(ExecutionContext context):
In the execute method, the flow object renders itself
into a VoiceXML page.

4.1.2 Execution

Execution uses a flow stack. An application starts by push-
ing the application flow object (the outer-most flow object)
onto the stack. Pushing a flow object is known as activation.
If the application object’s getFirst returns a sub-flow then
the sub-flow is pushed onto the stack. This process contin-
ues until a leaf object is encountered. At this point all the
flow objects on the stack are considered ”active”. Now the
runtime executes the top-most stack object, calling its exe-
cute method. The rendered content (a VoiceXML page) is
sent to the VoiceXML platform.

When the results of the VoiceXML page are returned, the
runtime gives them to the top-most flow object in the stack,
by calling its getNext method. This method can do one of
three things:

e return null to indicate it has finished. A finished flow
object is popped off the stack and the next flow-object
is executed.

e return itself to indicate it wants to execute again.

e return a sub-flow, which is activated (pushed onto the
stack).

The result is a new VoiceXML page that is generated. Exe-
cution continues like this until the flow stack is empty. Each
flow object can invoke business logic operations before it is
executed and after it completes execution.

4.2 VoiceSite Template Creation

VoiceSite Templates are creating using the VoiceSite Tem-
plate Definition Language. For each of the UI components
specified, there exists a Speakright class that renders that
component. Thus every Ul component in the template def-
inition is represented as a flow object.

As discussed in the previous section, extension of existing
VTDL constructs is feasible through the use of extended
templates in the form of TWAF Components. A typical
TWAF component package includes the following:

e A schema file specifying extensions to basic constructs
defined in VIDL and needed to interpret this com-
ponent. Only extensions of existing components are
allowed rather than arbitrary additions.

e A Java archive file (jar) containing either the entire
component code or the stub code for the component.
The stub code consists of the Speakright code cor-
responding to the flow object being represented by
the component and the application logic such as in-
teraction with a data source. To provide protected
variation, we have defined a interface for the interac-
tion of the component with the data source keeping
in mind the Input/Output requirements of the com-
ponent. The jar for each component includes the class
implementing this interface.

e A set of prompt files, grammar files and audio files
which are used by the stub code.

e a binding file providing a mapping of component names
used in the template definition to the Java classes from
the jar implementing the component as well as the
prompt files, grammar files and audio files used by the
component.

e a deployment descriptor specifying the locations for all
of the above files.

Once an externally created TWAF Component is imported
into TWAF, the framework updates its component registry.
When a Template definition is being created, the TWAF
framework exposes all the components - the default ones as
well as extended ones obtained by searching for the extended
templates in the component registry. The registry specifies
the location of the extended template in the TWAF Compo-
nent Repository. The TWAF Registry and TWAF Reposi-
tory are part of the framework architecture.

The TWAF Repository contains all the extended templates.
Once the extended template definition gets included in the
Template Definition the rest of the steps carried out to in-
stantiate a VoiceSite are the same as the ones followed dur-
ing VoiceSite creation.

Figure 8 in Section 3 shows the VoiceSite template that we
created to enable end users to create different portals for
different villages.

The main component used for this template is the ListType.
FAQ and DiscussionForum are derived from the ListType.
The structure of the list component is shown in Figure 14.

<complexType name="ListType">
<complexContent>
<extension base="tns:UIComponentType">
<attribute name="IsEditable" type="boolean"></attribute>
<attribute name="IsMultiSelect" type="boolean"></attribute>
<attribute name="NavigationLevel* type="tns:NavigationLevelType">
</attribute>
<attribute name="NumberOfDimensions" use="required">
<simpleType>
<restriction base="int">
<minlinclusive value="1"></minInclusive>
<maxInclusive value="2"></maxInclusive>
</restriction>
</simpleType>
</attribute>
</extension>
</complexContent>
</complexType>
<simpleType name="NavigationLevelType">
<restriction base="string">
<enumeration value="Sequential"></enumeration>
<enumeration value="RandomSelect"></enumeration>
<enumeration value=""></enumeration>
</restriction>
</simpleType>

Figure 14: List Type

A FAQ type of list has a question and only one answer asso-
ciated with it, while in a discussion forum we have a single
level thread of communication. Each entry in the forum
can have one or more replies or comments to it. We do not
support multiple levels of discussion in this version. The
Main Menu, Agriculture Services and Health Services are
CompositeChoice components. The mapping of the remain-
ing features are shown in Figure 8. The ListType has a
ListInterface which specifies methods that can be used to
initialize different types of lists and operations that can be
performed on the list. The initialization methods are speci-
fied in the PreProcRef element defined in the UIComponent.
Each of the leaf components in the template has a corre-
sponding Speakright class which renders the Ul part of the
component and also implements the necessary interfaces of
the component. This class is configured during instantiation
and bound to the leaf component at runtime.

