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Abstract

With the advent of many-core architectures efficient scheduling of
parallel computations for higher productivity and performance has be-
come very important. Distributed scheduling of parallel computations on
multiple places 1 needs to ensure physical (due to resource dependency
cycle) deadlock free execution along with efficient space-time trade-offs.
This makes distributed scheduling particularly challenging. This report
presents two algorithms for affinity driven distributed scheduling of multi-
place parallel computations with physical deadlock freedom.

We first present an online affinity driven distributed scheduling al-
gorithm for strict place annotated multi-threaded computations that as-
sumes unconstrained space. We show that the lower bound on the ex-
pected execution time is O(maxk T k

1 /m + T∞,n) and the upper bound is
O(

P

k
(T k

1 /m+T k
∞

)); where k is a variable that denotes places from 1 to n,
m denotes the number of processors per place, T k

1 denotes the execution
time for place k using a single processor and T∞,n denotes the execution
time of the computation on n places with infinite processors per place.
Further, we derive bounds on expected message complexity and proba-
bilistic lower and upper bounds on time and message complexity for this
scheduling algorithm.

Next, we present a novel affinity driven online distributed scheduling
algorithm assuming bounded space per place. If the input application has
no logical deadlocks due to control, data or synchronization dependencies
then this scheduling algorithm guarantees deadlock free execution using
distributed deadlock avoidance strategy. This distributed scheduling al-
gorithm is designed for terminally strict parallel computations. We prove
that the lower bound on the time complexity of this algorithm does not
deviate by more than log(Dmax) factor (where Dmax is the maximum
depth of the activity computation tree) compared to the unconstrained

1place is a group of processors with shared memory
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space case. We also present proof for distributed deadlock freedom. To
the best of our knowledge, this is the first time affinity driven deadlock-
free distributed scheduling algorithms have been presented and analyzed
for space and time and message bounds under both unconstrained space
and bounded space.
Keywords : Distributed Scheduling algorithm, performance, work-stealing,
distributed deadlock avoidance, multi-place parallel computation, strict
computation, terminally strict computation, active message network, asymp-
totic time complexity.

Work Stealing; Scheduling; Multithreaded Computation; Algorithm

1 Introduction

With the advent of multi-core and many-core architectures scheduling of paral-
lel programs for higher productivity and performance has become an important
problem. Languages such X10 [7], Chapel 2 and Fortress 3 which are based on
partitioned global address (PGAS 4) paradigm, have been designed and imple-
mented as part of DARPA HPCS program 5 for higher productivity and per-
formance on many-core and massively parallel platforms. These languages have
in-built support for initial placement of parallel programs and therefore data
locality comes implicitly with the programs. The run-time system of these lan-
guages needs to provide algorithmic online scheduling of parallel computations
with medium to fine grained parallelism. For handling large parallel compu-
tations the scheduling algorithm should be designed to work in a distributed
fashion on many-core and massively parallel architectures. Further it should
ensure physical deadlock free execution under bounded space. It is assumed
that the parallel computation does not have any logical deadlocks due to con-
trol, data or synchronization dependencies, so deadlocks(referred to as physical
deadlocks) can only arise due to cyclic dependency on bounded space. This
is a very challenging problem since the distributed scheduling algorithm needs
to provide efficient space and time complexity along with distributed deadlock
freedom.

The two affinity driven distributed scheduling problems we address are as
follows: Given, (a) An input computation DAG that represents a parallel com-
putation with fine to medium grained parallelism and mapping from each node
to a place; (b) A cluster of n SMPs(each SMP 6 also referred to as place, has
fixed number(m) of processors and memory) as the target architecture on which
to schedule the computation DAG. For both problems one needs to generate a
schedule for the nodes of the computation DAG in an online and distributed

2chapel.cs.washington.edu
3http://research.sun.com/projects/plrg/
4http://x10-lang.org/
5www.highproductivity.org
6Symmetric MultiProcessor: group of processors with shared memory
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fashion that ensures exact mapping of nodes onto places as specified in the in-
put DAG. Specifically, for the first problem we assume that the input is a strict
(section 2) computation DAG and there is unconstrained space per place. Here,
we need to design a distributed scheduling algorithm that computes an online
schedule for the nodes in the computation DAG while minimizing the time and
message complexity. For the second problem we assume that the input is a
terminally strict(section 2) parallel computation DAG and the space per place
is bounded. Here, the aim is to ensure physical deadlock free execution while
keeping low time and message complexity for execution.

Scheduling of dynamically created tasks for shared memory multi-processors
has been a well studied problem. The work on Cilk [5] promoted the strategy
of randomized work stealing. Here, a processor that has no work (thief ) ran-
domly steals work from another processor (victim) in the system. [5] proved
efficient bounds on space (O(P · S1)) and time (O(T1/P + T∞)) for scheduling
of fully-strict (section 2) computations in an SMP platform; where P is the
number of processors, T1 and S1 are the time and space for sequential execu-
tion respectively, and T∞ is execution time on infinite processors. Subsequently,
the importance of data locality for scheduling threads motivated work stealing
with data locality [1] wherein the data locality was discovered on the fly and
maintained as the computation progressed. Their work also explored initial
placement for scheduling and provided experimental results to show the useful-
ness of the approach; however, affinity was not always followed, the scope of the
algorithm was limited to SMP environments and its time complexity was not
analyzed. [4] analyzed time complexity (O(T1/P + T∞)) for scheduling general
parallel computations on SMP platform but does not consider space or message
complexity bounds.

[6] considers work-stealing algorithms in a distributed-memory environment,
with adaptive parallelism and fault-tolerance. Here task migration was entirely
pull-based (via a randomized work stealing algorithm) hence it ignored affinity
and also didn’t provide any formal proof for the deadlock-freedom or resource
utilization properties. The work in [2] described a multi-place(distributed) de-
ployment for parallel computations for which initial placement based scheduling
strategy is appropriate. A multi-place deployment has multiple places connected
by an interconnection network where each place has multiple processors con-
nected as in an SMP platform. It showed that online greedy scheduling of multi-
threaded computations may lead to physical deadlock in presence of bounded
space and communication resources per place. Bounded resources(space or com-
munication) can lead to cyclic dependency amongst the places which can lead
to physical deadlock. [2] also provided a scheduling strategy based on initial
placement and proved space bounds for physical deadlock free execution of ter-
minally strict (section 2) computations by resorting to a degenerate mode called
Doppelgänger mode. The computation did not respect affinity in this mode and
no time or communication bounds were provided. Also, the aspect of load bal-
ancing was not addressed.

