
RI09014, 11 June 2010 Computer Science

IBM Research Report

From Informal Process Diagrams
To Formal Process Models

Debdoot Mukherjee
IBM Research – India, New Delhi, India

Pankaj Dhoolia
IBM Research – India, New Delhi, India

Saurabh Sinha
IBM Research – India, New Delhi, India

Aubrey J. Rembert
IBM T. J. Watson Research Laboratory

Hawthorne, USA

Mangala Gowri Nanda
IBM Research – India, New Delhi, India

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo -
Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication

outside of IBM and will probably be copyrighted is accepted for publication. It has been issued

as a Research Report for early dissemination of its contents. In view of the transfer of copy-

right to the outside publisher, its distribution outside of IBM prior to publication should be lim-

ited to peer communications and specific requests. After outside publication, requests should be

filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies

may be requested from IBM T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown

Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at

http://domino.watson.ibm.com/library/CyberDig.nsf/home

From Informal Process Diagrams
To Formal Process Models

Debdoot Mukherjee1, Pankaj Dhoolia1, Saurabh Sinha1,
Aubrey J. Rembert2, and Mangala Gowri Nanda1

1 IBM Research – India, {debdomuk, pdhoolia, saurabhsinha,

mgowri}@in.ibm.com
2 IBM T.J. Watson Research Center, ajrember@us.ibm.com

Abstract. Process modeling is an important activity in a business-
transformation project. Free-form diagramming tools, such as Power-
Point and Visio, are the preferred tools for creating process models. How-
ever, the designs created using such tools are informal sketches, which are
not amenable to automated analysis. Formal models, although desirable,
are rarely created (during early design) because of the usability problems
associated with formal-modeling tools. In this paper, we present an ap-
proach for automatically inferring formal process models from informal
business process diagrams, so that the strengths of both types of tools
can be leveraged. We discuss different sources of structural and semantic
ambiguities, commonly present in informal diagrams, which pose chal-
lenges for automated inference. Our approach consists of two phases.
First, it performs structural inference to identify the set of nodes and
edges that constitute a process model. Then, it performs semantic in-
terpretation, using a classifier that mimics human reasoning to associate
modeling semantics with the nodes and edges. We discuss both super-
vised and unsupervised techniques for training such a classifier. Finally,
we report results of empirical studies, conducted using flow diagrams
from real projects, which illustrate the effectiveness of our approach.

1 Introduction
Business Process Models are key artifacts that are created during the early stages
of a business-transformation project. A business process model depicts how var-
ious tasks are coordinated to achieve specific organizational goals. Such models
are used to build a consensus among the stakeholders during the requirements-
elicitation phase and then drive the subsequent transformation phases. Free-form
diagramming tools, such as Powerpoint and Visio, are widely used for creating
informal sketches of process models.

On the one hand, these tools are easy-to-use, ubiquitous, offer creative expres-
sion, and have a low barrier to adoption. On the other hand, the diagrams created
using such tools have no formal underpinnings; therefore, they are not amenable
to automated analysis—e.g., for model checking, process improvements, process
reuse, and bootstrapping process realization. Unlike the free-form diagramming
tools, formal process-modeling softwares offer many such benefits, but suffer from
a high barrier to adoption; this occurs for different reasons, such as complexity,

costs, and the requirement of some level of formal training. Empirical studies
reveal that the authoring constraints imposed by formal-modeling tools have
generated mixed reactions from designers and have resulted in limited adoption
of the tools [10].

To take advantage of the merits of free-form diagramming and yet leverage
the benefits of formal modeling, automated techniques for converting informal
sketches to formal process models are essential. A manual approach can be te-
dious and error-prone; especially when enterprises want to harvest formal mod-
els from a large corpus of legacy flow diagrams—a scenario that is attracting
increasing interest.

Many existing formal-modeling tools (e.g., Websphere Business Modeler3

(WBM), ARIS,4 System Architect,5 and Lombardi6) offer, to various degrees,
capabilities to import informal diagrams, such as Visio diagrams. However, ac-
curately interpreting these diagrams, which are primarily intended for human
consumption is challenging. Diagramming tools offer a rich collection of shapes
(known as stencils) from which designers freely choose depictions for process flow
entities, such as activities, events, gateways, etc. Existing tools perform mainly
a shape-based transformation, using fixed or pluggable mappings from draw-
ing shapes to process modeling entities. This is inadequate because often the
same shape is used to represent different semantics. Further, these tools are not
able to interpret diagrammatic cues (e.g., dangling connectors) commonly used
in describing the flow connections; therefore, they often identify imprecise flow
structures. Figure 1 shows how commercial import facilities result in broken flow
structures and do not satisfactorily disambiguate between process semantics.

