
RI 12003, 23 April 2012 Computer Science

IBM Research Report

Alternate and Learn:
Finding witnesses without

looking all over

Nishant Sinha, Nimit Singhania
IBM Research Lab, India

Satish Chandra, Manu Sridharan
IBM T. J. Watson Research Center, USA

IBM Research Division
Almaden - Austin - Beijing - Delhi – Bangalore - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication
outside of IBM and will probably be copyrighted is accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of
the transfer of copyright to the outside publisher, its distribution outside of IBM prior
to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained
copies of the article (e.g., payment of royalties). Copies may be requested from IBM
T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY
10598 USA (email: reports@us.ibm.com).. Some reports are available on the
internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Alternate and Learn:
Finding witnesses without looking all over

Nishant Sinha1, Nimit Singhania1, Satish Chandra2, and Manu Sridharan2

1 IBM Research Labs, India
2 IBM T. J. Watson Research Center, U.S.A.

Abstract. Most symbolic bug detection techniques perform search over the pro-
gram control flow graph based on either forward symbolic execution or back-
ward weakest preconditions computation. The complexity of determining inter-
procedural all-path feasibility makes it difficult for such analysis to judge up-
front whether the behavior of a particular caller or callee procedure is relevant to
a given property violation. Consequently, these methods analyze several program
fragments irrelevant to the property, often repeatedly, before arriving at a goal lo-
cation or an entrypoint, thus wasting resources and diminishing their scalability.
This paper presents a systematic and scalable technique for focused bug detection
which, starting from the goal function, employs alternating backward and forward
exploration on the program call graph to lazily infer a small scope of program
fragments, sufficient to detect the bug or show its absence. The method learns
caller and callee invariants for procedures from failed exploration attempts and
uses them to direct future exploration towards a scope pertinent to the violation.

1 Introduction
Even though sophisticated static analysis methods for bug detection exist [6, 12, 18,
16], the scalability of these methods is restricted. This is somewhat surprising given
that most bugs can be attributed to program behavior in a small set of program regions,
i.e., a small scope [16, 11].

We believe that the common drawback of these methods is that they cannot focus
on a small set of pertinent program regions that trigger the bug. Such focusing is not
easy: a static analysis tool encounters plenty of code irrelevant to a particular bug, but
such code is not obviously irrelevant before it is analyzed. Furthermore, the tool may
repeatedly re-analyze such irrelevant code, thus wasting resources without finding a
witness.

Consider a few examples illustrating the need of focusing. (a) Suppose a goal func-
tion with a potential null dereference makes a virtual call with 100 possible targets, none
of which are relevant to the bug. Exploring all these targets is wasteful, and therefore it
is necessary to restrain the forward search to only a subset of callees. (b) Alternatively,
consider a goal function g invoked in a large number of call contexts (exponential in the
depth of call graph, in the worst case). If the analysis begins from main procedure, it is
likely that many irrelevant program fragments will be encountered and analyzed before
reaching g. Therefore, a goal-driven backward search is necessary for focusing.

Based on above observations, we may conceive of a potentially effective tech-
nique that performs backward expansion from a goal function g in a small scope cen-
tered around g. Effective discovery of such a scope in practice is non-trivial: previous
work [16] employed a strategy based on breadth-first expansion from the goal func-
tion, but this may be inefficient if callers or callees far away from the goal need to be
explored.

In this paper, we propose a new focused method to perform inter-procedural analysis
for detecting bugs. The strategy performs a systematic search around the goal function
g with the aim of either inferring a small scope which can trigger the bug or, in some
cases, proving the absence of it. Note that finding a witness path to an error location in g
requires finding a feasible call context for g. This call context consists not only of a set
of transitive (backward) callers of g, but also (forward) callees invoked by g on the path
to the error function. Based on this observation, our method alternates between forward
and backward exploration in the call graph to detect a violation and backtracks when-
ever it fails to find a feasible call context. During alternation, forward expansion takes
priority over backward expansion. This is crucial because forward expansion proves in-
feasibility of the error at the current caller level, and avoids further backward expansion
into irrelevant program fragments, thus discovering small program scopes in practice.

The alternating expansion method, despite being lazy, may revisit several irrelevant
program regions (e.g., error-free call contexts), re-analyze them and perform wasteful
backtracks. Such unfocused exploration clearly reduces the efficiency of the analyzer.
Therefore, to improve focus, we propose to learn, on-demand from exploration failures,
caller/callee invariants that over-approximate the caller/callee data values respectively.
These invariants contain specific facts which induced the failure and help avoid similar
failures later by not re-exploring irrelevant callers/callees.

The proposed method may be viewed as an instance of the general DPLL paradigm,
explore-fail-learn-backtrack, applied directly to the program call graph representation
instead of operating at a fine-grained inter-procedural control flow graph level [18]. Be-
cause there may be large number of call contexts to a particular procedure, the backward
search tries to efficiently explore the set of call contexts in a depth-first manner, back-
tracks from failures, and exploits caller/callee invariants inferred from failures to prune
future search. The forward expansion assists the backward search to infer early failures,
akin to how theory propagation assists in finding conflicts during DPLL search.

In our preliminary experiments with industrial Java benchmarks, we found that al-
ternating scope expansion is crucial to get some benchmarks to finish in a reasonable
time. Learning reduced the number of call graph edges visited, but this reduction is not
always able to compensate for the overhead of computing invariants.

The key contributions of the paper are as follows:

– A scalable bug detection method ALTER that performs alternating backward and
forward search (Sec. 4) to lazily infer a small scope around the goal function, suf-
ficient to detect a witness. A symbolic intra-procedural local summary for each
procedure (Sec. 3) forms the basis of efficient inter-procedural alternating expan-
sion.

– A systematic technique to learn a program scope pertinent for bug-detection by
inferring caller and callee invariants for procedures from failed explorations (Sec-
tion 5).

– An experimental evaluation (Sec. 6) that shows the effectiveness of our techniques.

2 Motivating Examples and Overview
2.1 Alternating Scope Expansion
Consider the program App1 in Fig. 1: here, the goal function is A.init, where a poten-
tial null dereference may occur at line 11 because the class A’s local field this.srcs
(non-null) is shadowed by the local parameter variable srcs.

1 class A implements C {
2 List srcs;
3 A(List srcs, Rect b) {
4 init (srcs, b);
5 }
6 void init(List srcs, Rect b) {
7 this.srcs = new Vector ();
8 if (srcs != null) {
9 this.srcs.addAll (srcs);

10 }
11 if (srcs.size() != 0) {...}
12 }
13 }
14 class T extends A {
15 T(List srcs, Rect b) {
16 if (srcs.isEmpty()) return;
17 init(srcs, b);
18 }
19 }

1 class M extends A {
2 M(C src, C alpha) {
3 List srcs; Rect b;
4 srcs = makeList(src,alpha);
5 b = makeBounds(src,alpha);
6 super(srcs, b);
7 }
8 List makeList(C s1, C s2) {
9 List ret = new ArrayList (2);

10 ret.add(s1);
11 ret.add(s2);
12 return ret;
13 }
14 }
15 class N {
16 void foo(C src, C alpha) {
17 C m = new M(src,alpha);
18 ...
19 }
20 }

Fig. 1: App1 example, based on a fragment of the batik open-source benchmark.

ALTER first computes the local error condition for the goal at line 11 in A.init: φ
:= (srcsA.init = null), where srcsA.init refers to the srcs parameter of A.init (the
extra constraints arising from the conditional at line 8-10 are simplified away). Now,
ALTER must examine callers of A.init, namely T.T and A.A. Carrying out a backward
expansion for T.T, ALTER composes the local path condition for calling A.init inside
T.T, with φ. This composition yields false, because the srcs parameter of T.T must
be non-null for execution to pass line 16 of T.T. Next, ALTER carries out backward
expansion to include A.A, and another backward expansion to include M.M, which is a
caller of A.A. At this point, it carries out a forward expansion to bring M.makelist in
scope. Now, the side effect summary of M.makelist can prove —the return value of
M.makelist cannot be null— that the call context M.M→ A.A→ A.init cannot lead
to error. Thus, ALTER is able to show the absence of null dereference in A.init by
alternating backward/forward expansion starting from the goal location in A.init.

Focused Exploration. Note how ALTER performs a focused search by avoiding
exploration of irrelevant program regions which are in the nearby scope, i.e., functions
makeBounds in M.M, isEmpty in T.T, addAll in A.init, add in M.makeList and
other callers of M.M and T.T. See Figure 2. The method names in bold are the only
ones visited in this process. In particular, note how forward expansion of M.makeList
ensures early backtrack and avoids further backward expansion from M.M. Without al-
ternating forward and backward expansion, the analysis would expand backward to
callers of M.M, such as N.foo and its callers in Figure 2, which are irrelevant for the
goal.
2.2 Learning Pertinent Scopes
In Fig. 3, the function bar contains a potential null dereference if the parameter c is
null; bar is called by foo at two sites, which in turn, is called by runA and runB with
newly allocated objects. Let us denote the local parameter c of foo by cfoo, and of
bar by cbar. ALTER begins analysis by building the local error condition for bar, i.e.,

!"#$$%

!"!#

$"$#
%"%#

$"&'&(#
&'()"'(*+,)-%

&'()".//011% &'()"('23%

!")*+,-&.(#

&'()".//%

4"+.5367/(%

088.-&'()"088.-&'()%

9%

Fig. 2: Call Graph of App1.