In this report, we propose novel affinity driven distributed scheduling algo-
rithms and prove space, time and message bounds while guaranteeing deadlock
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free execution. The algorithms assume initial placement annotations on the
given parallel computation with consideration of load balance across the places.
The algorithms control the online expansion of the computation DAG using an
efficient remote spawn and reject handling mechanism across places and random-
ized work stealing within a place for load balancing. The scheduling algorithm
for bounded space uses depth based ordering for execution of activities to ensure
deadlock free execution. These algorithms can be easily extended to variable
number of processors per place and also to mapping multiple logical places in
the program to the same physical place, provided the physical place has suf-
ficient resources. To the best of our knowledge this is the first time affinity
driven deadlock-free distributed scheduling algorithms have been designed and
analyzed in a multi-place setup for both unconstrained and bounded space. Our
main contributions are:

• We present an online affinity driven multi-place distributed scheduling
algorithm for strict place-annotated multi-threaded computations under
assumption of unconstrained space per place. We show that the lower
bound on the expected execution time is O(maxk T k

1 /m + T∞,n) and the
upper bound is O(

∑
k(T k

1 /m + T k
∞)), where k is a variable that denotes

places from 1 to n, m denotes the number of processors per place, T k
1

denotes the execution time on a single processor for place k, and T∞,n

denotes the execution time of the computation on n places with infinite
processors on each place. We also derive probabilistic lower and upper
bounds for time and communication complexity.

• For bounded space per place, we present a novel affinity driven distributed
scheduling algorithm for terminally strict multi-place computations with
provable deadlock free execution. We establish that the space bound per
place is O(m · (Dmax · Smax + n · Smax + S1)) and the lower bound on
the time complexity is within log(Dmax) factor of the lower bound for
the unconstrained space case, where, Dmax is the maximum depth of the
computation in terms of activities and Smax is the size of largest activation
frame.

2 System and Computation Model

The system on which the computation DAG is scheduled is assumed to be cluster
of SMPs connected by an Active Message Network. Each SMP is a group
of processors with shared memory. Each SMP is also referred to as place in
the report. Active Messages ((AM)7 is a low-level lightweight RPC(remote
procedure call) mechanism that supports unordered, reliable delivery of matched
request/reply messages. We assume that there are n places and each place has
m processors(also referred to as workers).

The parallel computation, to be dynamically scheduled on the system, is as-
sumed to be specified by the programmer in languages such as X10 and Chapel.

7Active Messages defined by the AM-2: http://www.lrr.in.tum.de/ weissc/am.html
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To describe our distributed scheduling algorithms, we assume that the paral-
lel computation has a DAG(directed acyclic graph) structure and consists of
nodes that represent basic operations like and, or, not, add and others. There
are edges between the nodes in the computation DAG (Fig. 1(a)) that repre-
sent creation of new activities (spawn edge), sequential execution flow between
nodes within a thread/activity (continue edge) and synchronization dependen-
cies (dependence edge) between the nodes. In the report we refer to the parallel
computation to be scheduled as the computation DAG. At a higher level the par-
allel computation can also be viewed as a computation tree of activities. Each
activity is a thread (as in multi-threaded programs) of execution and consists
of a set of nodes (basic operations). Each activity is assigned to a specific place
(affinity as specified by the programmer). Hence, such a computation is called
multi-place computation and DAG is referred to as place-annotated computa-
tion DAG (Fig. 1(a): v1..v20 denote nodes, T1..T6 denote activities and P1..P3
denote places).

The structure of dependencies between the nodes can vary depending on the
input parallel computation. In fully-strict and strict computations the depen-
dencies can go from a node to its immediate parent and to any of its ancestors
in the computation DAG, respectively. In a terminally strict computation, in-
troduced in [2] and shown in Fig. 1(a), the dependencies arise due to an activity
waiting for the completion of its descendants. Every dependency edge, there-
fore, goes from the last instruction of an activity to one of its ancestor activities
with the following restriction: In a subtree rooted at an activity called Γr, if
there exists a dependence edge from any activity in the subtree to the root ac-
tivity Γr, then there cannot exist any dependence edge from the activities in
the subtree to the ancestors of Γr. A terminally strict multi-place computation
is defined as a terminally strict computation where each activity has an affinity
to a place.
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Figure 1: (a) Place-annotated Computation Dag. (b) Distributed Scheduling.

2.1 Useful Notations

The set of places is denoted by P = {P1, · · · , Pn}. The set of workers at place
Pi, is denoted by {W 1

i , W 2
i ..W m

i }. S1 denotes the space required by a single
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processor execution schedule. The size in bytes of the largest activation frame in
the computation is denoted by Smax. If node u enables node v then we place an
edge, referred as enable edge from u to v. The tree formed over all nodes with
enable edges is referred to as enabling tree [4]. depth(u) denotes the distance
of node u from the root in the enabling tree. The root node is assumed to be
at depth 0. T∞,n denotes the execution time of the computation DAG over n
places with infinite processors at each place. T k

∞ denotes the execution time for
activities at place Pk using infinite processors. Note that, T∞,n ≤ ∑

1≤k≤n T k
∞.

T k
1 denotes the minimum time taken by a single processor for the activities

assigned to place k. Dmax denotes the maximum depth of the computation
tree in terms of number of activities. The depth of an activity is defined as the
distance from the root activity in the computation tree.

3 Affinity Driven Distributed Scheduling in Un-

constrained Space

Consider a strict place-annotated computation DAG. The distributed schedul-
ing algorithm described below schedules activities with affinity at only their re-
spective places. Within a place, work-stealing is enabled to allow load-balanced
execution of the computation sub-graph associated with that the place. The
computation DAG unfolds in an online fashion in a breadth-first manner across
places when the affinity driven activities are pushed onto their respective remote
places. Within a place, the online unfolding of the computation DAG happens
in a depth-first manner to enable efficient space and time execution. Since suf-
ficient space is guaranteed to exist at each place, physical deadlocks due to lack
of space cannot happen in this algorithm.

3.1 Algorithm Design

Each place maintains Fresh Activity Buffer (FAB) which is managed by a ded-
icated processor(different from workers) at that place. Each worker at a place
has a Ready Deque and Stall Buffer (refer Fig. 1(b)). The FAB at each place as
well as the Ready Deque at each worker use concurrent deque implementation.
An activity that has affinity for a remote place is pushed into the FAB at that
place. An idle worker at a place will attempt to randomly steal work from other
workers at the same place(randomized work stealing). Note that an activity
which is pushed onto a place can move between workers at that place (due to
work stealing) but can not move to another place and thus obeys affinity at all
times. The distributed scheduling algorithm is given in Fig. 2.

3.2 Space Bound Analysis

The space computation obtains the total space requirement across all places
(and processors) for the algorithm described in section 3.1 and given in Fig. 2.
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At any step, an activity A at the rth worker (at place i) W r
i , may perform following

actions:

1. Spawn:

(a) A spawns activity B at place,Pj , i 6= j: A sends AM(B) (active message
for B) to the remote place. Since, the remote place, Pj , is guaranteed to
have memory for activity B, it is successfully inserted in the FAB at Pj

and A continues execution (Fig. 1(b)).

(b) A spawns B locally: B is successfully created and starts execution whereas
A is pushed into the bottom of the Ready Deque.

2. Terminates (A terminates): The worker at place Pi, W r
i , where A terminated,

picks an activity from the bottom of the Ready Deque for execution. If none
available in its Ready Deque, then it steals from the top of other workers’ Ready
Deque. Each failed attempt to steal from another worker’s Ready Deque is
followed by attempt to get the topmost activity from the FAB at that place. If
there is no activity in the FAB then another victim worker is chosen from the
same place.