4.3 VoiceSite Creation

Instantiation of a voicesite from the corresponding template
definition consists of the following activities:

o Component Selection: During instantiation, the users
customize the template definition and select a subset
of its features actually needed. The component selec-
tion module can be GUI based or VUI based. The
user selects the desired features and fills in the Label
attribute of the component. This value is used in the
next step when grammars need to be generated. Once
the components are selected, a new XML document is
generated with the selected components and fed into
the next step.

e Grammar Generation: A composite component that
has a CompositeChoice or a Choice component, re-
quires a grammar which specifies the word to be spo-
ken by the user to select a component belonging to
the choice component. The template definition spec-

ifies only the names of the components. The compo-
nent labels that were populated by the user in the first
step are now used to generate the appropriate gram-
mars by the Grammar Generation Module. Grammars
are generated only for CompositeChoice components.
For the leaf components, if a grammar is required it is
provided by the user and specified in the application
configuration file.

e Application Generation: This is the final stage to cre-
ate a running application. In this stage, in addition to
the template instance XML document and the gram-
mar files, the binding file and the configuration file are
also required. As described earlier, while the binding
file provides mapping from component names to cor-
responding java classes, the configuration file specifies
parameters specific to components as well as home lo-
cation for the generated grammars and location of au-
dio files required for the application.

During this stage, each component in the instance XML
is parsed by a Component Parser and a Speakright
class representing the component flow is generated.
The composite components result in a composite flow
that contain subflows corresponding to each compo-
nent. The root flow represents the entire application
and is now ready to execute. Figure 10 and 11 show
a template instance for a Village Portal application.

In the proof-of-concept implementation, we developed a GUI
based module to enable the users to create a template in-
stance from the template definition. As shown earlier, we
created an instance of the Village Portal Template. The user
selects the features desired from the template and provides
the labels for the features selected. Once the user selects
the desired features and labels them, the grammar for Com-
positeChoice components are generated, by Grammar Gen-
erator, using labels. The Grammar Generator makes use of
Castor* for this purpose. Finally, the Application Generator
parses each component and sets the prompt file, grammar
file and the Speakright class implementing each leaf com-
ponent to produce an executable Village Portal VoiceSite.
For generation Speakright classes too we made use of Cas-
tor. CompositeChoice components are instances of Menu-
Flow class in Speakright while CompositeSequence compo-
nents are instances of a BasicFlow Speakright class which
executes its subflows sequentially.

4.4 VoiceSite Deployment

A VoiceSite is deployed on an application server and ren-
dered using a Voice Browser. In our case we used Tomcat
Application Server and the Genesys Browser to deploy the
generated voice applications. Each voice application has a
phone number associated with it which acts as its URI. End
users dial this phone number to access the voice application.
The mapping between the phone number and the applica-
tion is provided in the Genesys Voice Platform (GVP)5. For
each application that is created, a Deployment Descriptor
points to the location where the VXML code generated by
the voice application is deployed on Tomcat. It also assigns
a number for this application and configures the GVP ac-
cordingly. These VXML files (sample shown in Figure 15)

“http://www.castor.org

®http://www.genesyslab.com /products/genesys_voice_platform.asp

<?xml version="1.0" encoding="UTF-8"?><vxml xmIns="http//www.w3c.org/2001/vxml" version="2.0">
<form>

<catch event="connection.disconnect">

<assign name="sr__res" expr="1"/>

<submit next="router.jsp" namelist="sr__res" method="get"/> <exit/>

</catch>

<var name="sr__res" expr="0"/>

<field name="field1" >

<grammar type="application/srgs+xml" src="C:\sro1\KioskMainMenu.grxml"/>
<noinput>I'm sorry | didn't hear anything. What item would you like? </noinput>
<noinput count="2" >| still didn't hear anything. Please say an item. </noinput>
<nomatch>| didn't get that. What item would you like? </nomatch>

<nomatch count="2" >| still didn't understand. Please say an item you would like? </nomatch>
<prompt>Please select from the following VAgri health</prompt>

<nomatch count="3">

<assign name="sr__res" expr="3"/>

<submit next="router.jsp" namelist="field1 sr__res" method="get"/>
</nomatch>

<noinput count="3">

<assign name="sr__res" expr="3"/>

<submit next="router.jsp" namelist="field1 sr__res" method="get"/>

</noinput>

<filled>

<var name="sr__conf" expr="lastresult$.confidence"/>

<submit next="router.jsp" namelist="field1 sr__res sr__conf" method="get"/>
</filled>

</field>

</form>

</vxml>

Figure 15: Vxml Generated by Speakright

are then used by the Genesys browser and rendered when a
user dials the number for the desired voice application.