1 class App2 {
2 void runA ()
3 {... foo(new A()); ...)
4 void runB ()
5 {... foo(new B()); ...}
6 //classes A, B extend class C
7 int foo (C c) {
8 if (*) return bar(c,1);
9 else return bar(c,2);

10 }
11 int bar (C c, int i) {
12 return c.compute(i);
13 }
14 }

Fig. 3: App2 example.

φ := (cbar = null), which is satisfiable if the parameter c gets the null value under
some call context to bar. To find such a context, ALTER performs backward search
in a depth-first manner among callers of bar. The two call sites in foo for bar are
analyzed individually; suppose the first call site foo1 at line 8 is analyzed first. ALTER
propagates φ backward, resulting in φ′ := (cfoo = null). Here, cfoo is substituted by
the actual called value, which is a heap-allocated object represented as alloc(A); so,
φ′′ = (alloc(A) = null), which is unsatisfiable. Because the current context runA→
foo1 → bar fails to find a witness, ALTER backtracks and tries the other caller runB for
foo. Again, it fails, and backtracks further to try a different call site for bar: (site foo2
at line 9). ALTER continues to try callers runA and runB again; however, no witness is
found and the search terminates.

Focused Exploration. Note, however, that exploring runA and runB for the second
call site foo2 to bar in foo is redundant because we already know from exploring the
first call site foo1 that (cfoo 6= null) for all callers to foo and hence no witness is
possible via the callers of foo. A naive exploration technique may therefore explore the
same callers redundantly without success because it does not learn from failed search
attempts. The proposed algorithm therefore incorporates learning from failed explo-
ration (Sec. 5): the learned information helps prune away the irrelevant program scope
and focus search towards relevant regions.

3 Preliminaries and Intra-procedural analysis
We refer to the program statement with the violation, e.g., a null dereference, as the goal
location. Also, the procedure having the goal location is called as the goal procedure.
We say that a procedure f in an application is an entrypoint for the application if f is a
public method. An entry point is relevant if it may call the goal procedure g transitively.
Given a set of relevant entrypoints E, our analysis tries to find a (inter-procedural)
feasible path, called witness, to the goal location from some entrypoint in E. We refer
to such a path as a global witness. In contrast, any feasible path which terminates at the
goal location but does not begin at a relevant entrypoint is said to be a local witness.

For a procedure f , the input (output) variables consist of the non-local variables
and fields read (written) by some statement in f ; the output variables also include two

special variables ret and exc denoting the returned data and exception values from
f respectively. A symbolic state s = (ψ, σ) at a location l is a tuple consisting of a
reachability predicate ψ and a map σ from scalar variables, fields and arrays to their
symbolic values (terms). The predicate ψ represents the condition under which l can be
reached via a given set of paths terminating at l. The map σ represents the symbolic
values of variables obtained under the same set of paths. Both fields and arrays are
modeled as mathematical maps from object references (integers) to their values. We do
not distinguish between fields and arrays in our presentation; we use the term fields to
refer to both. Loops are transformed to tail-recursive functions.

Local Summary for a Procedure. Classical inter-procedural program analysis [20,
19] intertwines procedure summary computation with summary composition: the (global)
summary Gf for a function f is obtained after composing f ’s local behaviors with the
summaries of all the callees of f . Such close coupling of summary computation and
composition makes it hard to selectively explore the callees for a given goal location in
f . For selective exploration, our approach decouples summary computation with com-
position: we analyze a procedure f in isolation and compute a local summary Lf for
f independent of its callers and callees (referred to as the environment of f). The local
summary Lf over-approximates the effect of both the callers and the callees of f and
has two benefits: (a) we need not re-analyze f for different call contexts, and (b) we
can utilize summaries from the environment of f to improve the precision of Lf in a
lazy, goal-driven manner, and obtain Gf in the limit. To analyze f independent of its
callees, we resort to structural abstraction [23, 1]: all outputs of each potential callee g
of f are modeled using fresh symbolic variables (Skolem constants) denoting arbitrary
values that the call to g may return. These Skolem constants (skolems, in short) over-
approximate the output values of g and hence allow us to conservatively incorporate g’s
behavior in the summary of f .

Formally, the local summary Lf consists of three components: a side effect sum-
mary, a set of call site summaries and a set of error conditions (ECs). The side effect
summary of f is a map from the outputs of f to their symbolic values in terms of inputs
of f and captures the data flow from inputs to outputs along all possible paths of f . Let
enf denote the entry location of f . For each call site fj in f , we compute a call site
summary at fj denoted by a symbolic state s = (ψ, σ), where ψ denotes the all-path
reachability condition of fj from enf and the state σ contains the symbolic values of
variables and fields obtained along each path to fj and expressed in terms of inputs
of f . Finally, for each goal location l in f , the error condition (EC) predicate φ is ob-
tained by conjoining the all-paths reachability condition from enf to l with the violation
condition, e.g., the null dereference predicate (v = null) for a variable v.

If f has no callees or all the callees are inlined into f , then all the components of Lf
are precise, i.e., Lf contains the precise symbolic values of outputs along each path and
precise reachability conditions for each error location from enf . However, if we employ
structural abstraction to decouple the callees of f , Lf becomes over-approximate. In
particular, an EC φ may now contain skolems and satisfiability of φ no longer implies
that an actual local witness to l exists. Note that φ may also contain input variables to
f and hence a local witness may not extend to any global witness. Both these sources
of imprecision in Lf are removed on-demand during the inter-procedural exploration
phase (cf. Sec. 4) for finding a global witness.

Summary Computation. We compute the summary for a function f by a forward
all-path analysis algorithm which propagates the symbolic state along all paths of f

precisely starting from enf . We use program expressions to represent symbolic states
precisely and propagate states by employing precise transformers for each statement in
f (structural abstraction is applied at each call location). To avoid path explosion as well
as maintain precision, the algorithm merges symbolic states at join nodes by guarding
the incoming symbolic value along each edge by the corresponding path condition and
representing the merged state using an if-then-else (ite) term compactly. The details of
Java statement transformers can be found in [4] and merge operation in [13, 21] and are
omitted in the interest of space. During propagation, we compute the ECs at each goal
location, the call site summaries at each call location and the side effect summary at the
exit location of f .

int p(int x){
if(x < 10)
error();

return x - 10;
}

int q(int y){
if(y > 6){
int z = t(y); (1)
int a = p(z); (2)
int b = r(y, z); (3)
return (a + b);

}
return 0;

}

int r(int u, int v){
if(u > v)
return p(u); (1)

else
return p(v); (2)

}

int s(int c){
return r(c, 10);(1)

}

int t(int d){
return d * 2;

}

Fig. 4: Program P.

q

r

t

p

s

1

2

3

1

21

Fig. 5: Call Graph of Program P

Example. Consider program P in Fig. 4. The summary for the return value of r
is ite((u > v), skp1 , sk

p
2) where u(v) is the initial value for parameter u(v) in r and

skp1(skp2) is the return value of p at call site r1(r2). The call site summary for call site r1
in r is (ψ, σ), where, ψ := (u > v) and σ := [u→ u,v→ v]. Then, the error condition
φ for the violation (function error() in p) in p is φ := (x < 10).

4 Backward, Forward and Alternating Expansions
Recall that an EC φ local to f is imprecise because it contains inputs of f and skolems
from callees of f , both of which are unconstrained. Hence even if φ is satisfiable, neither
a local nor a global witness may exist. To search for a global witness, we perform inter-
procedural analysis by expanding the scope around the goal function iteratively using a
combination of forward and backward expansion. Forward expansion replaces skolems
in φ with the actual return values of callees while backward expansion substitutes the
inputs with the actual input values for a calling context of f .

Backward. Consider an EC φ at entry of a procedure f such that the satisfiability
of φ implies a local witness to the goal location from f . To propagate back φ into
a particular caller h of f at site hk, we use the call site summary (ψ, σ) at hk. This
summary allows us to express the inputs in φ directly in terms of inputs of h without re-
analyzing h. For every input i in φ, let Val(i, hk) denote the value of i in the symbolic

state σ before the call at hk. Backward propagation is achieved by computing φ′ :=
(φ ∧ CC (hk)):

CC (hk) := (
∧
i∈inφ

(i = Val(i, hk)) ∧ ψ)

where CC (hk) consists of constraints expressing each input i in set of inputs inφ of φ,
in terms of actual symbolic values at the call site and the all-path reachability condition
ψ from entry of h to hk3. The procedure EXPANDBWD(hk → f, φ) computes CC (hk).