3. Stalls (A stalls): An activity may stall due to dependencies in which case it
is put in the stall buffer in a stalled state. Then same as Terminates (case 2)
above.

4. Enables (A enables B): The termination of an activity A may enable a stalled
activity B in which case the state of B changes to enabled and it is pushed onto
the top of the Ready Deque.

Figure 2: Distributed Scheduling Algorithm
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Let D be the computation dag representing the multi-threaded computation,
and let the root of the computation be denoted by r. Let τ denote a node
in the computation dag. Let C-MHP(τ)={C1, C2, . . . , Ck} denote the sets of
immediate children of τ such that

• the sets are disjoint

• two elements belonging to same set may happen in parallel.

• elements from different sets can never execute in parallel

The space required (denoted by O(size(r))) by the entire computation dag
D for getting scheduled is of the order of maximum number of nodes(threads)
that can execute in parallel. This is given by the following recursive equation:

size(r) = Max
C∈C-MHP(r)((|C|) +

∑

c∈C

size(c)) (3.1)

The notation Max
C∈C-MHP(r) means maximum of the value computed for

each of the elements in C-MHP(r).

3.3 Time Complexity Analysis

The time complexity of this affinity driven distributed scheduling algorithm in
terms of number of throws and ready nodes in the computation is presented
below. Each throw represents an attempt by a worker(thief ) to steal an activity
from another worker(victim) at the same place (intra-place work stealing).

Lemma 3.1 Consider a strict place-annotated computation DAG with work
per place, T k

1 , being executed by the affinity driven distributed scheduling al-
gorithm presented in section 3.1. Then, the execution (finish) time for place,k,
is O(T k

1 /m + Qk
r/m + Qk

e/m), where Qk
r denotes the number of throws when

there is at least one ready node at place k and Qk
e denotes the number of throws

when there are no ready nodes at place k. The lower bound on the execution
time of the full computation is O(maxk(T k

1 /m + Qk
r )) and the upper bound is

O(
∑

k(T k
1 /m + Qk

r/m)).

Proof At any place, k, we collect tokens in three buckets: work bucket, ready-
node-throw bucket and null-node-throw bucket. In the work bucket the tokens
get collected when the processors at the place k execute the ready nodes. Thus,
the total number of tokens collected in the work bucket is T k

1 . When, the place
has some ready nodes and a processor at that place throws or attempts to steal
ready nodes from the PrQ or another processor’s deque then the tokens are
added to the read-node-throw bucket. If there are no ready nodes at the place
then the throws by processors at that place are accounted for by placing tokens
in the null-node-throw bucket. The tokens collected in these three buckets
account for all work done by the processors at the place till the finish time
for the computation at that place. Thus, the finish time at the place k, is
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O(T k
1 /m + Qk

r/m + Qk
e/m). The finish time of the complete computation DAG

is the maximum finish time over all places. So, the execution time for the
computation is maxk O(T k

1 /m + Qk
r/m + Qk

e/m). We consider two extreme
scenarios for Qk

e that define the lower and upper bounds. For the lower bound,
at any step of the execution, every place has some ready node, so there are no
tokens placed in the null-node-throw bucket at any place. Hence, the execution
time per place is O(T k

1 /m+Qk
r/m). The execution time for the full computation

becomes O(maxk(T k
1 /m + Qk

r/m)). For the upper bound, there exists a place,
say (w.l.o.g.) s, where the number of tokens in the null-node-throw buckets,
Qs

e, is equal to the sum of the total number of tokens in the work buckets of all
other places and the tokens in the read-node-throw bucket over all other places.
Thus, the finish time for this place, T s

f , which is also the execution time for the
computation is given by:

T s
f = O(

∑

1≤k≤n

(T k
1 /m + Qk

r/m)) (3.2)

4 Time Complexity Analysis: Scheduling Algo-

rithm with Unconstrained Space

We compute the bound on the number of tokens in the ready-node-throw bucket
using potential function based analysis as given in [4]. Our unique contribu-
tion is in proving the lower and upper bounds of time complexity and message
complexity for multi-place distributed scheduling algorithm presented in sec-
tion 3.1 that involves both intra-place work stealing and remote place affinity
driven work pushing.

Let there be a non-negative potential with ready nodes (each representing
one instruction) in a computation dag. During the execution using the affinity
driven distributed scheduling algorithm 3.1, the weight of a node u in the en-
abling tree, w(u) is defined as (T∞,n − depth(u)), where depth(u), is the depth
of u in the enabling tree of the computation. For a ready node, u, we define
φi(u), the potential of u at timestep i, as:

φi(u) = 32w(u)−1, if u is assigned; (4.1a)

= 32w(u), otherwise (4.1b)

All non-ready nodes have 0 potential. The potential at step i, φi, is the
sum of the potential of each ready node at step i. When an execution begins,
the only ready node is the root node with potential, φ(0) = 32T∞,n−1. At the
end the potential is 0 since there are no ready nodes. Let Ei denote the set of
processes whose deque is empty at the beginning of step i, and let Di denote
the set of all other processes with non-empty deque. Let, Fi denote the set of
all ready nodes present in the FABs of all places. The total potential can be
partitioned into three parts as follows:

φi = φi(Ei) + φi(Di) + φi(Fi) (4.2)
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where,

φi(Ei) =
∑

qεEi

φi(q) =
∑

1≤k≤n

φk
i (Ei); (4.3a)

φi(Di) =
∑

qεDi

φi(q) =
∑

1≤k≤n

φk
i (Di); (4.3b)

φi(Fi) =
∑

qεFi

φi(q) =
∑

1≤k≤n

φk
i (Fi); (4.3c)

where, φk
i () are respective potential components per place k. The potential at

the place k, φk
i , is equal to the sum of the three components, i.e.

φk
i = φk

i (Ei) + φk
i (Di) + φk

i (Fi) (4.4)

Actions such as assignment of a node from deque to the processor for execution,
stealing nodes from the top of victim’s deque and execution of a node, lead to
decrease of potential (refer Lemma 4.2). The idle processors at a place do work-
stealing alternately between stealing from deque and stealing from the FAB.
Thus, 2P throws in a round consist of P throws to other processor’s deque and
P throws to the FAB. We first analyze the case when randomized work-stealing
takes place from another processor’s deque using balls and bins game to compute
the expected and probabilistic bound on the number of throws. For uniform and
random throws in the balls and bins game it can be shown that one is able to get
a constant fraction of the reward with constant probability (refer Lemma 4.3).
The lemma below shows that whenever P or more throws occur for getting
nodes from the top of the deques of other processors at the same place, the
potential decreases by a constant fraction of φi(Di) with a constant probability.
For algorithm in section 3.1, P = m (only intra-place work stealing).