To address the limitations of existing tools, we present an automated ap-
proach for extracting formal process models, that conform to a given target
metamodel,7 from informal process-flow diagrams. It consists of two phases: a
structure-inference phase and a semantic-interpretation phase. In the first phase,
the approach precisely infers the flow-graph structure of a diagram, in terms of
the nodes and edges (i.e., flow elements) that comprise the diagram. It identifies
each shape, or set of shapes, that could correspond to a flow node. Next, we
propose a novel edge-inference algorithm to trace the lines between the iden-
tified nodes and infer the set of directed edges in the diagram. In this phase,
the approach also infers the association of unlinked texts to appropriate flow
elements. In the second phase, our approach annotates each node and edge with
a process-modeling semantics, defined in the target metamodel. To perform the
annotation, we use pattern classification. Specifically, the approach uses a clas-
sifier trained on relational, geometric, and textual features of flow elements to
perform semantic disambiguation. We present both supervised and unsupervised
approaches for training such a classifier.
3
http://www.ibm.com/software/integration/wbimodeler/advanced/features/

4
http://www.ids-scheer.com/en/ARIS_ARIS_Platform/3730.html

5
http://www.ibm.com/software/awdtools/systemarchitect/

6
http://www.lombardisoftware.com/enterprise-bpm-software.php

7
A target metamodel lists the set of elements allowed in process modeling. For example, the Busi-
ness Process Modeling Notation (BPMN) defines a metamodel comprising of activities, gateways,
events, swimlanes, artifacts and connecting objects.

Fig. 1. Comparison of our model discovery with that of a top commercial tool.

To evaluate the effectiveness of our approach, we implemented it in a tool
called idiscover that infers formal models from Visio diagrams. We conducted
empirical studies using flow diagrams taken from real business-transformation
projects. Our results illustrate that, for the diagrams considered, idiscover
infers formal models with high precision and recall, and outperforms existing
commercial tools. Our results also indicate that most standard classifiers are
applicable for interpreting process semantics with our feature space modeling.
Interestingly, an unsupervised clustering approach, which may be used in prac-
tical settings where training data is unavailable, also proves nearly as effective
as supervised ones.

The main benefit of our approach is that it automates, with a high degree of
accuracy, a transformation task, that is tedious to perform manually. In doing
so, the approach enables process engineering to leverage the strengths of both
free-form diagramming tools and formal-modeling tools. More importantly, such
a facility can help greater industrial adoption of formal methods developed in
BPM research – currently the unavailability of formally specified process models
in enterprises proves to be an impediment in applying such research.

The main contributions of this work are

– The development of a novel end-to-end approach for converting informal flow
diagrams to formal process models, addressing both structural and semantic
ambiguities that are commonly present in the informal diagrams.

– The implementation of the approach in a tool called idiscover that converts
Visio process flow diagrams to BPMN process models.

– An empirical evaluation that demonstrates the effectiveness of the approach

Fig. 2. Common structural and semantic ambiguities in process flow diagrams.

2 Diagram Interpretation Challenges

Figure 2 presents some ambiguities, which present challenges in interpreting the
structure and semantics of flow models. Our empirical study (Section 4) shows
that such ambiguities are indeed common in real process diagrams.

2.1 Structural Ambiguities
Identifying the correct set of drawing shapes corresponding to a node or an edge
is hard when, for example, the edges are not properly connected to nodes or
multiple lines are connected to form a single flow. The top part of Figure 2
illustrates three common structural ambiguities.
Dangling Connectors Existing tools can recognize a line to be an edge only if
the line is properly glued8 at both ends of two 2D shapes. However, users often
join multiple lines to represent a single edge. Moreover, the endpoints of a line
may be left dangling (i.e., not be properly glued). In Figure 2(a), four edges
exist: (A, B), (A, D), (C,B), and (C,D). But, existing tools can recognize only
A-B because it is the only properly glued edge.
Unlinked Labels People often use separate drawing shapes to specify a flow
element and its text label. In Figure 2(b), Submit is intended to be a label on the
edge from Create Order to Process Order. Label association becomes a challenge
when nearness alone does not suffice to tie unlinked texts with shapes identified
as flow elements. Tracking patterns of text label usage may help—for example,
if text labels are consistently placed on the top of shapes (e.g., Step x), we can
apply that pattern to resolve ambiguous cases.
Cross-references Cross-reference linkages across diagrams are often required to
split a large diagram across pages for convenience, as shown in Figure 2(c). Use
of cross references can occur within a single page as well.

2.2 Semantic Ambiguities
Inferring the semantics for flow elements is straightforward if each drawing shape
is used consistently to convey a single modeling semantic. However, in practice,
the following scenarios are extremely common and pose challenges for semantic
interpretation.
8

Most diagramming formats support a notion of proper connection or glue. On clicking a connector,
the endpoints turn red if they are properly connected to shapes and are green if they are dangling.

Under-specification This occurs when different instances of the same shape are
used to convey different semantics. For example, in Figure 2(d), a rectangle is
used to denote both the output data artifact Order and the step Create Order.
In general, under-specification lowers the effectiveness of a simple shape-based
mapping of diagram elements to process model entities.

Over-specification This occurs when the same semantic is being conveyed by
different shapes. In Figure 2(e), both Create Order and Process Order are activ-
ities, but are represented using different graphics. Over-specification too tends
to reduce the usefulness of shape-based mapping: the number of shapes to be
enumerated by such approaches can become prohibitively large.