Forward. Suppose we want to expand a skolem sk at a call site fj in f , where sk
corresponds to an output variable, say ret, in a callee g. We first obtain the summary
expression sumret for ret from the side-effect summary of g and then substitute the
inputs in sumret with the actual values obtained from the call site summary at fj . More
precisely, the forward expansion constraint for sk is SC (sk) := SC 1(sk) ∧ SC 2(sk).
Here, SC 1(sk) contains the summary expression, i.e., SC 1(sk) := (sk = sumret).
Note that sumret depends on the set of inputs In of g and skolems Sk corresponding
to callees of g. So, we raise the inputs In to the caller by using the call site values
Val(i, fj) (defined above) from call site fj , i.e., SC 2(sk) :=

∧
i∈In(i = Val(i, fj)).

In sumret, we also replace each sk ∈ Sk by a fresh value sk′ using a contextualization
scheme which records the fact that sk′ corresponds to the call from fj to g. The scheme
is discussed in Appendix. Note that sk′ may be expanded forward in a similar way as sk.
Let the procedure EXPANDFWD(f, φ) compute the skolem constraints SC (recursively,
if required) for the set of skolems Sk′ in φ, i.e., SC :=

∧
sk∈Sk′ SC (sk).

Example. In Fig. 4, the initial EC in p is φ1 := (x < 10). Suppose, we need
to propagate EC φ1 back to caller q at call site q2. We start by computing CC (q2) :=
(y > 6∧x = skt) where skt is skolem for call to t at site q1. On backward propagation
and simplification, EC becomes φ2 := (φ1 ∧CC (q2)) ≡ (skt < 10∧ y > 6). Now, we
expand forward the skolem skt in φ2 using SC := (skt = d ∗ 2) ∧ (d = y). Finally,
the EC is φ3 := φ2 ∧ SC ≡ (y ∗ 2 < 10 ∧ y > 6), which is unsatisfiable.

In practice, instead of conjoining constraints, we substitute the actual values for
inputs and summaries for skolems in the error condition φ. This assists simplification
before invoking a constraint solver to check for satisfiability of φ. Note that iterative for-
ward or backward expansion may not terminate due to recursive function calls. There-
fore, we impose fixed bounds to terminate expansion under recursion. Similarly, we
cannot expand a skolem (expand backward) if the source code of the corresponding
callee (caller) is not available to the analyzer.
4.1 Alternating Expansion
Alg. 1 describes the alternating expansion algorithm. The main procedure ALTER takes
the goal function g and an EC φ from summary of g as input and performs a back-
tracking based search over the program call graph. In a particular iteration with EC φ
local to function f , ALTER proceeds as follows. First, ALTER expands the skolems in φ
using EXPANDFWD to obtain the corresponding summary constraints SC . If φ∧ SC is
satisfiable, ALTER expands all the callers of f (CALLERS(f)) using EXPANDBWD in a
depth-first manner iteratively. Given a caller h with call site hk, EXPANDBWD returns
the call context constraints CC(hk) for hk, which express the inputs of f in terms of
inputs of h. ALTER then recursively proceeds to analyze h with the new error condi-

3 Similar to [4], we also add constraints for handling virtual calls; described in Appendix

tion φ′ := (φ ∧ SC ∧ CC(hk)) obtained by conjoining both forward and backward
expansion constraints with the previous φ.

If the EC φ at any moment during alternating expansion is infeasible (UNSAT), it
indicates an exploration failure, i.e., no further backward/forward search will yield a
global witness. In this case, ALTER backtracks to the previous callee c on the recursion
stack and pursues the next caller of c for backward expansion. Backtracking may occur
on obtaining infeasibility after either (a) forward expansion (on conjoining with SC) or
(b) backward expansion (on conjoining with CC(hk)). As we will see in Sec. 5, ALTER
learns facts responsible for the current failure and uses them to avoid similar failures
during future exploration.

ALTER may terminate with either (a) witness (WIT) or (b) no witness (NOWIT)
or (c) an inconclusive (UNKNOWN) result. During backward exploration, if ALTER en-
counters an entrypoint procedure (ENTRYPOINT(f)) and the current φ is feasible, then a
potential witness exists. If φ is skolem-free, ALTER concludes that a witness exists and
returns the corresponding call context. Otherwise, φ may still contain skolems which
cannot be expanded further, e.g., due to recursion bounds. Consequently, there may ex-
ist skipped callees which affect the feasibility of φ, thus making the witness spurious.
In this case, ALTER returns an UNKNOWN value. Finally, if ALTER finishes exploring
all callers without finding an actual witness or an UNKNOWN result, then ALTER con-
cludes that no witness to the goal location exists. Note that obtaining an UNKNOWN
value for some call context does not imply that the search is inconclusive; ALTER may
go on to find an actual witness along a different call context. However, ALTER cannot
infer no-witness if an UNKNOWN value is obtained for some context during exploration.

ALTER(f , φ)
if φ is UNSAT then

return NOWIT
/* Forward Expansion */
SC := EXPANDFWD(f , φ)
if (φ ∧ SC) is UNSAT then

return NOWIT

if ENTRYPOINT(f) then
if (φ ∧ SC) has no skolems then

return (WIT, nil)
else

return UNKNOWN

inconcl := false
foreach hk ∈ CALLERS(f) do

/* Backward Expansion */
CC(hk) := EXPANDBWD(hk → f , φ ∧ SC)
ans := ALTER(h, φ ∧ SC ∧ CC(hk))
if ans = (WIT, l) then

return (WIT, [hk, l])

if ans = UNKNOWN then
inconcl := true

if inconcl then
return UNKNOWN

return NOWIT

Algorithm 1: Alternating Expansion Algorithm for Bug Detection

Example. Let us see how ALTER analyzes the program App1 in Fig. 1. The goal
function is A.init, where a potential null dereference may occur at line 11 because the
class A’s local field this.srcs (non-null) is shadowed by the local parameter variable
srcs. A.init has two callers: T.T and A.A where A.A is, in turn, called by M.M.

1. First ALTER computes a local EC φ for A.init. This φ := φ1 ∧ φ2 where φ1 :=
((srcsA.init 6= null) ∧ (this.srcs 6= null)) ∨ (srcsA.init = null) and φ2 :=
(srcsA.init = null) and srcsA.init refers to the value of parameter srcs of A.init.

On simplifying φ1 with φ2, we get φ := (srcsA.init = null). Because φ does not
contain any skolems, ALTER proceeds with backward expansion along some caller,
say T.T.

2. ALTER computes the local summary for T.T and employs the call site component,
(ψ, σ) for backward expansion, where the reachability condition ψ := (srcsT.T 6=
null ∧ ¬skie) and value map σ = (srcs→ srcsT.T), where srcsT.T refers to the
value of parameter srcs in T.T and skie corresponds to return value of isEmpty
function. In ψ, (srcsT.T 6= null) appears because otherwise the previous call to
isEmptywill throw an exception. After expansion, we obtain φ := (ψ∧(srcsT.T =
null)), which simplifies to false, implying search failure along T.T. ALTER now
backtracks to try the next caller A.A for A.init.

3. For A.A, the call site summary is (true, σ′) where σ′ := (srcs → srcsA.A, b
→ bA.A). On propagation, φ := (srcsA.A = null), which remains satisfiable. So,
ALTER expands further backwards along caller M.M.

4. The call site summary for M.M is (true, σ′′) where σ′′ := (srcs → skml, b →
skmb) where skml and skmb denote the skolems corresponding to the return values
of calls to makeList and makeBounds. Now, φ := (skml = null), which leads
ALTER to perform forward expansion to compute the return value of makeList.

5. The side-effect summary for makeList is computed next: the summary value for
the returned variable (SC 1) is retml := alloc(ArrayList, 2). Because skml =
retml, we get φ := (alloc(ArrayList, 2) = null) which again simplifies to false.

Thus, ALTER is able to show the absence of null dereference in A.init by a com-
bination of backward and forward expansion starting from the goal location in A.init.
Note how it avoids exploration of irrelevant program regions which are in the nearby
scope, i.e., functions makeBounds in M.M, addAll in A.init, isEmpty in T.T, add in
M.makeList and other callers of M.M and T.T. Also, note how forward expansion of
M.makeList ensures early backtrack and avoids further backward expansion from M.M.
The following theorem proves the correctness of ALTER.

Theorem 1. Given a goal location l, (a) if ALTER returns a witness (WIT) result then
there must exist a global witness for l, and (b) if ALTER returns no-witness (NOWIT)
then no global witness exists.4

5 Learning for Efficient Expansion
Naı̈ve alternating expansion (Sec. 4.1) may perform redundant analysis by revisiting
the same callers and callees and fail repeatedly. We now present an improved AL-
TER algorithm for efficient exploration based on learning caller and callee invariants
and employing them to prune future search. The caller invariant Ω(f) for a proce-
dure f over-approximates the incoming data values from the callers of f , while the
callee invariant Θ(f) over-approximates the return values (side-effects, in general) of
the callees in f . Both these invariants are learned from expansion failures, i.e., when the
constraints added due to an expansion lead to infeasibility of the error condition. Alg. 2
shows the ALTER algorithm combined with failure-driven learning of caller and callee
invariants.