Lemma 4.1 Consider any round i and any later round j, such that at least
P throws have taken place between round i (inclusive) and round j (exclusive),
then, Pr{(φi − φj) ≥ 1/4.φi(Di)} > 1/4

For proof of this lemma refer [4]. There is an additional component of potential
decrease which is due to pushing of ready nodes onto remote FABs. Let the
potential decrease due to this transfer be φk

i→j(out). The new probabilistic
bound becomes:

Pr{(φi − φj) ≥ 1/4.φi(Di) + φk
i→j(out)} > 1/4 (4.5)

The throws that occur on the FAB at a place can be divided into two cases.
In the first case, let the FAB have at least P = m activities at the beginning of
round i. Since, all m throws will be successful, we consider the tokens collected
from such throws as work tokens and assign them to the work bucket of the
respective processors. In the second case, in the beginning of round i, the
FAB has less than m activities. Therefore, some of the m throws might be
unsuccessful. Hence, from the perspective of place k, the potential φk

i (Fi) gets
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reduced to zero. The potential added at place k in φk
j (Fj) is due to ready nodes

pushed from the deque of other places. Let this component be φk
i−j(in). The

potential of the FAB at the beginning of round j is:

φk
j (Fj) − φk

i (Fi) = φk
i→j (in), (4.6)

Furthermore, at each place the potential also drops by a constant factor
of φk

i (Ei). If a process q in the set Ek
i does not have an assigned node, then

φi(q) = 0. If q has an assigned node u, then φi(q) = φi(u) and when node u
gets executed in round i then the potential drops by at least 5/9.φi(u). Adding
over each process q in Ek

i , we get:

{φk
i (Ei) − φk

j (Ej)} ≥ 5/9.φk
i (Ei). (4.7)

Lemma 4.2 The potential function satisfies the following properties

1. When node u is assigned to a process at step i, then the potential decreases
by at least 2/3φi(u).

2. When node u is executes at step i, then the potential decreases by at least
5/9φi(u) at step i.

3. For any process, q in Di, the topmost node u in the deque for q maintains
the property that: φi(u) ≥ 3/4φi(q)

4. If the topmost node u of a processor q is stolen by processor p at step i,
then the potential at the end of step i decreases by at least 1/2φi(q) due
to assignment or execution of u.

Lemma 4.3 Balls and Bins Game: Suppose that at least P balls are thrown
independently and uniformly at random into P bins, where for i = 1,2...P, bin
i has weight Wi. The total weight W =

∑
1≤i≤P Wi. For each bin i, define a

random variable, Xi as,

Xi = Wi, if some ball lands in bin i (4.8a)

= 0, otherwise (4.8b)

If X =
∑

1≤i≤P Xi, then for any β in the range 0 < β < 1, we have
Pr{X ≥ β.W} > 1 − 1/((1 − β)e)

We now establish the lower and upper bounds on time complexity.

Theorem 4.4 Consider any strict place-annotated multi-threaded computation,
being executed by the affinity driven multi-place distributed scheduling algorithm
(section 3.1). Let the critical-path length for the computation be T∞. The lower
bound on the expected execution time is O(maxk T k

1 /m + T∞,n) and the upper
bound is O(

∑
k(T k

1 /m + T k
∞)). Moreover, for any ε > 0, the execution time is

O(maxk T k
1 /m + T∞,n + log(1/ε)) with probability at least 1 − ε.
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Proof Lemma 3.1 provides the lower bound on the execution time in terms of
number of throws. We shall prove that the expected number of throws per place
is O(T∞ ·m), and that the number of throws per place is O(T∞ ·m + log(1/ε))
with probability at least 1 − ε.

We analyze the number of ready-node-throws by breaking the execution
into phases of θ(P = mn) throws (O(m) throws per place). We show that with
constant probability, a phase causes the potential to drop by a constant factor,
and since we know that the potential starts at φ0 = 32T∞,n−1 and ends at zero,
we can use this fact to analyze the number of phases. The first phase begins
at step t1 = 1 and ends at the first step, t′1, such that at least P throws occur
during the interval of steps [t1, t

′
1]. The second phase begins at step t2 = t′1 + 1,

and so on.
Combining equations (4.5), (4.6) and (4.7) over all places, the components

of the potential at the places corresponding to φk
i→j(out) and φk

i→j(in) cancel
out. Using this and Lemma 4.1, we get that: Pr{(φi − φj) ≥ 1/4.φi} > 1/4.

We say that a phase is successful if it causes the potential to drop by at
least a 1/4 fraction. A phase is successful with probability at least 1/4. Since
the potential drops from 32T∞,n−1 to 0 and takes integral values, the number
of successful phases is at most (2T∞,n − 1) log4/3 3 < 8T∞,n. The expected
number of phases needed to obtain 8T∞,n successful phases is at most 32T∞,n.
Since each phase contains O(mn) ready-node throws, the expected number of
ready-node-throws is O(T∞,n · m · n) with O(T∞,n · m) throws per place. The
high probability bound can be derived [4] using Chernoff’s Inequality. We omit
this for brevity.

Now, using Lemma 3.1, we get that the lower bound on the expected execu-
tion time for the affinity driven multi-place distributed scheduling algorithm is
O(maxk T k

1 /m + T∞,n).
For the upper bound, consider the execution of the subgraph of the compu-

tation at each place. The number of throws in the ready-node-throw bucket per
place can be similarly bounded by O(T∞k.m). Further, the place that finishes
the execution in the end, can end up with number of tokens in the null-node-
throw bucket equal to the tokens in work and read-node-throw buckets of other
places. Hence, the finish time for this place, which is also the execution time
of the full computation DAG is O(

∑
k(T k

1 /m + T k
∞)). The probabilistic upper

bound can be similarly established using Chernoff bound.

The following theorem bounds the message complexity of the affinity driven
work stealing algorithm described in section 3.1.

Theorem 4.5 Consider the execution of a strict place-annotated computation
DAG with critical path-length T∞,n by the Affinity Driven Distributed Scheduling
Algorithm in section 3.1. Then, the total number of bytes communicated across
places is O(I(Smax + nd)) and the lower bound on the total number of bytes
communicated within a place has the expectation O(m.n.T∞,n.Smax.nd), where
nd is the maximum number of join edges from the descendants to a parent, Smax

is the size in bytes of the largest activation frame in the computation and I is
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the number of remote spawns from one place to a remote place as specified in
the place-annotations of the DAG. Moreover, for any ε > 0, the probability is
at least (1− ε) that the lower bound on the communication overhead incurred is
O(m.n.(T∞ + log(1/ε)).nd.Smax).

Proof First consider inter-place messages. Let the number of affinity driven
pushes to remote places be O(I), each of O(Smax) bytes. Further, there could
be at most nd dependencies from remote descendants to a parent, each of which
involves communication of constant, O(1), number of bytes. So, the total inter
place communication is O(I.(Smax + nd)). Since the randomized work stealing
is within a place, the lower bound on the expected number of steal attempts
per place is O(m.T∞) with each steal attempt requiring O(Smax) bytes of com-
munication within a place. Further, there can be communication when a child
thread enables its parent and puts the parent into the child processors’ deque.
Since this can happen nd times for each time the parent is stolen, the com-
munication involved is at most (nd · Smax). So, the expected total intra-place
communication per place is O(m · T∞,n · Smax · nd). The probabilistic bound
can be derived using Chernoff’s inequality and is omitted for brevity. Similarly,
expected and probabilistic upper bounds can be established for communication
complexity within the places.