Fused Semantics In Figure 2(f), the two flow fragments are semantically equiv-
alent. The left fragment has an Evaluate block that represents a fusion of a task
and a decision. In the fragment on the right, Evaluate and Decide are separate
entities. Automatic interpretation of such fused semantics is difficult.

3 Automated Process Model Discovery

Our approach consists of two phases: structural inference and semantic interpre-
tation. The structural-inference phase takes as input a flow diagram, and extracts
a flow graph, which consists of nodes and edges. Additionally, the first phase com-
putes information, such as structure, geometry, and text, for each flow element
(i.e., node and edge). The second phase of the algorithm constructs the process
model from the flow graph by associating modeling semantics with each flow ele-
ment using pattern classification. Specifically, this phase applies a classifier that,
based on the relational, geometric, and textual features of the flow elements, per-
forms semantic disambiguation. The resulting process model is well-defined in
terms of both structure and semantics, and thus can be formally analyzed.9

3.1 Structure Inference

The goal of the first phase is to infer the flow graph nodes and edges. It does
this in three steps. First, it parses the input flow diagram to identify the basic
diagram elements, which consists of shapes, lines, and text. Second, it constructs
the set of nodes, selects candidate edges from diagram elements and determines
associations of text with nodes and candidate edges. Finally, this phase applies
an edge-inference algorithm to compute the flow.

Diagram Element Extraction An informal flow diagram is a collection of
diagram elements such as (1) shapes, which are candidates for nodes, (2) lines,
which are candidate edges, and (3) text, which may be used to label either nodes
or edges. We identify the diagram elements by parsing XML representations
of diagrams or using tool specific APIs. For each diagram element, we extract
information about its coordinates, dimensions, text, geometry, and group (if
any) in the diagram; this information is used for node and edge discovery. All

9
An XML serialization of the annotated flow graph can be easily transformed to conform to specific
XML process-modeling schemas, such as BPMN 2.0 and the WBM XML schema.

(c)

A B

DC

A B

C D

A B

DC
C D

A B C1 C2

C3

C5

C7

C8

C6

C4

NEU

UNK

TGTNEU

TGT

UNK

SRC

TGT

C1 C2

C3

C5

C7

C8

C6

C4

NEU

UNK

TGTNEUSRC

SRC

TGT

TGT

(d)
(a) (b)

Fig. 3. Examples to illustrate flow-edge inference.

coordinates are expressed in some standard unit with respect to the origin of
the page, which we consider to be the bottom, left corner.

Some properties, such as text labels and arrowheads for lines, may be readily
available if they are linked to drawing shapes. If not, they need to be inferred
later as part of flow element discovery. For a drawing shape that is taken from
a stencil, the geometry is identified by the shape name as per the stencil. For
a manually created shape, the geometry is encoded by the different types of
lines (e.g., straight lines, elliptical arcs, bezier arcs) used to form the shape.
The group feature in diagramming tools, which lets a user tie related diagram
elements together, often conveys important structural cues. Therefore, for each
diagram element, we identify elements, if any, that are grouped alongwith it.

Flow Element Discovery The second step of structure inference discovers
flow elements: nodes, candidate edges, and associations of text with nodes and
candidate edges. It uses the following heuristics to perform the element discovery.
1. Ignore elements, such as bounding boxes, title bars, legends, etc., that are

close to page boundaries and do not have possible connections.
2. Trace undirected connected lines that form closed paths to form new nodes.
3. Recognize arrowheads that are depicted as separate shapes and associate

them with nearby lines.
4. Identify shapes that are near possible connectors as nodes.
5. Lines whose endpoints lie near nodes or near other lines are recursively

identified to be part of candidate edges.
6. Identify as a node, shape groups that have connectors emanating from the

group boundaries but that do not have the possibility of a flow within them.
7. Label association: Text in unbordered shapes are taken as labels of the nodes

or edges with which they are grouped, or of their nearest node or edge.

Flow-Edge Inference The key step of structural inference is the identification
of directed connections between the nodes: that is, we need to list possible source
and target nodes for each candidate edge discovered from the diagram elements.

The edge-inference algorithm uses the concept of a connection point. A con-
nection point is the notional point of connection at which the endpoint of a line
connects to a node or an intermediate point on another line. The intersection of
the endpoint of a line l with an intermediate point on another line lx generates
a pair of connection points—one at the end of l and the other at the intersection
point on lx. To illustrate, consider the flow graph shown in Figure 3(a), which
has eight connection points (labeled C1–C8). The line (A,B) has connection
points C1 and C8 at its endpoints; it also has two connection points, labeled C2

and C5, at its intersections with the lines from C and D. Each intersection gen-
erates two connection points: one on line (A,B) and the other at the endpoint
of the line meeting (A,B). Thus, each line and each node has a set of connection
points.