ALTER initializesΩ(f) andΘ(f) for all procedures f to true and strengthens them
during exploration iteratively. The caller invariant Ω(f) is computed as disjunction of

4 .

INITIALLY,
∀(hk → f), ω(hk → f) := true
∀f , Ω(f) := true, Θ(f) := true

ALWAYS,
Ω(f) :=

∨
(ω(hk → f) | hk ∈ CALLERS(f))

LEARNω(hk → f , a, b)
begin

I := INTERPOLANT (a, b)
ω(hk → f) := ω(hk → f) ∧ I

LEARNΘ(f , a, b)
begin

I := INTERPOLANT (a, b)
Θ(f) := Θ(f) ∧ I

ALTER(f , φ)
[S] if φ is UNSAT then

return (NOWIT, true)

[C1] if φ ∧Θ(f) ∧Ω(f) is UNSAT then
return (NOWIT, Θ(f) ∧Ω(f))

/* Forward Expansion */
SC := EXPANDFWD(f , φ)

[F1] if φ ∧ SC ∧Ω(f) is UNSAT goto [L1]
if ENTRYPOINT(f) then

if (φ ∧ SC) has no skolems then
return (WIT, nil)

else
return UNKNOWN

inconcl := false
foreach hk ∈ CALLERS(f) do

[C2] if φ ∧ SC ∧ ω(hk → f) = UNSAT then
continue

/* Backward Expansion */
CC(hk) := EXPANDBWD(hk → f , φ ∧ SC)
ans := ALTER(h, φ ∧ SC ∧ CC(hk))

if ans = (WIT, l) then
return (WIT, [hk, l])

if ans = UNKNOWN then
inconcl := true

[F2] if ans = (NOWIT, Invh) then
[L2] LEARNω(hk → f ,CC(hk)∧Invh,
φ ∧ SC)

if inconcl then
return UNKNOWN

[L1] LEARNΘ(f , SC , φ ∧Ω(f))
[E] return (NOWIT, Θ(f) ∧Ω(f))

Algorithm 2: ALTER with learning caller Ω and callee Θ invariants.

call edge invariants (ω) which label each incoming call edge to f . When backward
expansion from f to a caller h at a call site hk fails, i.e., ans = (NOWIT, Invh) at
location F2 in Alg. 2, then ALTER learns a call edge invariant ω (L2) along the edge
hk → f using the procedure LEARNω. To this end, it splits the EC into caller- and
callee-specific parts,A andB respectively, whereA∧B is infeasible. The caller-specific
part, A consists of call context constraints CC(hk) and invariants Invh of h (usually,
Ω(h) ∧ Θ(h)) which cause infeasibility. The callee-specific part, B consists of the
original φ in f together with forward constraints SC . Note that A and B only share
the input variables of f . LEARNω now computes an interpolant I of A and B over
the common variables of A and B such that A ⇒ I and I ∧ B is infeasible. I.e.,
I is an expression over input variables of f such that it over-approximates the caller
constraints and is still infeasible with the error condition in f . LEARNω now strengthens
ω(hk → f) with I by conjoining I with the previous value of ω(hk → f). Then,
ALTER backtracks and explores a different caller of f . Note that Ω(f) is updated when
any of the call edge invariants change.

Similarly, ALTER computes (and updates) the callee invariant for f using LEARNΘ
when forward expansion of φ from f fails (F1). In this case, the constraints are parti-
tioned (L1) again into callee-specific (SC) and caller-specific (φ ∧Ω(f)) parts, and an
interpolant I of the two formulae is computed which over-approximates SC . The callee
invariant Θ(f) is then strengthened by conjoining it with the new invariant I .

Note how both Ω and Θ are employed during exploration. Before forward expan-
sion at location C1, ALTER first checks the current φ against the conjunction of both
the invariants of f . Note that the invariants over-approximate the values from callers
and callees of f . Hence, if the check with invariants is infeasible, no witness is possible
on further expansion, and ALTER backtracks with NOWIT. Similarly, before backward
expansion along hk → f at location C2, ALTER checks φ against call edge invariants
ω(hk → f), and backtracks if the check is infeasible. Lemma 1 and Theorem 2 prove
the correctness of caller/callee invariants computed by Alg. 2.

Lemma 1. The following invariants hold in Alg. 2. (a) (Ω(h) ∧ Θ(h)) ⇒ Invh (b)
(CC(hk) ∧ Invh ∧ φ ∧ SC) is unsatisfiable at L2, SC ∧ φ ∧ Ω(f) is unsatisfiable at
L1. (c) (Ω(h) ∧Θ(h) ∧ CC(hk))⇒ ω(hk → f)

Theorem 2. Given a procedure f , (a) the caller invariant Ω(f) over-approximates the
incoming data values from all the callers of f and (b) the callee invariant Θ(f) over-
approximates the side-effects of the callees of f .

Proofs of Non-Violation. If the analysis returns NOWIT, then the set of caller and
callee invariants constitute a proof for absence of violation in the goal function g. In
other words, we can conclude that null dereference is not possible at the goal location
by using the callerΩ(g) and calleeΘ(g) invariants for g. These invariants are obtained,
in turn, from the invariants of other functions in the scope of the analysis. The undecid-
ability of program analysis implies we cannot always obtain such a proof; however, in
practice, we obtain proofs for absence of null dereference in several of our benchmarks.
Note that the learned facts can be reused to improve search when checking multiple
goals in the same application (cf. Sec. 6). Further, they are useful for re-validation
across upgrades of an application; we leave investigating the usefulness of learned facts
during incremental verification to a future work.
5.1 Examples illustrating the Learning Algorithm
Example 1. Consider the program and its call graph in Fig. 4. Suppose the functions q
and s are the entry points and the call to error() in p is a null dereference. Fig. 6 shows
the ECs and invariants computed by ALTER on this program, starting with true for all
caller and callee invariants. The initial EC is φ0 := (x < 10) in p.
1. ALTER first propagates φ0 to caller q at site q2 to get φ1 (cf. Fig. 6(a)). Then, it
expands forward skt in φ1 to obtain φ2, which is infeasible. ALTER learns the callee
invariantΘ(q) from this failure (location [L1] in Algo. 2): it splits φ2 intoA := SC q ≡
(skt = y ∗ 2) and B := φ1 ∧ Ω(q) ≡ (y > 6 ∧ skt < 10) ∧ (true) and computes
interpolant Θ0 = (skt ≥ y ∗ 2) (cf. Fig. 6 (b)). Then, it updates Θ(q) := Θ0 and
backtracks to p.
2. In p, ALTER now continues to learn a call edge invariant ω(q2 → p) ([L2] in Alg. 2)
based on the previous failure. It partitions φ2 into A := Ω(q) ∧ Θ(q) ∧ CC (q2) ≡
(true) ∧ (skt ≥ y ∗ 2) ∧ (y > 6 ∧ x = skt) and B := φ0, computes interpolant
ω1 := (x ≥ 14) and updates ω(q2 → p) := ω1 (Fig. 6 (b)). Now, ALTER propagates
φ0 back to next caller r of p at call site r1 as φ3 and then to s at s1 as φ4. Here, φ4 is
infeasible. Thus, ALTER backtracks to r and learns ω(s1 → r) = (v ≥ 10).
3. Now, it propagates φ3 to q from r and obtains φ5 which is satisfiable. However,
when φ5 is conjoined with Θ(q), it becomes infeasible [C1]. Therefore, ALTER uses
Θ(q) learned from previous failure in q to backtrack to r and avoid multiple forward

φ0 INITIAL EC (x < 10) SAT
φ1 EXPANDBWD(φ0, q2) (y > 6 ∧ skt < 10) SAT
φ2 EXPANDFWD(φ1, q) (y > 6 ∧ y ∗ 2 < 10) UNSAT Θ0, ω1

φ3 EXPANDBWD(φ0, r1) (u < 10 ∧ u > v) SAT
φ4 EXPANDBWD(φ3, s1) (c < 10 ∧ c > 10) UNSAT ω2

φ5 EXPANDBWD(φ3, q3) (y > 6 ∧ y < 10 ∧ y > skt) SAT
φ6 CHK(φ5, Θ(q)) (y > 6 ∧ y < 10 ∧ y > skt) ∧ (skt ≥ y ∗ 2) UNSAT ω3, ω4

φ7 EXPANDBWD(φ0, r2) (v < 10 ∧ u ≤ v) SAT
φ8 CHK(φ7, Ω(r)) (v < 10 ∧ u ≤ v) ∧ (u ≤ v − 7 ∨ v ≥ 10) SAT
φ9 CHK(φ7, ω(s1 → r)) (v < 10 ∧ u ≤ v) ∧ (v ≥ 10) UNSAT -
φ10 CHK(φ7, ω(q3 → r)) (v < 10 ∧ u ≤ v) ∧ (u ≤ v − 7) SAT
φ11 EXPANDBWD(φ7, q3) (y > 6 ∧ skt < 10 ∧ y ≤ skt) SAT
φ12 CHK(φ11, Θ(q)) (y > 6 ∧ skt < 10 ∧ y ≤ skt) ∧ (skt ≥ y ∗ 2) UNSAT ω5, ω6