The computation is guaranteed to be deadlock-free using algorithm 3.1 if
space given by equation (3.1) is available on the system. [2] shows deadlock-
freedom for terminally strict computations when run on bounded resources by
resorting to Doppelgänger mode. However, the Doppelgänger mode could take
large time. In the next section, we present an algorithm that schedules activities
such that deadlock freedom is guaranteed in presence of bounded resources while
ensuring exact affinity mapping.

5 Affinity Driven Distributed Scheduling in Bounded

Space

Due to limited space on real systems, the distributed scheduling algorithm has to
limit online breadth first expansion of the computation DAG while minimizing
the impact on execution time and simultaneously providing deadlock freedom
guarantee. Due to bounded space constraints this distributed online scheduling
algorithm has guaranteed deadlock free execution for terminally strict multi-
place computations.

Due to space constraints at each place in the system, the activities can
be stalled due to lack of space. The algorithm needs to keep track of space
availability at each worker and place to ensure physical deadlock freedom. When
an activity is stalled due to lack of space at a worker, it moves into local-
stalled state. When an activity is stalled as it cannot be spawned onto a remote
place, it moves into remote-stalled state. An activity that is stalled due to
synchronization dependencies is moves into depend-stalled state.
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Our distributed scheduling algorithm ensures distributed physical dead-

lock avoidance by using depth based ordering of computations for execution.
Physical deadlock freedom ensures that the system always has space to guaran-
tee the execution of a certain number of paths, that can vary during the exe-
cution of the computation DAG. If a place can locally expand an entire depth
first path of an activity down to its leaf, then it is said to guarantee the Assured
Depth Expansion property for that activity. The scheduling algorithm enforces
that this property holds for work pushing as well as intra-place work stealing.
A place that is pushing work, is allowed to do so only if the other place can
guarantee the Assured Depth Expansion property on the work getting pushed.
To provide good time and message bounds the distributed deadlock avoidance
scheme is designed to have low communication cost while simultaneously expos-
ing maximal concurrency inherent in the place-annotated computation DAG.

We assume that maximum depth of the computation tree (in terms of number
of activities), Dmax, can be estimated fairly accurately prior to the execution
from the parameters used in the input parallel computation. Dmax value is
used in our distributed scheduling algorithm to ensure physical deadlock free
execution. The assumption on knowledge of Dmax prior to execution holds
true for the kernels and large applications of the Java Grande Benchmark
suite 8. The Dmax for kernels including LUFact (LU factorization), Sparse
(Sparse Matrix multiplication), SOR (successive over relaxation for solving finite
difference equations) can be exactly found from the dimension of input matrix
and/or number of iterations. For kernels such as Crypt (International Data
Encryption Algorithm) and Series (Fourier coefficient analysis) the Dmax again
is well defined from the input array size. The same holds for applications such
as Molecular Dynamics, Monte Carlo Simulation and 3D Ray Tracer. Also,
for graph kernels in the SSCA#2 benchmark 9, Dmax can be known by
estimating 4g (diameter) of the input graph (e.g. O(polylog(n)) for R-MAT
graphs, O(

√
n) for DIMACS graphs).

5.1 Distributed Data-Structures & Algorithm Design

Each worker has the following data-structures (Fig. 3(a)):

• PrQ and StallBuffer : PrQ is a priority queue that contains activities in
enabled state and local-stalled state. The StallBuffer contains activities
in depend-stalled and remote-stalled states. The total size of both these
data-structures together is O(Dmax · Smax) bytes.

• Ready Deque: Also referred to as Deque, this contains activities in the
current executing path on this worker. This has total space of O(S1)
bytes.

• AMRejectMap: This is a one-to-one map from a place-id,say Pj , to the
tuple [U , AM(V ), head, tail]. This tuple contains, AM(V ), the active

8http://www.epcc.ed.ac.uk/research/activities/java-grande
9http://www.highproductivity.org/SSCABmks.htm
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message rejected in a remote-spawn attempt at place Pj ; U , the activity
stalled due to the rejected active message and head and tail of the linked
list of activities in remote-stalled state due to lack of space on the place,
Pj . This map occupies O(n · Smax) space per worker.

Each place Pi, has the following data-structures (Fig. 3(a)):

• FAB : This is a concurrent priority queue that is managed by a dedicated
processor (different from workers). It contains the fresh activities spawned
by remote places onto this place. It occupies O(Dmax · Smax) bytes in
space.

• WorkRejectMap: This is a one-to-many map from depth to list of workers.
For each depth this map contains the list of workers whose spawns were
rejected from this place. It occupies O(m · n + Dmax) space.

The priority queue (used for PrQ and FAB) uses the depth of an activity as
the priority with higher depth denoting higher priority. The depth of an activ-
ity is defined as the distance from the root activity in the computation tree.
The algorithm description uses the following notation. Let AMRejectMap(i,r),
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Figure 3: (a) Distributed Data Structures For Bounded Space Scheduling Algo-
rithm. (b) Remote Spawn and Empty Deque Case In Bounded Space Scheduling
Algorithm.

PrQ(i,r) and StallBuffer(i,r) denote the AMRejectMap, PrQ and StallBuffer re-
spectively for worker W r

i at place Pi. Let Br
i denote the combined space for the

PrQ(i,r) and StallBuffer(i,r). Let FAB(i) and WorkRejectMap(i) denote the
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FAB and WorkRejectMap respectively at place Pi. Let Fi denote the current
space available in FAB(i). Let AM(T) denote the active message for spawning
the activity T . The activities in remote-stalled state are tracked using a linked
list using activity IDs with the head and tail of the list available at the tuple
corresponding to the place in map AMRejectMap.

Computation starts with root of the computation DAG which is at depth 1.
The computation starts at a worker W s

0 , at the default place P0. At any point
of time a worker at a place, W r

i , can either be executing an activity,T , or be
idle. The detailed algorithm is presented in Fig. 4. An intuitive description of
each of the phases is given below.