A connection point has five attributes:
1. An end point Cep to mark the coordinates
2. An associated line Cline on which it is either an endpoint or an intermediate

intersection point
3. A boolean value CisEnd indicating whether it is an endpoint or an inter-

mediate intersection point
4. An associated node or connection point Cconn on which it is an endpoint
5. A direction Cdir , which can be src (source), tgt (target), neu (neutral),

or unk (unknown)

The direction of a connection point C is found using the following rules

1. If C lies at the junction of a node and a line:
Cdir = tgt, if there is an arrowhead at Cep

Cdir = src, otherwise
2. If C is at the junction of the endpoint of a line l and an intermediate point

on line lx:
Cdir = neu, if C lies on lx (i.e., CisEnd = false)
Cdir = tgt, if C lies on l and there is an arrowhead at Cep

Cdir = unk, if C lies on l and there is no arrowhead at Cep

Figure 4 presents the edge-inference algorithm: InferEdges. The algorithm
takes as inputs the set of nodes and candidate edges in the flow graph, and
returns as output the inferred edges. Intuitively, the algorithm traverses the flow
graph, starting at a connection point on a node, and identifies reachable nodes
such that the directions encountered during the traversal are consistent.

Lines 1–5 of the algorithm create connection points for the junctions of lines
and nodes. For each line l and each endpoint ep of l, the algorithm iterates over
the nodes (lines 1–2). It uses thresholds for nearness10 to determine whether
a node n could be connected to ep (line 3). It then creates a connection point
C, with the appropriate attributes, and adds C to the set of connection points
for l and n. The direction of C is set to src or tgt depending on whether an
arrowhead occurs at ep.

Similarly, lines 6–12 of InferEdges create connection points for the intersec-
tion of two lines l and lx. In this case, two connection points (Cx and C) are
created. Cx is created for the intermediate intersecting point on lx, whereas C
is created for the endpoint of l.

After creating the connection points, InferEdges connects the nodes by travers-
ing the flow graph starting at each node n and following each connection point
on n (lines 13–16). After the traversal for a connection point is complete, appro-
priate edges are created between n and the nodes reached during the traversal
(lines 17–20).

10
Such nearness bounds are set relative to the width and height over which diagram elements span

in a page and are thus scale invariant.

algorithm InferEdges

input Wn, We nodes and candidate edges
output edgeList inferred flow edges
begin

// create CP for line-node junctions
1. foreach l ∈ We and endpoint ep do
2. foreach node n ∈ Wn do
3. if n is nearby ep then
4. create connection point C:

Cep = ep, Cline = l, Cconn = n
CisEnd = true, Cdir = src | tgt

5. add C to CP sets for l and n
// create CP for intersection of lines

6. foreach l ∈ We and endpoint ep do
7. foreach lx ∈ We do
8. if l is nearby ep then
9. create connection point Cx:

Cx,ep = ep, Cx,line = lx, Cx,conn = C
Cx,isEnd = false, Cx,dir = neu

10. add Cx to CP set for lx
11. create connection point C:

Cep = ep, Cline = l, Cconn = Cx

CisEnd = true, Cdir = tgt | unk
12. add C to CP set for l

// connect nodes
13. foreach node n ∈ Wn do
14. foreach conn. point C of n do
15. nodeSet = ∅; visit(C) = false
16. propagateDirection(Cdir , Cline , nodeSet)
17. foreach n′ ∈ nodeSet do
18. if Cdir = src then
19. add (n, n′) to edgeList
20. else add (n′, n) to edgeList
end

procedure propagateDirection(dir , l, ns)
begin
21. foreach conn. point C of l do
22. if visit(C) then continue
23. visit(C) = true
24. if CisEnd ∧ match(Cdir , dir) then
25. continue
26. if ¬CisEnd ∧ ¬match(Cdir , dir) then
27. continue
28. if Cconn instanceof Node then
29. add Cconn to ns
30. else if Cconn instanceof ConnPt then
31. Cx = Cconn ; lx = Cx,line

32. if ¬match(Cx,dir , dir) then continue
33. propagateDirection(dir , lx, ns)
end

function match(interDir , destDir)
begin
34. if interDir = destDir then
35. return true
36. else if interDir = neu ∨ unk then
37. return true
38. return false
end

Fig. 4. The edge-inference algorithm.

Procedure propagateDirection traverses the flow graph, along paths in which
the directions are consistent, and identifies the reached nodes. Given a line l and
direction dir , the procedure processes each connection point C of l that has
not been previously visited (lines 21–22). If C is an endpoint and Cdir and dir
match—i.e., either both are src or both are tgt—the procedure abandons the
traversal as the path does not represent a valid edge (lines 24–25). If C is an
intermediate point, the traversal terminates if both of the following conditions
hold: (1) Cdir does not match dir and (2) Cdir is neither neu nor unk (lines 26–
27). If C occurs at a node, the procedure has found an edge; therefore, it adds
the node to the set of nodes (lines 28–29). Alternatively, if C occurs at an
intermediate intersection, the algorithm continues traversing if the directions
are consistent (lines 30–33).