(a)

INV A B INTERPOLANT

Θ0 Θ(q) (skt = y ∗ 2) (y > 6 ∧ skt < 10) skt ≥ y ∗ 2
ω1 ω(q2 → p) (skt ≥ y ∗ 2) ∧ (y > 6 ∧ x = skt) (x < 10) x ≥ 14
ω2 ω(s1 → r) (u = c ∧ v = 10) (u < 10 ∧ u > v) v ≥ 10
ω3 ω(q3 → r) (skt ≥ y ∗ 2) ∧ (y > 6 ∧ u = y ∧ v = skt) (u < 10 ∧ u > v) u ≤ v − 7
ω4 ω(r1 → p) (u ≤ v − 7 ∨ v ≥ 10) ∧ (u > v ∧ x = u) (x < 10) x ≥ 11
ω5 ω(q3 → r) (skt ≥ y ∗ 2) ∧ (y > 6 ∧ u = y ∧ v = skt) (v < 10 ∧ u ≤ v) v ≥ 14
ω6 ω(r2 → p) ((u ≤ v − 7 ∧ v ≥ 14) ∨ (v ≥ 10)) ∧ (u ≤ v ∧ x = v) (x < 10) x ≥ 10

(b)

Fig. 6: Illustration of the Learning Algorithm for Program P in Fig. 4
expansions of t in q. On backtracking, it learns ω(q3 → r) := (u ≤ v−7) and updates
Ω(r) := ω2 ∨ ω3 ≡ (u ≤ v − 7) ∨ (v ≥ 10).
4. As ALTER failed on all callers of r, it backtracks to p and learns ω(r1 → p) :=
ω4 ≡ (x ≥ 11). ALTER now tries the next caller r2 of p to obtain φ7, which is feasible.
Next, all callers of r are tried: ALTER first checks φ7 against current call edge invariant
value ω(s1 → r), which is infeasible; it next tries ω(q3 → r), which is feasible. So,
φ7 propagates back to q as φ11. In q, however, φ11 becomes unsatisfiable with Θ(q),
forcing backtrack to r while updating ω(q3 → r) := ω3 ∧ ω5 and Ω(r) := ω2 ∨ (ω3 ∧
ω5). Because all callers of r are explored, ALTER further backtracks to pwhile updating
ω(r2 → p) := ω6. Finally, no feasible paths to error in p exist; ALTER returns NOWIT.

Example 2. Recall the example in Fig. 3 where ALTER redundantly explores callers
runA and runB multiple times. Learning solves this problem: after failing with context
runA→ foo1 → bar, ALTER labels edge runA→ foo with predicate ω1 = (cfoo 6=
null). Similarly, edge runB → foo is labeled with ω1. Because both callers of foo
have been explored, ALTER now computes a call invariant Ω1 = (cfoo 6= null) for
foo by disjoining the incoming edge invariants. This invariant helps to prune back-
ward search in the second iteration: the EC (cfoo = null) for context foo2 → bar is
unsatisfiable immediately on conjoining with Ω1. Hence, ALTER avoids the redundant
exploration of runA and runB for the second call to bar.

6 Evaluation
We implemented the ALTER algorithm using the WALA framework for analyzing Java
programs and applied it to validate the null dereference warnings produced by Find-
Bugs [10], in a manner similar to the earlier Snugglebug work [4], where these bench-
marks were validated using weakest precondition computation. We considered three
open-source Java benchmarks, apache-ant(v1.7), batik(v1.6) and tomcat(v6.0.16), hav-
ing LoC 88k, 157k and 163k, respectively.

Our analysis finds global witnesses with respect to a set of given entrypoints; we
initialized the set of entrypoints to all public methods without any callers. Procedure
summarization is done on-demand during forward/backward expansion. We used the
CVC3 solver [2] to check the satisfiability of ECs and the MathSAT5 solver [7] to
compute interpolants. A coarse mod-ref analysis is performed on the call graph in the
beginning to compute side-effects. Extensive formula simplification is performed in
ALTER using a pre-defined set of rewrite rules [4]. Forward expansion involves recur-
sive expansion of skolems as the predominant strategy, with feedback driven expansion
for virtual call skolems [4] (cf. Appendix). We also tried lazy expansion strategies [1];
however, recursive forward expansion outperforms lazy expansion in most cases.

We designed a set of experiments: First, we compare ALTER with a non-alternating
version NOALT which performs forward expansion only after backward expansion ter-
minates at an entrypoint. Next, we evaluate the impact of learning. Finally, since we
consider Snugglebug (SB) to be an ancestor of ALTER (they do share significant amount
of code), we also compare the end-to-end performance of ALTER with SB.

Fig. 7 shows the ALTER results on a set of dereference checks for above benchmarks
(each check corresponds to a single warning reported by FindBugs). All the benchmarks
contain a combination of witness and no-witness instances. 5 We show only the actual
analysis run times; the initial call graph and mod-ref computation times are excluded.
The results also show the number of functions summarized by ALTER and the maximum
error depth for the checks: the alternating expansion by ALTER succeeds in finding a
witness or showing its absence by analyzing a small set of functions around the goal.

ALTER outperforms NOALT on most benchmarks: although NOALT performs sim-
ilar to ALTER for bugs where entrypoints are closer to the goal function, it times-out
on deeper goal functions. For example, NOALT performs poorly on tomcat14 because
it redundantly explores a much longer call context that does not lead to an error, and
wastes resources performing many redundant forward expansions. In contrast, ALTER
finds a call context of depth 6 that leads to a witness. This shows the advantage of al-
ternating expansion clearly: expanding forward before backward avoids exploring long
redundant contexts and helps obtain smaller scopes on our benchmarks.

Fig. 8 shows the impact of learning on alternating expansion, both in terms of the
run-time and the edges explored during backward expansion: our experiments primarily
focused on learning and reusing caller invariants. Instead of analyzing a single goal, we
collect multiple null dereferences from the goal function and analyze them in sequence.
This allows the successive runs to take advantage of previously learned invariants. The
results show that learning invariants indeed reduces the number of call graph edges re-
explored (Edge(L) vs Edge(NL)) by reusing invariants learned earlier. In some cases,
e.g., tomcat10, the number of edges explored reduces by almost two-thirds. In con-
trast, the run-time benefits depend on how effectively the invariants are reused: if there
is plenty of reuse, the ALTER run-time is lower. However, if the overhead of computing
invariants is much larger than the reduction due to reuse, ALTER is slower with learn-
ing. For example, although ALTER explores much fewer edges in tomcat10, the time
taken for interpolant generation is also large (3.203 seconds), which annulls the benefits
of learning. However, in such cases, learning provides proofs (at a small cost) which we
believe amounts to long term benefits, e.g. during regression testing across upgrades.

5 The table excludes Snugglebug benchmarks on which either ALTER reported inconclusive (due
to recursion), did not finish or the run times of both the tools were very small.

Benchmark WIT? T(SB) #FS(SB) T(NOALT) MaxD(NOALT) #FS(NOALT) T(ALTER) MaxD(ALTER) #FS(ALTER)
ant3 Y >300 >154 0.6 0 1 0.6 0 1
ant4 N 4.17 102 1.9 1 2 1.21 1 2
ant5 N 2.7 66 0.8 0 1 0.87 0 1

batik2 Y 7.6 33 1.0 2 4 0.9 2 4
batik5 Y 11.5 25 18.3 23 91 5.1 9 26
batik7 N 3.5 37 > 300 > 38 > 100 1.3 3 6
batik8 N 4.5 30 2.4 1 3 2.5 1 3
batik9 Y 48.7 89 6.79 3 21 5.6 2 14
batik10 Y 3.8 88 1.7 2 4 1.8 2 4
tomcat9 N 114 26 > 300 > 16 > 74 2.8 0 7

tomcat10 Y 4.9 26 4.1 4 17 3.7 4 17
tomcat11 Y 19.64 7 0.8 0 3 0.86 0 3
tomcat12 N > 300 >50 0.94 1 2 0.9 0 2
tomcat14 Y 6.1 26 > 300 > 17 > 55 1.778 6 7

Fig. 7: Comparison of Snugglebug (SB), NOALT and ALTER on Java benchmarks. WIT? = wit-
ness or not. All times in seconds. MaxD denotes the length of longest call context to the goal
function during exploration, #FS denotes the total number of functions summarized during each
analysis.