When T spawns a local activity U (Local Spawn case) there is guaranteed
space to execute it and hence it is simply pushed to the bottom of the Deque(at
that worker) and child activity U is taken up for execution. When T needs to
attempt a remote spawn(Remote Spawn case, refer Fig. 3(b)) at place Pj , it
first checks if there are already stalled activities in AMRejectMap(i,r). If there
is already a stalled activity, then T is added to the StallBuffer(i,r) and the link
from the current tail in the tuple corresponding to Pj in AMRejectMap(i,r) is
set to T . Also, the tail of the tuple is set to T . If there is no stalled activity
in AMRejectMap(i,r) for place Pj , then the worker attempts a remote spawn at
place Pj . At Pj check is performed by the dedicated processor for space avail-
ability in the FAB(j). If it has enough space then the active message,AM(U),
is stored in the remote FAB(j), the available space in FAB(j) is updated and
T continues execution. If there isn’t enough space then AMRejectMap(i,r) is
updated accordingly and T is put in the StallBuffer(i,r). When the worker W r

i

receives notification(Receives Notification case) of available space from place
Pj , then it gets the tuple for Pj from AMRejectMap(i,r) and sends the active
message and the head activity to Pj . At Pj , the WorkRejectMap(j) is updated.
Also, W r

i updates the tuple for Pj by updating the links for the linked list
in that tuple. When currently executing activity T terminates (Terminates
case), then the worker picks the bottommost activity to execute if one such ex-
ists. Else, the space reserved by T is released from Br

i and the worker follows the
same as the case for Empty Deque. When the Deque becomes empty (Empty
Deque case, refer Fig. 3(b)) then the worker attempts to pick activity from
its PrQ. If that does not succeed, then it tries to pick activity from FAB(i).
If that also fails then it looks for any entries in the map WorkRejectMap and
sends notification to the appropriate worker whose activity it can execute. If
this also fails then the worker tries to randomly steal an activity of appropriate
depth from another worker at the same place. When an activity U gets enabled
(Activity Enabled case) then it is moved from StallBuffer into the PrQ. If
the activity was in remote-stalled state and it gets enabled due to notification
from another place, then the actions as in the case Receives Notification are also
performed. When an activity T stalls (Activity Stalled case) then its state is
set to appropriate stalled state and it is removed from Deque and put in either
PrQ or StallBuffer depending on whether it is in local-stalled state or not. The
next bottommost activity U is picked from the Deque. If there is enough space
to execute this activity then it is picked for execution else it is stalled.
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At any time, a worker W r
i takes the following actions. It might be executing an activity

T (@depth Dt).

1. Local Spawn: T spawns activity U locally. T is pushed to the bottom of
the Deque. U starts executing.

2. Remote Spawn: T attempts remote spawn of U(@depth Du) at a re-
mote place Pj, i 6= j
// Refer Remote Spawn Case Flow Chart in Fig. 3(b)

• If (AMRejectMap(i,r)[Pj ] at W r
i is non-null)

(a) Let U be the value of tail in the tuple for Pj in AMRejectMap(i,r).
(b) Stall T . Put T and associated active msg for spawn into StallBuffer.
(c) Update link of U to TaskID(T ).
(d) Update value of tail in the tuple for Pj in AMRejectMap(i,r).

• else If (|Fj | > (Dmax −Du)Smax) //corresponds to assured depth expan-
sion
(a) Store AM(U) in FABj and update Fj , as, Fj ← Fj − Smax.
(b) T continues execution.

• else //Pj rejects the request and data-structures get updated as:

(a) At place Pj , Update WorkRejectMap(j): Insert pair < Du, W r
i >.

(b) At place Pi, Update AMRejectMap(i,r): Insert pair < Pj , <
AM(U), head(T ), tail(null) >>.

(c) At place Pi, Activity T put into StallBuffer(i,r).

3. Receives Notification: W r
i receives notification from place Pj on

available space for spawn

(a) Get pair < Pj , < R, AM(V ), head(U), tail(S) >> from AMRejectMap(i,r).
(b) Send the tuple , < AM(V ), U >, to Place Pj . Put R in PrQr

i .
(c) Update head in the tuple for the pair with key as Pj as: head =

U →Next().

4. Termination: T terminates

• if(Deque(i,r) is non-empty) then Pick the bottommost activity from
Deque(i,r)

• else //Let b be the amount of space reserved by activity T .

(a) Release space. Br
i ← Br

i + b.
(b) Same as case Empty Deque.

5. Empty Deque: W r
i has an empty deque

// Refer Empty Deque Case Flow Chart in Fig. 3(b)
6. Activity Enabled : activity U gets enabled

(a) Set state of U to enabled.
(b) Insert U in PrQr

i .
(c) if(activity enabled was in state remote-stalled) then Perform other actions

as in the case Receives Notification.

7. Activity Stalled : T (@depth Dt) stalls
Let U(@depth Du) be the next bottommost activity in Deque(i,r).

• State of T is changed to an appropriate stalled state. T is removed from
Deque. If T is in local-stalled state (due to lack of space at worker) then it
is moved into PrQ else it is moved into StallBuffer.

• If(Enough space already reserved by T )

(a) Update the space already reserved by T .
(b) Execute U .

• else if(Enough space available in Br
i considering already reserved space by

T )

(a) Reserve further space. Update Br
i .

(b) Execute U .

• else { Put U in stalled state.}

Figure 4: Multi-place Distributed Scheduling Algorithm
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5.2 Case Study of Bounded Space Scheduling Algorithm

using BFS on undirected graph

This section presents the trace of the bounded space distributed scheduling
algorithm (Fig. 4), with space available as O(m · n · Dmax · Smax) per place.
The scheduling algorithm is run on an undirected graph G(V, E) (Fig. 5) with
|V | = 8 and |E| = 10. The trace is partial for brevity but is representative of the
way the execution will proceed using the bounded space distributed scheduling
algorithm. The BFS algorithm (X10 pseudo-code) as a terminally strict com-
putation is presented below.

initialization;
void BFS(RootNode, currNode)
begin

// update distance to nbrNode

finish for each nbrNode of currNode

if local(nbrNode) then
async(UD(currNode,nbrNode));

end

else
async(UD(currNode,nbrNode)) at Place(place(nbrNode));

end

end

// explore graph from nbrNodes

finish for each nbrNode of currNode

if local(nbrNode) then
async(BFS(RootNode,nbrNode));

end

else
async(BFS(RootNode,nbrNode)) at Place(place(nbrNode));

end

end

end

Algorithm 1: BFS Algorithm

BFS is carried out on simultaneously from two roots: v1 and v6. Note
that centrality measures, like betweenness centrality (in network analysis) do
BFS from all roots. We chose two roots for sake of simplicity. The system is
assumed to have two places, P1 and P2 each with two processors, m1 and m2.
The Program root, denoted by Proot initially starts execution at P1 : m1. The
notation used in Fig. 6 is as follows. At each step Si the state of the system
changes The rows denotes the following:

• Row labeled Deque denotes state of the deque of each processor.
• Row labeled ExecuteN denotes the ready-node that is executing on each

processor.
• Row labeled Action denotes the work performed by the executing ready-

node. The work performed can be one of the following:

– ST (node, src) denotes steal work, node, from src which can be PrQ
or another processor-deque.

– RS(node, placeId) denotes remote spawn of node on place placeId.
– LS(node) denotes local spawn.
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– UD(bfsRootNodeId, vj) denotes update of distance from bfsRootN-
ode, bfsRootNodeId to current graph-node, vj .

• Row labeled PrQ denotes the contents of the PrQ at each place.
• Row labeled Stall denotes nodes that get stalled per processor.