To illustrate the steps of the algorithm, consider the traversal performed by
InferEdges, starting at connection point C1 in Figure 3(a). InferEdges processes
each connection point on line (A,B) (line 21 of propagateDirection). We consider
the processing of C2 and C5. In both cases: the condition at line 24 evaluates
false because C2 and C5 do not occur at endpoints; the condition at line 26
evaluates false because their dir = neu (which causes line 36 to evaluate true);
the condition on line 28 evaluates false as well; but line 30 evaluates true. In the
case of C5, the condition on line 32 evaluates to false and propagateDirection

is invoked recursively (line 33) to continue the traversal toward node D. In this

invocation, the algorithm reaches C7, whose direction is tgt (i.e., does not
match C1dir); thus, a valid edge is detected. It therefore, adds D to the node set
(at line 29), and later adds (A,D) to the edge list (at line 19). However, the line
towards C is not traversed since C3dir = tgt causes the condition on line 32 to
evaluate to true during the processing of C2. Note that for the traversal starting
at C7, InferEdges reaches C6, where isEnd = true and direction is unk which
causes line 24 to evaluate true, and the traversal stops. This ensures that the
edge (A,D) does not get added twice in the edge set. The final set of edges for
the flow graph is shown in part(b) of Figure 3. Parts (c) and (d) of the figure
illustrate a different example in which the line from D is split into three edges,
one each to nodes A, B and C. The interested reader can verify that the inferred
set of edges remains the same, even if any of the line segments are drawn using
multiple line shapes.

In this manner, lines get converted to edges that have sources and targets.
For each edge, we also track the text label, color, and line type. For an edge
E, these attributes are obtained by aggregating the attributes of all lines that
constitute E.
Cross Reference Resolution: We identify nodes that have the same text
label and exist in different pages of a drawing to be cross references if either
their indegree or their outdegree is zero. We reduce the flow graph by fusing
such nodes and merging the incoming and outgoing edges on the fused nodes.

3.2 Semantic Interpretation of Flow Elements

Phase 1 of our approach infers a well-formed graph, which has none of the am-
biguities present in the flow diagram from which it was inferred. Next, Phase 2
associates semantics with the nodes the edges present in the graph, based on
similarity of the nodes and edges. Semantic similarity of nodes and edges quite
often follows from similarity in their geometry, relational attributes, and textual
content. We formulate semantic disambiguation as a pattern-classification prob-
lem [5]. Using a representative corpus of business process diagrams, we train a
classifier to learn patterns in features of flow elements that indicate the class of
process semantic of an element. For semantic interpretation of new diagrams, we
extract pertinent features for each flow element and feed them into the trained
classifier, which detects learnt patterns to decide process semantics. We discuss
both supervised and unsupervised schemes for learning that may be used de-
pending upon whether a corpus of diagrams is available for training or not.

Feature Extraction We attempt to mimic human reasoning used in recogniz-
ing process semantics from a diagram. Humans usually analyze a range of visual
and textual cues to understand diagram semantics. We abstract such cues as
symbolic or numeric features that can be acted upon by standard classifiers.

Table 1 lists a set of features for nodes, grouped into three categories: rela-
tional, geometric, and textual. For each group, the table lists examples of features
(column 2), and discusses how the features are indicative of process semantics
in nodes (column 3). (A similar list can be formulated for edges.) Relational

Table 1. Features used for disambiguating node semantics.

Category Features Comments

Relational No. of incoming edges (indegree),
No. of outgoing edges (outde-
gree), No. of nodes contained
within (numContains), Whether
it is contained in another node
(isContained)

Can discriminate amongst many entities irrespective
of local styles in diagrams. For example, Indegree and
outdegree can easily distinguish between start, end
and intermediate events; Non-zero numContains may
strongly indicate presence of a swimlane or a group.

Geometric Shape name in stencil, No. of ver-
tical lines, No. of horizontal lines,
No. of arcs, line style, width,
height

Can provide highly accurate insight, if data sets follow
templates very rigorously. Such features can work well
with small sets of process diagrams with uniform styles
per entity.

Textual No. of cue words for every entity
in label for the node and labels
for incident edges

Humans comprehend text to determine semantics in
highly ambiguous scenarios. For example, text in out-
going edges from gateways is often ‘yes’/‘no’/‘y’/‘n’,
text in activities typically starts with strong verbs,
’report’ and ’e-mail’ are common in data objects.

features such as indegree and outdegree can be obtained directly from the ex-
tracted flow graphs, whereas geometric and textual features are aggregated from
attributes of the diagram elements involved in the flow. For each process entity, a
set of cue words that characterize expressions in the labels for the entity is taken
to be a textual feature. For example, interrogative words (e.g., “Whether,” “Is,”
“Does”) in the text associated with a node label indicate the possibility of a
gateway; similarly, text starting with strong verbs (e.g., “Create,” “Process”)
indicate an activity. If training data is available, we can perform text classi-
fication on labels to identify such representative words for each target entity;
otherwise, these word lists have to be created with inputs from human experts.