5. RELATED WORK

There are several web application frameworks whose goals
are similar to those of TWAF yet none of them serve the
multiple goals that TWAF is designed to achieve.

Reusable Dialog Components (RDC) [4] is a framework for
developing voice applications that requires integration of Ul
components and business logic at design time. It is a Struts
based framework which has pre-defined Voice Ul compo-
nents that play a dominant part in the framework. Business
logic related components possibly involving databases and
web services also need to be wrapped as RDC components.
Hamlets [15] is an open source system for generating dy-
namic web-pages from XHTML templates. A Hamlet is ba-
sically an extension to a servlet. It reads XHTML template
files and dynamically adds content where indicated by spe-
cial tags, using callback functions. Hamlets provide an easy
servlet-based content creation framework for web based ap-
plications and enforces the complete separation of content
and presentation.

Java Server Faces (JSF)® and ASP.Net adopt a component
based approach to web application development In ASP.Net,
business code is connected to the Ul components through
events subscriptions. Events are generated by the compo-
nents and stored in a separate file called code behind which
resides along with the visual page layout.

DotNetNuke” is another web application framework consid-
ered ideal for creating, deploying and managing interactive
web, intranet and extranet applications.

Apache Velocity® is a Template Engine for Java. It provides
a simple yet powerful template language to reference ob-
jects defined in Java code. It enables Model-View-Controller
(MVC) model based web application development by allow-
ing web page designers to focus solely on creating a site with
good user interface design while programmers can parallely

Chttp://java.sun.com/javaee/javaserverfaces/overview.html
"http://www.dotnetnuke.com/
8http://velocity.apache.org/

focus solely on writing core business logic. In doing so, Ve-
locity separates Java code from the web pages, making the
web site more maintainable over its lifespan. It provides an
alternative to Java Server Pages (JSPs) or PHP and can
generate SQL, PostScript or XML from templates.

TWAF follows a component based approach similar to Mi-
crosoft ASP.NET and JavaServer Faces for the VoiceSite
development process as this requires composition along the
lines of enterprise application integration [22, 13]. On the
other hand, for the runtime environment in which VoiceSites
are instantiated and deployed it follows MVC Model 2 archi-
tecture since that portion of the framework is concerned with
composition of presentation layer [22, 13]. TWAF is not a
meta-framework and hence different from meta-frameworks
such as Keel® and ROMA!® that aim to provide an exten-
sible platform for integrating various Java tools and frame-
works together.

Reuse of code in addition to reuse of design is stressed in [17]
and TWAF achieves code reuse through the use of com-
ponent libraries that encapsulate application logic as well
as reusable voice components that encapsulate presentation
logic.

6. CONCLUSION

We presented the architecture, design and proof-of-concept
implementation of TWAF — an end-to-end application frame-
work for the World Wide Telecom Web - an emerging web
for the underprivileged. The framework addresses a few non-
trivial requirements compared to existing web application
frameworks. It provides an API/GUI interface to software
developers for creating VoiceSite Templates. In addition, it
provides meta-VoiceSites that have a voice based interface
for naive non-IT literate users to create their own Voice-
Sites. We demonstrated some of the important features of
the framework through an end-to-end proof-of-concept im-
plementation of a community VoiceSite.

The TWAF framework adopts best practices and follows
a systematic, structured approach to enable rapid creation
of VoiceSites by naive users. It also provides support for
extension by third party component providers. In future,
we intend to refine the APIs and the functionality of TWAF
as well as develop the necessary tool to create a distributable
software development kit for the World Wide Telecom Web.

7. REFERENCES

[1] S. Agarwal, D. Chakraborty, A. Kumar, A. A.
Nanavati, and N. Rajput. HSTP: Hyperspeech
Transfer Protocol. In ACM Hypertext 2007, UK,
September 2007.

[2] S. K. Agarwal, A. Kumar, A. A. Nanavati, and
N. Rajput. The World Wide Telecom Web Browser. In
WWW ’08: Poster Proceedings of the 17th
International World Wide Web Conference, Beijing,
China, 2008.