The nodes in the computation DAG are either labeled as Rivj or Rivj t1. The
first notation refers to the bfs-thread with root Ri(i.e. graph-node vi) and bfs-
search proceeding further from graph-node vj , while the second notation refers
to the thread, t1, for distance update of vj for bfs root Ri(i.e. graph-node vi).

v1 v2

v3 v4

v5 v6

v8 v7

P1(m1, m2) P2(m1, m2)

Graph G(V,E) with initial placement 

onto two places with two processors each

v1 v2

v3 v4

v5 v6

v8 v7

P1(m1, m2) P2(m1, m2)

Graph G(V,E) with initial placement 

onto two places with two processors each

Figure 5: Placement of BFS Graph On the System

5.3 Space Bound and Deadlock Freedom Proof

We prove in this section that the bounded space distributed scheduling algo-
rithm (Fig. 4) executes in a deadlock free manner using limited space per place.

Lemma 5.1 A place that accepts activity with depth d′ has space to execute
activities of depth greater than or equal to d′ + 1.

Proof: A place accepts depth d′ activity if it has space greater (Dmax − d′).
The algorithm adopts a reservation policy which ensures that activities already
executing have reserved space that they may need for stalled activities. The
space required to execute activity of depth greater or equal to d′+1 is obviously
less, and hence, the place can execute it.
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Figure 6: Bounded Space Algorithm Trace For BFS with Two Roots
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Lemma 5.2 If a place rejects an activity of depth less than or equal to d′, it
implies that either an activity of depth greater or equal to d′ will exist as perhaps
a stalled activity or the workers when become idle shall release space so that d′

depth activity can be executed.

Proof: A place rejects a request of activity spawn of depth d′ if does not have
space atleast (Dmax − d′). This is only possible if the workers that are execut-
ing an activity have reserved spaces such that the least required space is not
available. Eventually the activities being executed either stall or terminate and
workers may release some space. In case there is no released space, then there
has to exist atleast one activity of depth greater or equal to d′ because otherwise
Dmax − d′ worth of space would have been released.

Lemma 5.3 An activity of depth d′ < Dmax that terminates such that it is
the last activity in the worker’s deque shall enable an activity of depth d′ − 1 at
remote place if it cannot pick from its PrQ.

Proof: When an activity of depth d′ terminates, it releases Dmax − d′ amount
of space. Therefore, there is space available for creation of activity with depth
d′ which in turn enables its parent to proceed if it cannot pick anything from
PrQ.

Lemma 5.4 There is always space to execute activities at depth Dmax.

Proof: The space required to execute activities at Dmax is 0 because it is the leaf
activity and can always be executed to completion. Therefore, leaf activities get
consumed from PrQ as soon as any worker gets idle. Space required in PrQ is
atleast 1 to accept activities at depth Dmax. When it is picked from PrQ, it
makes a space available thereby paving way for enabling activities with depth
less than Dmax.

Lemma 5.5 A path in the computation tree is guaranteed to execute.

Proof: Let the max depth activity that a place P1 is executing be d1. Then the
place is guaranteed to execute/accept an activity of d2 depth such that d2 > d1

by Lemma 5.1. Therefore, this activity of depth d1 if wants to create a child
locally can do so without any trouble. Suppose, that it wants to create child
at remote place P2 and it rejects. By lemma 5.2, P2 is executing an activity
of depth atleast d1 + 1. This activity of depth d1 + 1 would have been created
through some path in computation tree. Extending this argument, it can be
seen that there exists a path across places that belongs to the computation tree
such that it is a complete path. (A path from Root to Leaf in fully expanded
computation tree is called a complete path.)

Theorem 5.6 (Assured Leaf Execution) The scheduling maintains assured leaf
execution property during computation. Assured leaf execution ensures that each
node in computation tree becomes a leaf and gets executed.

22



Proof We prove it by induction on depth of an activity in the computation
tree.
Base case (depth of an activity is Dmax):
By lemma 5.5, a path to a leaf is guaranteed. An activity at depth Dmax is
always a leaf and thus, an activity that occurs at Dmax can always get executed
at any place by lemma 5.4.
Induction Hypothesis: Let us assume that an activity at depth d is assured to
become a leaf and get executed.
Induction Step: We have to show that an activity of depth d − 1 is assured to
become a leaf and get executed. An activity at d − 1 may be a leaf already in
the computation tree because it does not spawn any children in which case we
just have to show that it does get scheduled. By induction hypothesis, we know
that any activity of depth d shall get executed and thus by lemma 5.3 we can
be sure that activity at d − 1 shall get enabled and brought to PrQ where it
will become highest priority (because activities of d are guaranteed to execute)
and get scheduled. An activity at depth d − 1 can spawn a local or remote
child which is at depth d. By induction hypothesis, any such child will get
executed. This implies the activity will get eventually get rid of the dependency
on the children and become a leaf node in the computation tree. By the same
arguments presented above, it can be shown that such an activity also gets
scheduled and either it executes to create another set of child dependencies
or it terminates. In the case it creates children, same argument holds and thus
eventually it shall terminate because we are dealing with bounded computations.

Theorem 5.7 A terminally strict computation scheduled using algorithm 4 uses
O(m · (Dmax · Smax + n · Smax + S1)) bytes as space per place.

Proof The PrQ, StallBuffer, AMRejectMap and deque per worker (processor)
take total of O(m · (Dmax ·Smax +n ·Smax +S1)) bytes per place. The WorkRe-
jectMap and FAB take total O(m · n + Dmax) and O(Dmax · Smax) space per
place (section 5.1). The scheduling strategy adopts a space conservation pol-
icy to ensure deadlock free execution in bounded space. The basic aim of this
strategy is to ensure that only as much breadth of a tree is explored as can be
accommodated in the available space assuming each path can go to the maxi-
mum depth of Dmax. It starts with the initial condition where available space
is atleast Dmax · Smax per worker per place. Any activity that gets scheduled
on a worker reserves the space for the possible stalled activities that it can
generate. The reserved space is released when an activity terminates or stalls.
The amount of released space is typically of an order of the maximum possible
depth of the subtree that the terminated/stalled activity would have had. This
guarantees us lemma 5.1. No activity can be scheduled on a worker if it cannot
reserve the space for the possible stalled activities that it can generate at that
place. A place that enables a remote activity stalled because of space does so
only after ensuring that appropriate amount of space is present for the activity
that shall be created. Similarly, when a worker steals it will ensure that it has
enough space to accommodate the activities that would get created as a result of
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execution of stolen activity. Whenever an activity of depth Dmax is picked from
PrQ it releases space, thus ensuring lemma 5.4. From the algorithm, it can be
seen that every reservation and release is such that the total space requirement
at a place does not exceed what was available initially. Hence, the total space
per place used is O(m · (Dmax · Smax + n · Smax + S1)).