Supervised Learning If we have a set of diagrams for which the correspond-
ing correct process models are known, we can train a classifier, in a supervised
manner, to learn classification rules from the labeled instances. The learned rules
can be used to infer the semantics of new diagrams. A decision tree learner [14]
can formulate a decision task as a sequence of logical or binary operations from
a series of examples. It is a set of if-then-else like classification rules over the
feature set, which can be easily interpreted (also edited if required) by data
mining practitioners. Figure 5 shows a sample decision tree that can disam-
biguate BPMN semantics based on features listed in Table 1 . A Näıve Bayes
classifier [11], after training on a labeled dataset, can assign probabilities that
an observation (flow element) belongs in each class (process entity). Neural net-
works [13] consist of layers of interconnected nodes where each layer produces
a non-linear function of its input, thus enabling the modeling of very general
functions. Our empirical study evaluates different classifiers for their efficacy in
choosing process semantics for flow elements.

Unsupervised Learning Clustering is a popular and effective technique used
in data mining for discovering, without any human supervision, patterns from
large amounts of data [12]. We cluster flow elements based on their geometrical,
relational, and textual features, and hypothesize that elements with identical

isContained ≤ 0 =⇒ Pool
isContained > 0
| outdegree ≤ 0 =⇒ End Event
| outdegree > 0
| | outdegree ≤ 1
| | | indegree ≤ 0
| | | | shapeID ≤ 7
| | | | | width ≤ 12
| | | | | | shapeID ≤ 0 =⇒ Activity
| | | | | | shapeID > 0 =⇒ Start Event
| | | | | width > 12 =⇒ Activity
| | | | shapeID > 7
| | | | | Start-Event-Cue-Words ≤ 0
| | | | | | height ≤ 8 =⇒ Start Event
| | | | | | height > 8 =⇒ Data Object
| | | | | Start-Event-Cue-Words > 0 =⇒ Start Event
| | | indegree > 0
| | | | shapeID ≤ 8
| | | | | Horizontal-Lines ≤ 1 =⇒ Gateway
| | | | | Horizontal-Lines > 1
| | | | | | Elliptical-Arcs ≤ 0 =⇒ Activity
| | | | | | Elliptical-Arcs > 0
| | | | | | | activityCues ≤ 0 =⇒ Activity
| | | | | | | activityCues > 0 =⇒ Intermediate
| | | | shapeID > 8
| | | | | Elliptical-Arcs ≤ 0 =⇒ Intermediate
| | | | | Elliptical-Arcs > 0
| | | | | | width ≤ 10 =⇒ Data Object
| | | | | | width > 10 =⇒ Intermediate
| | outdegree > 1
| | | Vertical-Lines ≤ 1 =⇒ Gateway
| | | Vertical-Lines > 1 =⇒ Activity

Fig. 5. A sample decision tree to disambiguate BPMN semantics

process semantics get grouped into the same cluster. Next, we consider the clus-
ter assignments as class labels for the flow elements and train a classifier. The
classifier trained in this manner can then perform semantic disambiguation—
eliminating the need for performing clustering on each new diagram.

We define a measure of similarity (or distance) such that flow elements in
the same cluster exhibit greater similarity in semantics amongst them than with
items in any other cluster. We compute similarity for each feature category:
relational (simr), geometric (simg), and textual (simt). We use the euclidean
distance to compute similarity between numeric attributes, a boolean measure
(1 for match, 0 for mismatch) for attributes that can be enumerated (e.g., shape,
name, color), and string edit distances (e.g., Levenshtein, Monge Elkan, Jaro) [4]
for text. The aggregate feature-based similarity of two flow elements, fiandfj , is
obtained using a linear combination of the three similarity components:

sim(fi, fj) = wr × simr(fi, fj) + wg × simg(fi, fj) + wt × simt(fi, fj)

The weights for the different components can be set either using domain knowl-
edge about the importance of different aspects of the similarity measure, or,
alternatively, by validation over a set of labeled training instances (if available).
Given the aggregated similarity measure, there are various clustering approaches,
such as agglomerative, divisive, and k-means, for iteratively improving the clus-

tering goodness. The choice of the number of clusters may be governed by a
knowledge of the number of entities in the target meta-model. After clustering
is run, the user can examine a few exemplars flow elements in each cluster to
decide a process semantic for the cluster. Then, the semantic classification (thus
obtained via clustering) of flow elements from the training corpus is used to
train a classifier, and semantic interpretation proceeds as in the supervised case.
Our empirical studies show that clustering on features similar to those listed in
Table 1 indeed groups together elements with common process semantics, and
that an unsupervised approach is almost as effective as supervised learning for
recognizing certain semantics. In practice, an unsupervised approach is always
more welcome because sound training data is hard to get.

4 Empirical Evaluation

We implemented our approach in a tool called idiscover, and conducted em-
pirical studies to evaluate its accuracy and compare it with the accuracy of a
commercial tool. We organized the evaluation to report results on both aspects
of model discovery: structural inference and semantic interpretation.