Benchmark #Goals Time(NL) Time(L) Time(Itp) Edge(NL) Edge(L) LrnReUse LrnEdge LrnUpdts
ant3 9 4.013 3.996 0 8 8 0 3 3
ant4 6 1.377 1.527 0.214 3 3 0 2 3
ant5 7 1.302 1.36 0 0 0 0 0 0

batik2 20 1.349 1.589 0.183 4 4 0 1 2
batik7 23 9.319 9.529 0.546 50 41 9 6 7
batik8 24 9.113 9.179 0.461 9 9 0 2 3
batik9 32 8.508 9.879 0.931 31 31 0 8 8

batik10 20 2.558 2.45 0.306 13 9 2 2 3
tomcat9 54 24.511 26.736 0.209 68 68 0 2 2

tomcat10 33 9.193 10.542 3.203 105 39 3 23 23
tomcat11 16 2.519 2.573 0 0 0 0 0 0
tomcat12 18 4.771 4.949 0 16 16 0 0 0
tomcat14 4 2.24 1.934 0.23 17 9 4 4 4

Fig. 8: Evaluation of learning in ALTER on Java benchmarks. Time : Time for analysis. L-
learning, NL-No learning, Itp : Interpolant generation during learning. Edge : Number of edges
explored in callgraph. LrnReUse : Number of times previous learning helped in backtracking.
LrnEdges : Number of edges with learning. LrnUpdt : Total number of learning updates. batik5
(multiple goals) does not finish because of bugs in our tool.

We believe the results will improve further by employing a single solver for both check-
ing infeasibility and interpolant generation (we used two solvers because we wanted to
reuse our existing stable interface to CVC3) and compute interpolants in-memory.

Finally, Fig 7 also shows that ALTER consistently finishes faster than SB. In partic-
ular, on ant3 and tomcat12, ALTER finishes quickly while Snugglebug times out (5
minutes). ALTER and SB are architecturally very different and it is difficult to narrow
down the cause for the large performance difference to a single factor. One factor is that
ALTER computes and reuses local summaries as opposed to SB which may re-analyze
procedures for different call contexts. Another factor is that intraprocedurally, ALTER
merges symbolic states at join points, whereas SB does not, due to which it needs to
propagate a large number of different formulae through a control-flow graph. Finally,
SB does not implement alternating scope expansion or learning.

7 Related Work
Loginov et. al. [16] present a closely-related analysis that expands the scope around the
goal function in a breadth-first fashion, iteratively analyzing larger scopes until it finds a
witness. Breadth-first expansion was also used in the work of Ma et al. [17], which com-

bines forward and backward exploration for testing. In some cases, a strict breadth-first
strategy may lead to excessive analysis of irrelevant code, e.g., when the goal function
has many callees irrelevant to the property. ALTER uses a more sophisticated alternat-
ing search strategy to avoid analyzing such irrelevant code. The probabilistic analysis
of Gulwani and Jojic also combines forward and backward exploration [8], but their
work does not focus on handling of procedure calls in large programs.

Scope-bounded analysis in DC2 [11] bounds the program scope and computes en-
vironment (caller) constraints and (callee) function stubs for the procedures outside the
scope using a light-weight whole program analysis. However, scope bounding is per-
formed manually, without automatic scope expansion. ALTER could also be extended
to exploit separately-computed caller and callee invariants. Snugglebug (SB) [4] tries
to detect bugs by performing backward weakest precondition computation on the inter-
procedural control flow graph. Unlike ALTER, SB may re-analyze functions for differ-
ent postconditions, and it does not learn facts from failed backward propagation.

Structural abstraction techniques [1, 23, 22] focus on heuristics for lazy forward ex-
pansion. CORRAL [15] performs efficient forward expansion in a stratified manner (a
variant of structural abstraction/refinement) together with selective variable abstraction.
CORRAL also uses separately-computed invariants to improve search. Unlike ALTER,
these techniques have no backward expansion, helpful for deep goal functions, and no
automated invariant learning to avoid redundant re-analysis.

Our learning technique is influenced by the DPLL paradigm, in general, and by lazy
annotation [18], in particular. The latter learns program annotations from failed explo-
rations during path-enumeration-based analysis but starts from the main routine, which
may make it hard to locate bugs in deep callees. Also, it performs basic block-level
expansion and fine-grained learning at the intra-procedural level, which may aggra-
vate path explosion when finding long inter-procedural witnesses. In contrast, ALTER
employs local procedure summaries, which avoid re-analysis of procedures as well as
both intra- and inter-procedural path explosion. By expanding a whole procedure in one
step and learning constraints at procedure interfaces, ALTER is able to focus on inter-
procedural exploration without being distracted by repeated intra-procedural analysis.

The SMASH tool [5] employs a combination of may and must summaries obtained
from predicate abstraction and directed symbolic execution, respectively, to avoid re-
dundant re-analysis. Both these summaries are approximations (over- and under-, re-
spectively) of callee side-effects and are useful for forward expansion. Here, we pro-
pose to compute caller invariants to improve backward expansion besides employing
callee invariants for forward search. Call invariants proposed by Lahiri and Qadeer [14]
may be seen as a restricted form of callee invariants which capture the memory footprint
unchanged by a procedure.

More broadly, many recent systems for verification and bug detection have been
based on predicate abstraction (e.g., BLAST [9] and CPACHECKER [3]). Predicate-
abstraction approaches suffer from expensive predicate image computation and, typi-
cally, cannot recover from irrelevant refinements. In contrast, ALTER performs a sort of
lazy annotation [18] at procedure boundaries, which is able to generalize from invari-
ants specific to a particular call context. Also, while predicate abstraction has worked
well on certain kinds of programs (e.g. programs arising from the device-driver do-
main), it has not been shown to work well on general object-oriented programs. A key
challenge with OO programs is heavy use of heap structures, which makes the predicate
space that can adequately abstract a program difficult to identify.

8 Conclusions
We proposed a new scalable method to detect inter-procedural bugs using a focused,
alternating backward and forward expansion strategy, starting from the goal function.
The method iteratively explores the call contexts of the goal function and the callees
thereof in an alternating manner, backtracks from infeasible contexts, and learns caller/-
callee invariants from failed explorations to prune future search. We demonstrated the
effectiveness of our method on large open-source Java programs in terms of faster run
times and lesser analysis scopes. In future, we will investigate better forward expansion
strategies and improve reuse and management of learned facts.

References
1. D. Babic and A. J. Hu. Structural abstraction of software verification conditions. In CAV,

pages 366–378, 2007.
2. C. Barrett and C. Tinelli. CVC3. In CAV, 2007.
3. D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software verification.

In CAV, 2011.
4. S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: a powerful approach to weakest

preconditions. In PLDI, pages 363–374, 2009.
5. P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Compositional may-must program

analysis: unleashing the power of alternation. In POPL, pages 43–56, 2010.
6. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random testing.

In PLDI, pages 213–223, 2005.
7. Alberto Griggio. A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic.

JSAT, 8:1–27, January 2012.
8. S. Gulwani and N. Jojic. Program verification as probabilistic inference. In POPL, 2007.
9. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL 2002.

10. D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA Companion, 2004.
11. F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda, H. Tokuoka,

T. Imoto, and Y. Miyazaki. DC2: A framework for scalable, scope-bounded software verifi-
cation. In ASE, pages 133–142, 2011.

12. Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized symbolic execution
for model checking and testing. In TACAS, pages 553–568, 2003.

13. A. Kölbl and C. Pixley. Constructing efficient formal models from high-level descriptions
using symbolic simulation. IJPP, 33(6):645–666, 2005.

14. S. K. Lahiri and S. Qadeer. Call invariants. In NASA Formal Methods, pages 237–251, 2011.
15. A. Lal, S. Qadeer, and S. Lahiri. Corral: A solver for reachability modulo theories. In CAV,

2012.
16. A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and M. G. Nanda. Verifying deref-

erence safety via expanding-scope analysis. In ISSTA, pages 213–224, 2008.
17. K.-K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks. Directed symbolic execution. In SAS,

2011.
18. Kenneth L. McMillan. Lazy annotation for program testing and verification. In CAV, 2010.
19. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In POPL, pages 49–61, NY, USA, 1995. ACM.
20. M. Sharir and A. Pnueli. Two approaches to interprocedureal data flow analysis. In Program

Flow Analysis: Theory and Applications, volume 5, pages 189–234. Prentice Hall, 1981.
21. N. Sinha. Symbolic program analysis using term rewriting, generalization. In FMCAD,

2008.
22. N. Sinha. Modular bug detection with inertial refinement. In FMCAD, 2010.
23. M. Taghdiri and D. Jackson. Inferring specifications to detect errors in code. Autom. Softw.

Eng., 14(1):87–121, 2007.