5.4 Time and Message Bounds

The scheduling algorithm in Fig. 4 guarantees deadlock free execution with at
least O(Dmax.Smax) space per place. However, the available space per place
is m times this space. Hence, in reality many concurrent paths can execute
in parallel in the system. The space-time trade-off analysis of this algorithm
is left for future work. The difference between this work stealing algorithm,
Fig. 4 and the one in section 3.1 is that this algorithm works under bounded
space and uses concurrent PrQ for FAB per place and also per worker. This
leads to two consequences on the work done. First, the spawn of a child onto
a remote place might get rejected in which case the node stalls at the source
place but the additional work done to take care of rejects for remote spawns is
constant i.e. O(1). The other consequence is that a throw onto the PrQ from a
local worker involves more than just a typical constant time deque operation. If
we consider non-blocking concurrent priority queue implementation [9] for the
PrQ then it takes O(log(Dmax)) time to perform the concurrent insertion and
deletion of an activity from the PrQ. Since, the number of successful throws
at a place can be O(T k

1 ), so the additive time complexity from these PrQ
operations is O((T k

1 /m). log(Dmax)). This leads us to the following theorem
on the lower bound for the time complexity of the bounded space scheduling
algorithm, Fig. 4.

Theorem 5.8 Consider any multi-threaded computation with work per place
denoted by T k

1 , being executed by the multi-place affinity driven distributed schedul-
ing algorithm, Fig. 4. The lower bound on the expected execution time is
O(maxk(T k

1 /m) · log(Dmax) + T∞,n). Moreover, for any ε > 0, the lower bound
on the execution time is O(maxk(T k

1 /m) · log(Dmax) + T∞,n + log(1/ε)), with
probability at least (1 − ε).

The analysis of upper bound on time complexity involves modeling resource
driven wait time and has been left for future work. The inter-place message
complexity is same as theorem 4.5 as there is constant amount of work for
handling rejected remote spawns and notification of space availability.

6 Related Work Comparison

[2] extends work stealing framework for terminally strict X10 computations
and establishes deadlock free scheduling for SMP deployments. It proves dead-
lock free execution with bounded resources on uniprocessor cluster deployments
while using Doppelgänger mode of execution. However, it neither considers
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work stealing in this framework, nor, does it provide performance bounds. The
Doppelgänger mode of execution can lead to arbitrary high costs in general.
We consider affinity driven scheduling over an SMP cluster deployment using
Active Message network. We further include intra-place and inter-place work
stealing and prove space and performance bounds with deadlock free guarantee.

[1] considers nested-parallel computations on multiprocessor HSMSs (hardware-
controlled shared memory systems) and proves upper-bounds on the number
of cache-misses and execution time. It also presents a locality guided work
stealing algorithm that leads to costly synchronization for each thread/activity.
However, activities may not get executed at the processor for which they have
affinity. We consider affinity driven scheduling in a multi-place setup and pro-
vide performance bounds under bounded space while guaranteeing deadlock free
execution.

[4] provides performance bounds of a non-blocking work stealing algorithm,
in a multiprogrammed SMP environment, for general multi-threaded computa-
tions under various kernel schedules using potential function technique. This
approach however does not consider locality guided scheduling. We consider
affinity driven multi-place work stealing algorithms, for applications running in
dedicated mode (stand alone), with deadlock freedom guarantees under bounded
resources and leverage the potential function technique for performance analysis.

[8] introduces work-dealing technique that attempts to achieve ”locality ori-
ented” load distribution on small-scale SMPs. It has a low overhead mechanism
for dealing out work to processors in a global balanced way without costly
compare-and-swap operations. We assume that the programmer has provided
place annotations in the program in a manner that leads to optimal perfor-
mance considering load-balancing. In our approach, the activities with affinity
for a place are guaranteed to execute on that place while guaranteeing deadlock
freedom.

[10] presents a space-efficient scheduling algorithm for shared memory ma-
chines that combines the low scheduling overheads and good locality of work
stealing with the low space requirements of depth-first schedulers. For locality it
uses the heuristic of scheduling threads that are close in the computation DAG
onto the same processor. We consider a multi-place setup and assume affinities
in the place-annotate computation have been specified by the programmer.

[3] studies two-level adaptive multi-processor scheduling in an multi-programmed
environment. It presents a randomized work-stealing thread scheduler for fork-
join multithreaded jobs that provides continual parallelism feedback to the job
scheduler in the form of requests for processors and uses trim analysis to ob-
tain performance bounds. However, this work does not consider locality guided
scheduling. We assume dedicated mode of execution but we believe our work
can be extended to multiprogrammed mode also. We will explore this as part
of future work.

Fig. 7 presents the comparison between different scheduling approaches. Our
scheduling approaches are DSA I(unconstrained space) and DSA II(bounded
space). The notation used is as follows.
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• Column, Scheduling Algorithm, has values: WS(Work Stealing), WD(Work
Dealing), DFS(Depth First Search) and WP(Work Pushing).

• Column, Affinity Driven, has values: Y(Yes), N(No) and L(limited ex-
tent).

• Column, Nature Of Computation, has values: FS(fully-strict), G(general),
NP(nested parallel), IDP(iterative data parallel) and TS(terminally strict).

• Column, MP vs SP, denotes multi-place (MP) or single place(SP) algo-
rithm setup.

• Column, DM vs MPM, denotes dedicated mode(DM) or multi-programmed
mode(MPM) environment.

• Column, Sync. Overheads, has values L(low), M(medium) and H(high).
• Column, DG mode, denotes whether Doppelgänger mode is used in multi-

place setup.
• Column, IAP vs. Both, denotes whether intra-place stealing(IAP) is

only supported or both(Both) inter-place and intra-place stealing are sup-
ported.

The last column denotes whether deadlock freedom, space bound and time
bound are presented in the respective scheduling approaches.

Algorithm
Scheduling 
Algorithm Affinity

Nature of 
Computati
on

MP vs 
SP DM vs. MPM

Sync. 
Overheads

DG  
mode

IAP vs. 
Both DF:BS:BT

Blumofe Work 
Stealing [5] WS N FS Both DM,MPM L N/A IAP Y:Y:Y

Plaxton [4] WS N G SP MPM L N/A IAP Y:N:Y

Blelloch [1] WS L NP, IDP
SP(HSMS
s) DM H N/A IAP Y:Y:Y

Shavit WD Y G small SP DM L N/A N/A Y:Y:Y

Girija DFS, WS L NP, IDP SP DM L N/A IAP Y:Y:Y

Kunal WS N FS SP MPM L N/A IAP Y:Y:Y

SPAA07(I) [2] WS N TS SP DM L N/A IAP Y:Y:N

SPAA07(II) [2] WP Y TS MP(m=1) DM H Yes None Y:Y:N

DSA-I WS, WP Y G MP(m>1) DM L No IAP Y:N:Y

DSA-II WS, WP Y TS MP(m>1) DM L-M No IAP Y:Y:Y

Figure 7: Comparison Of Scheduling Approaches

7 Conclusions & Future Work

We have presented the design of novel distributed scheduling algorithms with
provable deadlock freedom for both bounded and unconstrained space and space,
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time and message complexity analysis. This is first such work for distributed
scheduling of parallel computations. In future we plan to look into space-time
tradeoffs, markov-chain based modeling and multi-core implementations.
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