[3] S. K. Agarwal, A. Kumar, A. A. Nanavati, and
N. Rajput. VoiKiosk: Increasing Reachability of
Kiosks in Developing Regions. In WWW ’08: Poster
Proceedings of the 17th International World Wide
Web Conference, Beijing, China, 2008.

http://sourceforge.net /projects/keel /
Ohttp:/ /www.romaframework.org/

[4]

[5]

(6]

[7]

8]

[9]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

R. P. Akolkar, T. Faruquie, J. Huerta, P. Kankar,

N. Rajput, T. Raman, R. U. Udupa, and A. Verma.
Reusable Dialog Component Framework for Rapid
Voice Application Development. In SIGSOFT
Component Based Software Engineering, Missouri,
USA, May 2005.

E. Brewer, M. Demmer, M. Ho, R. Honicky, J. Pal,
M. Plauch, and S. Surana. The Challenges of
Technology Research for Developing Regions. IEEE
Pervasive Computing, 5(2):15-23, 2006.

J. Chamberlain, G. Elliott, M. Klehr, and J. Baude.
Speech user interface guide. 2006.

B. Evjen, S. Hanselman, and D. Rader. Professional
asp.net 3.5: In c# and vb. 2008.

J. Holmes. Struts: The complete reference, 2nd
edition. 2006.

P. Kotkar, W. Thies, and S. Amarasinghe. An Audio
Wiki for Publishing User-Generated Content in the
Developing World. In HCI for Community and
International Development (Workshop at CHI 2008),
Florence, Italy, April 2008.

A. Kumar, N. Rajput, S. K. Agarwal, D. Chakraborty,
and A. A. Nanavati. Organizing the Unorganized -
Employing IT to Empower the Under-privileged. In
WWW ’08: Proceedings of the 17th International
World Wide Web Conference, Beijing, China, 2008.
A. Kumar, N. Rajput, D. Chakraborty, S. Agarwal,
and A. A. Nanavati. Voiserv: Creation and delivery of
converged services through voice for emerging
economies. In WoWMoM’07 Proceedings of the 2007
International Symposium on a World of Wireless,
Mobile and Multimedia Networks, Finland, June 2007.
A. Kumar, N. Rajput, D. Chakraborty, S. Agarwal,
and A. A. Nanavati. WWTW: A World Wide Telecom
Web for Developing Regions. In ACM SIGCOMM
Workshop on Networked Systems For Developing
Regions, Aug 2007.

H. Mili, M. Fayad, D. Brugali, D. Hamu, and D. Dori.
Enterprise frameworks: issues and research directions.
Softw. Pract. Ezxper., 32(8):801-831, 2002.

J. Panchard, S. Rao, P. T.V., H. Jamadagni, and J.-P.
Hubaux. COMMON-Sense Net: Improved Water
Management for Resource-Poor Farmers via Sensor
Networks. In International Conference on Information
and Communication Technologies for Development,
Berkeley, USA, May 2006.

R. Pawlitzek. Introducing Hamlets. http://www-
128.1bm.com/developerworks/web/library/wa-
hamlets/, Mar

2005.

A. Rawsthorn. Design for the Unwealthiest 90 Percent.

http: //www.iht.com/articles/2007/04/27/arts/design30.php.

Last accessed Nov. 2008.

D. Schwabe, L. Esmeraldo, G. Rossi, and F. Lyardet.
Engineering web applications for reuse. I[EFEE
MultiMedia, 8(1):20-31, 2001.

J. Sherwani, D. Yu, T. Paek, M. Czerwinski, Y. C. Ju,
and A. Acero. Voicepedia: Towards speech-based
access to unstructured information, interspeech 2007.
In Proc. Interspeech, 2007.

I. Singh, B. Stearns, M. Johnson, G. Murray,

J. Inscore, L. Demichiel, N. Kassem, R. Sharma,

20]

(21]

(22]

R. Ortigas, R. Monzillo, S. Brydon, T. Ng, and

V. Ramachandran. Designing Enterprise Applications
with the J2EETM Platform, Second Edition.
http://java.sun.com/blueprints/quidelines/designing
_enterprise_applications_2e/titlepage.html. Last
accessed Nov. 2008.

C. E. Smith. Design for the Other 90%. In Editions
Assouline, Sept 2007.

I. W. Stats. World Internet Users and Population
Stats. http://www.internetworldstats.com/stats. htm,
June 2008.

J. Yu, B. Benatallah, R. Saint-Paul, F. Casati,

F. Daniel, and M. Matera. A Framework for Rapid
Integration of Presentation Components. In WWW
’07: Proceedings of the 16th International World Wide
Web Conference, Banff, Canada, 2007.