Appendix
9 Contextualization
Contextualization. Note that during alternating expansion, the value of both inputs and
skolems may be different based on the particular call context they correspond to. For
example, in Fig. 3, skolem sk1 representing the return value of bar may assume differ-
ent values depending on whether the caller is runA or runB. To succinctly capture this
dependence, we contextualize both inputs and skolems by representing them as uninter-
preted functions (UFs) from call context to (symbolic) values. Intuitively, this creates
skolem clones for different call contexts, which expand to different summary values
depending on the context. We model a call context symbolically as a tuple 〈func, l〉
where func represents the last called function and l is a list of call sites. For example,
the above skolem is contextualized as ŝk1(〈foo, cf 〉) where cf is a variable of list type
denoting the call context of foo. For an input or skolem isk and context c = 〈func, l〉,
let îsk(c) denote the contextualized version of isk. Before we start expanding a local
EC φ we replace the inputs and skolems by their contextualized versions; all the local
summaries are also contextualized appropriately. The backward and forward expansion
with contextualization are as follows.
Backward. Given an EC φ(inf , 〈f, cf 〉) local to f , where inf represents the inputs of
f and cf denotes the call context of f , the formula obtained after backward propagation
into caller h at hk is φ′ := φ(inf , 〈f, cf 〉) ∧ CC (hk) where

CC (hk) := (Ty(hk)∧ψ(hk)∧cf = [hk, ch]
∧
i∈inf

î(〈f, [hk, ch]〉) = ̂Val(i, hk)(〈h, ch〉))

Here, ch is the context variable for h.
Forward. To expand a skolem sk at a call site fj in f , where sk corresponds to side-
effect ret in a callee g. The expansion constraint for sk is SC := SC 1 ∧ SC 2. Here,
SC 1 contains the summary expressions contextualized by the callee’s context.

SC 1 := (sk(〈f, cf 〉) = ŝumret(〈g, [fj , cf]〉))

The expression sumret depends on inputs ing and skolems skg in g. So, we raise the
inputs ing to the caller by using the call context values from call site fj , i.e.,

SC 2 :=
∧
i∈ing

(̂i(〈g, (fj , cf)〉)) = ̂V al(i, fj)(〈f, cf 〉))

Because skg are contextualized by cf initially, SC 1 ensures that now skg are contextu-
alized by [fj , cf].

We illustrate contextualization using the same example presented in Sec. 4.
Example. In Fig. 4, the initial EC in p is φ0 := (x < 10). After contextualization,

EC is φ1 := φ̂(〈p, cp〉) = (x̂(〈p, cp〉) < 10). Suppose, we propagate EC φ1 to caller q
at call site q2.

CC (q2) := (ŷ(〈q, cq〉) > 6)
∧
(cp = [q2, cq])

∧
(x̂(〈p, [q2, cq]〉) = ŝkt(〈q, cq〉)

skt is skolem for call to t in q. On backward propagation and simplification, EC be-
comes

φ2 := (φ1 ∧ CC (q2)) ≡ (ŝkt(〈q, cq〉) < 10
∧
ŷ(〈q, cq〉) > 6)

Now, we expand the skolems {skt} in EC φ2.
SC := (ŝkt(〈q, cq〉) = d̂(〈t, [q1, cq]〉) ∗ 2)

∧
(d̂(〈t, [q1, cq]〉) = ŷ(〈q, cq〉))

On forward expansion of skolems, new EC is
φ3 := φ2 ∧ SC ≡ (ŷ(〈q, cq〉) ∗ 2 < 10

∧
ŷ(〈q, cq〉) > 6)

10 Forward Expansion Heuristics
ALTER also employs the following heuristics for efficient forward expansion.
Recursive Skolem Expansion. Repeated forward expansion of skolems in a lazy man-
ner [1] is costly in most cases because the input variables in summary constraints from
deep skolems need to be lifted up independently through different call contexts mul-
tiple times without being merged. This is inefficient, in particular, with call contexts
which share common prefixes. In contrast, bottom-up summary composition can merge
different summary constraints at join points in the call graph, during backward propaga-
tion. To simulate bottom-up composition by forward expansion, we recursively expand
the skolem before lifting the inputs up, i.e., if the summary constraints sum(sk) for a
skolem sk contains other skolems S, then S is expanded before the inputs in sum(sk)
are lifted to the current function. Once we obtain the constraints for S, we substitute
them in sum(sk) and then lift the inputs up. Thus, deeper skolem summaries are lifted
up only once during expansion. Note that as opposed to conventional bottom-up com-
position of summaries, recursive skolem expansion is goal-directed and restricted only
to the callees of the actual call contexts explored during backward expansion by ALTER.
Feedback-driven expansion. The number of potential targets for a virtual function call
is quite large in many cases, many of which are irrelevant. We postpone expansion of
the skolems for virtual calls (virtual skolems), until the current call context implies a
unique target for the call, i.e., the receiver object type at the call location is concrete.
If the error condition still contains virtual skolems when the backward search reaches
an entrypoint, we expand all potential targets for the skolem. The backward search, in
this case, assists the forward search to focus better. Also, during backward propagation
from f to h, if h calls f via a receiver object recv (recv.f()) at hk, then we add to
CC(hk) the type constraint subtype(recv, T) where T is the class containing f .
Utilize callee invariants. Before expanding skolems in the current error condition φ,
we check if φ is falsified by conjoining with the callee invariants involving the skolems.
In that case, ALTER avoids repeated skolem expansions and backtracks more efficiently.

11 Proofs
Theorem 1. Given a goal location l, (a) if ALTER returns a witness (Wit) result then
there must exist a global witness for l, and (b) if ALTER returns no-witness (NoWit)
then no global witness exists.

Proof Sketch. (a) If ALTER returns a witness, it follows from the description that
there is a call context ctx from an entrypoint to the goal function g. We reason induc-
tively over the length of this call context. If length(ctx) = 0, and the error condition
φ′ := (φ∧SC) is satisfiable, then (a) g is an entrypoint and (b) there exists a path p from
entry of g to goal location l involving callees whose summary constraints are in SC .
Because φ′ contains no skolems and SC , by construction, contains precise summary
constraints for the callees, the path p does not skip over any callee and corresponds
to an actual path through the callees. In the inductive case, let length(ctx) = k and
ctx = (ek, ctx

′) for some call site ek in an entrypoint function e and a context suffix
ctx′. By inductive hypothesis, a local witness p exists corresponding to suffix ctx′. Let

error condition φ correspond to ctx′. Now because φ′ = CC(ek) ∧ SC (e) ∧ φ is satis-
fiable, there exists a feasible path p′ through function e and its callees which terminates
at call site ek. Because e is an entrypoint, by concatenating p′ with p, we get an actual
global witness.
(b) Because the error condition φ precisely captures all paths in a particular calling con-
text leading to the goal location, if φ is infeasible (ALTER returns UNSAT), then there
exist no witness path in that calling context. Also, ALTER return UNSAT for a function
f only if all its callers return UNSAT. Therefore, ALTER returns UNSAT for the goal
function g only if ALTER returns UNSAT for all call contexts to g, i.e., no call context
to g contains a witness.

Lemma 1. The following invariants hold in Alg. 2. (a) (Ω(h) ∧ Θ(h)) ⇒ Invh (b)
(CC(hk) ∧ Invh ∧ φ ∧ SC) is unsatisfiable at L2, SC ∧ φ ∧ Ω(f) is unsatisfiable at
L1. (c) After L2, (Ω(h) ∧Θ(h) ∧ CC(hk))⇒ ω(hk → f).

Proof. In this proof, we assume that ENTRYPOINT(f) contains the set of functions with
no callers. This restriction can be removed by conservatively changing ALTER to return
UNKNOWN if a no-caller is not an entrypoint.

(a) The value of Invh is obtained after return from the locations S, C1, E in code, when
UNSAT is detected. At location C1, E, Invh = (Ω(h) ∧ Θ(h)). Hence proved. At S,
Invh = true, hence the lemma holds trivially.

(b) (i) We first prove that Λ1 := (CC(hk)∧ Invh∧φf ∧SC f) is always unsatisfiable at
L2. Because, Invh is returned from calling ALTER for hk, we consider value returned
from each location in S, C1, E individually. For labels S and C1, it follows from the
respective UNSAT checks preceding the labels that Λ1 is also UNSAT. For E, note that
after update in LEARNΘ for function h, we know that (Θ(h) ∧ b) ≡ (Θ(h) ∧ φh ∧
Ω(h)) ≡ (φh ∧ Invh) is UNSAT. But φh = φf ∧ SC f ∧CC(hk). Hence Λ1 is UNSAT.
(ii) We now prove that Λ2 := (Ω(f) ∧ φ ∧ SC) is UNSAT at L1. When L1 is reached
directly from F1, it follows trivially from the unsat check at F1. In the other case, to
reach L1, all predecessor call sites hk of f must return UNSAT. Hence it follows from
(b) (i) and call to LEARNω at L2 that ∀hk. ω(hk → f) ∧ φ ∧ SC is UNSAT. Because,
Ω(f) =

∨
hk∈hk(f)(ω(hk → f)), hence Λ2 is also UNSAT.