Experimental Setup As experimental data, we used a set of 185 Visio process
diagrams created as part of real business-transformation projects. We randomly
selected the diagrams from a repository of archived projects within IBM’s Service
Delivery practice11. For comparison with idiscover, we selected a top commer-
cial process-modeling tool. The Visio-import capabilities of all such tools recog-
nize diagram shapes as process elements only if the shapes come from specific
Visio stencil(s) prescribed by the tools. Moreover, they cannot resolve structural
ambiguities, such as dangling connectors and unlinked labels. The representative
tool that we selected offers support for the largest number of Visio stencils. For
proprietary reasons, we refer to the tool as pmt(Process Modeling Tool). We
employed human experts to identify the true process models captured in each
diagram and used these to compute the accuracies of idiscover and pmt.

We use precision and recall to measure accuracy. In the following equations,
Actual is the set of (manually identified) correct interpretations and Retrieved
is the set of (automatically inferred) interpretations by a tool.

Precision(P) =
|Actual ∩ Retrieved|

|Retrieved| , Recall(R) =
|Actual ∩ Retrieved|

|Actual|

4.1 Study 1: Structure Inference

Goals and Method The goal of the first study was to compare the accuracies
of the structural inference performed by idiscover and pmt. We also evaluated
how the structural ambiguities present in the dataset impact structure infer-
ence in both cases. We ran idiscover’s structure extractor to infer XML flow
11

IP issues prevent us from making this dataset public. However, an anonymized version (with
obfuscated text) is made available at https://researcher.ibm.com/researcher/files/in-debdomuk/
bpm_dataset.zip

Table 2. Occurrence of structural ambigui-
ties in the dataset.

Instances per File % Files with
Ambiguity High Average Ambiguity

Dangling Conn. 47 (100%) 3 (14%) 56
Unlinked Labels 46 (39%) 2 (3.7%) 38
Cross References 10 1 35

Table 3. Accuracy of structural infer-
ence by idiscover and pmt.

idiscover pmt
Element Precision Recall Precision Recall

Node 96.93 95.91 70.44 86.29
Edge 93.26 90.86 63.43 59.87

graphs from the Visio diagrams and compared them with actual process models,
manually identified by human experts, to measure accuracy. First, we matched
the text labels for nodes in Retrieved with those in Actual . Next, we traced the
recovered edges between matched nodes and checked if equivalent edges were
present in Actual models. Finally, we computed precision and recall for both
node and edge detection. Similarly, we validated the flow graphs produced by
pmt against the actual process models. idiscover also reports the number of
dangling connections, unlinked labels, and cross references found in the input.

Results and Analysis Table 2 lists, for each type of structural ambiguity, the
highest and average number of instances found in the files in the dataset. It
also reports the percentage of edges that are dangling, percentage of nodes and
edges that have unlinked text labels and percentage of files that have at least
one instance of the ambiguity. Over half of the files contain dangling connectors,
whereas unlinked labels and cross references occur in over a third of the files in
the dataset. The fact that 100% of connectors in some files were left dangling
suggests that certain users may be completely unaware of notions such as proper
gluing of connectors. The data indicate that structural ambiguities can occur
frequently in practice; therefore, to be useful, an automated inference technique
must handle them effectively.

Table 3 shows the average precision and recall of node and edge detection
across the dataset. The data illustrate that idiscover performs much better
than pmt. For node inference, idiscover had ≈ 27% higher precision and ≈ 9%
higher recall. For edge inference, the performance of idiscover was even bet-
ter: it achieved ≈ 30% improvement in both precision and recall. We observed
far greater correlation of the number of dangling connectors with the edge re-
call of pmt (Pearson’s coefficient, ρ = −0.48) than that with the edge recall
of idiscover (ρ = −0.08). This clearly suggests that while idiscover success-
fully resolves dangling connectors, pmt’s edge-inferencing capability is adversely
affected by their presence.

Discussion Overall, the study shows that idiscover consistently performs
better than pmt in terms of both precision and recall. The data also indicate
that structural ambiguities, which complicate automated structure inference, can
occur frequently in practice; therefore, an approach, such as ours, that effectively
deals with such ambiguities can be valuable.

We investigated the reasons for errors in node detection in both tools, and
observed the following reasons: (1) imprecise resolution of unlinked labels in
ambiguous scenarios where nearness does not suffice; (2) failure to recognize
some shapes when a group of diagram shapes represent a single node. An edge

Fig. 6. Distribution of
BPMN entities.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 500 1000 1500 2000 2500

%

Number of shapes in the dataset

Supervised vs Unsupervised Semantic Interpretation

Supervised - Recall
Supervised - Precision
Unsupervised - Recall

Unsupervised - Precision

Fig. 7. Effects of varying the dataset size.

is taken to be accurate only if its source and target nodes are correctly inferred.
Thus, although our edge-inference algorithm is highly accurate and identifies
edges precisely, the overall precision of edge inference suffers from inaccuracies
in node detection.

4.2 Study 2: Semantic Interpretation

Goals and Method The goals of the second study were to (1) evaluate the
effectiveness of different pattern-classification techniques in assigning semantics
to flow elements, and (2) compare the effectiveness of these techniques with that
of pmt. Specifically, we evaluated three supervised classification techniques—
C4.5 decision tree [14], Näıve Bayes, and Multi-layer perceptron (MLP) neural
network [13]—and an unsupervised clustering technique.