(c) We prove by induction over the number of updates to ω(hk → f) (ω, in short). Ini-
tially, ω = true, which is updated to ω′ = I , where I is the interpolant from LEARNω.
By property of interpolants,CC(hk)∧Invh ⇒ I . From (a),CC(hk)∧Ω(h)∧Θ(h)⇒
I . Hence the base case is proved. For the inductive case, let ω = ω0(ω1), Ω(h) =
Ω0(Ω1) and Θ(h) = Θ0(Θ1) be the previous (new) values of invariants after LEARNω
executes. Therefore,
CC(hk) ∧Ω0 ∧Θ0 ⇒ ω0 (1)
After the current LEARNω update, we have
CC(hk) ∧Ω1 ∧Θ1 ⇒ I . (2)
We need to prove that CC(hk) ∧Ω1 ∧Θ1 ⇒ ω1 (3)
where ω1 = ω0 ∧ I and I is the interpolant. To show (3), it is sufficient to show that
(i) Ω1 ⇒ Ω0 and (ii) Θ1 ⇒ Θ0. Because LEARNΘ updates Θ by only conjoining,
(ii) is proved. Let Ω1 =

∨
i ω

i
1 and Ω0 =

∨
i ω

i
0. Because LEARNω updates ω by only

conjoining, ωi1 ⇒ ωi0. Hence (i) is proved.

Theorem 2. In Alg. 2, for all procedures f , (a) the callee invariantΘ(f) over-approximates
the side-effects of the callees of f , and, (b) the caller invariantΩ(f) over-approximates
the incoming data values from all the callers of f

Proof.

(a) Let Fsum(f) denote the summary constraints for all the skolems S that may ap-
pear in the summary of f . Note that the skolems in S correspond to all possible side-
effects that callees of f may have and skolems which appear in any φ are a subset of S.
To show that Θ(f) over-approximates the side-effects of callees of f , we must prove
that Fsum(f) ⇒ Θ(f). We proceed by induction over number of updates to Θ(f).
Initially, Θ(f) = true and after update at L1, Θ(f) = I where the SC ⇒ I . Be-
cause SC contains summary constraints for a subset of S, so Fsum(f)⇒ SC . Hence
Fsum(f) ⇒ SC ⇒ I ≡ Θ(f). For the inductive case, assume Θ(f) := Θ0 and
Fsum(f)⇒ Θ0. After update, Θ(f) := Θ0 ∧ I where Fsum(f)⇒ SC ⇒ I . Hence,
Fsum(f)⇒ Θ(f).

(b) Let I(f) denote the set of all possible input vectors to function f as a formula.
We need to prove that I(f) ⇒ Ω(f). We proceed by induction over the depth of f
from a given entrypoint (the argument holds for a set of entrypoints too). When f is
an entrypoint Ω(f) = true and hence I(f) ⇒ Ω(f). In the inductive case, assume f
is called from n call sites c1, . . . cn and for 1 ≤ i ≤ n, I(fci) ⇒ Ω(fci), where fci
denotes the caller method having call site ci. Now, by definition,
I(f) =

∨
i(I(fci) ∧ CC(ci) ∧ Fsum(fci)),

⇒
∨
i(I(fci) ∧ CC(ci) ∧Θ(fci)) from Theorem2(a),

⇒
∨
i(Ω(fci) ∧ CC(ci) ∧Θ(fci)) by inductive hypothesis,

⇒
∨
i ω(ci → f) from Lemma1(c),

≡ Ω(f). Hence proved.

Theorem 3. ALTER augmented with learning (Alg. 2) returns witness or no-witness
results correctly.

Proof Sketch. It follows from Theorem 1 and 2 that if ALTER backtracks due to check
C1 or C2 in function f , then either (a) no actual inputs to f may give rise to a global
witness to the goal location or (b) there exists no feasible path through the callees of f
which may produce a global witness. Hence proved.

12 The Full ALTER algorithm
The algorithm presented earlier in Alg. 2 does not account for late skolem expansion,
i.e., expansion of skolem sk local to a function f , in one of the transitive callers of
f . Alg. 3 presents the complete algorithm and performs learning in presence of late
skolem expansion. To this goal, the algorithm, on returning to f , collects late skolem
expansions in transitive callers of f (SC ′ at L3). Then it combines SC ′ with the skolems
expanded early in f (SC at L1). The combined set is then split into two parts: SC f ,
containing skolem constraints local to f , and SC f ′ : skolem expansions for skolems
local to the transitive callees of f (which were late expanded in f or its callers). This
split allows the algorithm to learn Θ(f) on skolems local to f using SC f . Finally, it
returns SC f ′ back to the previous callee method on the recursion stack. The proof of
the full algorithm is similar to the earlier algorithm with the main differences given by
the following lemma.

Lemma 2. The following invariants hold in Alg. 3. (a) (Ω(h) ∧ Θ(h)) ⇒ Invh (b)
(i) (CC(hk) ∧ Invh ∧ φ ∧ SC ∧ SC h′) is unsatisfiable at L2, (ii) SC ′ ∧ φ ∧ Ω(f) is
unsatisfiable at L3. (c) After L2, (Ω(h) ∧Θ(h) ∧ CC(hk))⇒ ω(hk → f).

Proof. (a), (b).(i) and (c) can proved in a similar manner as (a), (b).(i) and (c) in
Lemma 1.
(b)(ii) We prove that Λ0 := SC ′ ∧ φ ∧Ω(f) is unsatisfiable at L3.
In the same way as Lemma 1.(b).(ii), we can show that ∀hk. ω(hk → f) ∧ φ ∧ SC ∧
SC h′ is unsatisfiable. Now, SC ′ = SC ∧

∧
i(SC h′

i
| hi ∈ CALLERS(f)). Therefore,

∀hk. ω(hk → f) ∧ φ ∧ SC ′ is unsatisfiable.
As Ω(f) =

∨
hk∈hk(f)(ω(hk → f)), Λ0 is is unsatisfiable.

Theorem 4. In Alg. 3, for all procedures f , (a) the callee invariantΘ(f) over-approximates
the side-effects of the callees of f , and, (b) the caller invariantΩ(f) over-approximates
the incoming data values from all the callers of f

Proof Sketch. (a) First, from the properties of SPLIT procedure, we can infer that,
Fsum(f) ⇒ SC f at L1 and L3. Now, following the proof of Theorem 2(a), we can
prove that Fsum(f)⇒ Ω(f).
(b) Similar to the proof of Theorem 2(b).

INITIALLY,
∀(hk → f), ω(hk → f) := true
∀f , Ω(f) := true, Θ(f) := true

ALWAYS,
Ω(f) :=

∨
(ω(hk → f) | hk ∈ CALLERS(f))

LEARNω(hk → f , a, b)
I := INTERPOLANT (a, b)
ω(hk → f) := ω(hk → f) ∧ I

LEARNΘ(f , a, b)
I := INTERPOLANT (a, b)
Θ(f) := Θ(f) ∧ i

INTERPOLANT(a, b)
return I , so that a⇒ I and I ∧ b is UNSAT

SPLIT(SC , φ, f)
let SC :=

∧
i(ski = Sum(ski))

SC f := true
SkoSetf := GETSKOLEMS (φ, 〈f, cf 〉)
while SkoSetf changes do

foreach (ski = Sum(ski)) ∈ SC do
if ski ∈ SkoSetf then

SC f := SC f ∧ (ski = Sum(ski))
SkoSetf = SkoSetf∪GETSKOLEMS(Sum(ski)))

SC f ′ :=
∧

i(ski = Sum(ski) ∈ SC | ski /∈ SkoSetf)
return (SC f , SC f ′)

GETSKOLEMS(φ, c)
return {sk ∈ GETSKOLEMS(φ) | call context of sk = c}

ALTER(f , φ)
[S] if φ is UNSAT then

return (NOWIT, (true, true))
[C1] if φ ∧Ω(f) ∧Θ(f) is UNSAT then

return (NOWIT, (Ω(f) ∧Θ(f), true))

/* Forward Expansion */
SC := EXPANDFWD(f , φ)
[F1] if φ ∧ SC ∧Ω(f) is UNSAT then

(SC f , SC f ′) := SPLIT(SC , φ, f)
[L1] LEARNΘ(f , SC f , φ ∧ SC f ′ ∧Ω(f))
return (NOWIT, (Θ(f) ∧Ω(f), SC f ′))

if ENTRYPOINT(f) then
if φ ∧ SC has no skolems then

return (WIT, nil)
else

return UNKNOWN

inconcl := false
SC ′ := SC
foreach hk ∈ CALLERS(f) do

[C2] if φ ∧ SC ∧ ω(hk → f) = UNSAT then
continue

/* Backward Expansion */
CChk := EXPANDBWD(hk → f , φ ∧ SC)
ans := ALTER(h, φ ∧ SC ∧ CChk)
if ans = (WIT, l) then

return (WIT, [hk, l])
if ans = UNKNOWN then

inconcl := true
[F2] if ans = (NOWIT, (Invh, SCh′)) then

[L2] LEARNω(hk → f , CChk ∧ Invh, SCh′ ∧ φ∧ SC)
SC ′ := SC ′ ∧ SCh′

if inconcl then
return UNKNOWN

(SC f , SC f ′) := SPLIT(SC ′, φ, f)
[L3] LEARNΘ(f , SC f , φ ∧ SC f ′ ∧Ω(f))
[E] return (NOWIT, (Θ(f) ∧Ω(f), SC f ′))

Algorithm 3: Complete ALTER algorithm for learning caller invariants Ω and callee
invariants Θ with late skolem expansion.