We asked human experts to create BPMN12 models for the 185 diagrams
in our dataset. To compute accuracy, we compared the semantic interpretations
of the pattern classifiers and pmt against those made by the experts.13 We
chose to evaluate interpretation of node semantics only because BPMN flow-
edge semantics can be resolved unambiguously by applying simple rules.14

To construct the training dataset for the supervised classifiers, we compared
the nodes in the flow graphs extracted by idiscover with the nodes in the
expert-created BPMN models: we obtained 2943 matches, which formed the
training set. For each node, we aggregated different features listed in Table 1.
The training set contained seven classes of BPMN entities labeled by the ex-
perts; Figure 6 shows the distribution of these entities. Therefore, for the three
supervised classifiers, we set up a 7-class classification problem using the Weka
toolkit.15 Further, to study the effects of the training-set size on the classifi-
cation accuracy, we chose the best performing classifier and experimented with
different sizes of the training set.

12
http://www.omg.org/spec/BPMN

13
Note that an expert’s interpretation may differ from the actual intent of the designer in highly
ambiguous scenarios. Nevertheless, we consider the expert’s judgment to indicate true semantics.

14
An edge that cuts across two pools is a message flow; an edge that exists between two nodes in the
same pool is a sequence flow; an edge whose source or the target is an artifact is an association

15
http://www.cs.waikato.ac.nz/ml/weka/

Table 4. 10-fold cross-validation results of se-
mantic interpretation by idiscover and pmt.

Supervised Unsuper. pmt
Class P R P R P R

Activity 92.6 91.0 89.8 88.5 66.1 84.4
Start Event 82.1 91.0 77.4 84.9 18.4 24.2
Intermediate 14.3 6.7 0 0 0 0
End Event 83.6 84.7 71.7 87.9 26.5 35.1
Gateway 96.7 97.0 90.0 97.9 93.3 92.0
Pool 100 100 99.1 92.4 76.6 87.7
Data Object 56.5 57.8 0 0 0 0

Overall 91.9 92.1 87.1 88.4 60.2 73.7

Table 5. 10-fold cross-validation results for the
three supervised classifiers.

C4.5 Näıve Bayes MLP
Class P R P R P R

Activity 92.6 91.0 90.5 81.5 90.9 91.5
Start Event 82.1 91.0 81 78.6 84.4 83.6
Intermediate 14.3 6.7 14.3 53.3 75 20
End Event 83.6 84.7 75.9 83.8 78.5 84.3
Gateway 96.7 97.0 91.2 96.2 96.2 97
Pool 100 100 100 92.7 99.6 99.8
Data Object 56.5 57.8 28.4 73.3 60 40

Overall 91.9 92.1 88.9 85.6 91.2 91.4

In the unsupervised case, we performed classification via clustering. We ran
k-means clustering using the similarity measures discussed in Section 3.2. We
computed pairwise similarity between the nodes and fed the similarity matrix to
a graph clusterer, which produced clusters representative of process semantics.
Then, a user decided the class of BPMN semantics (out of the seven classes) for
each cluster by studying a few exemplars in each cluster. Next, for each node,
we compared the process semantic assigned to its cluster and that assigned by
human experts to compute precision and recall. We also studied the classes of
semantics that come up in new clusters as we increase k in different runs of the k-
means clusterer. Finally, as in the case for supervised classifiers, we investigated
the effects of varying the dataset size on clustering results.

Results and Analysis To quantify the degree of semantic ambiguities present
in our dataset, we measured under-specification and over-specification. We found
that 79.8% of the nodes were touched by under-specification in the sense that
they were represented by shape types whose instances referred to at least two
forms of semantics. We also found each class of BPMN entity to be over-specified:
i.e., it was represented by more than one shape in the dataset.

Table 4 reports 10-fold cross-validation results (of precision and recall) over
the training dataset for the best-performing supervised classifier and the unsu-
pervised classifier; it also presents the precision and recall results for pmt. We
find that overall precision and recall of both pattern-classification approaches
are ≈ 90% (within 5% of each other); and they are over ≈ 20% higher than that
of pmt. We observe that the classification approaches fare well in recognizing
most BPMN entities present in the dataset except for intermediate events and
data objects, which together constituted only 3% of the dataset. Top discrim-
inating features were noted to be: isContained, indegree, outdegree, and shape
name. pmt could detect only gateways and pools with high precision.

Table 5 reports the accuracy results for the three supervised classifiers. We
find that C4.5 decision tree performs the best, MLP neural network is almost
as effective, and Näıve Bayes is less effective by a few percentage points. Fig-
ure 7 evaluates both supervised and unsupervised approaches on a constant test
dataset of 443 nodes (not part of the training data), when the training dataset
size is varied from 500 through 2500. We find that the variation in results be-
tween the least and the greatest sizes of the training set is as low as ≈ 4%.

Table 6. 10-Fold Cross Validation Results on a balanced dataset.

Class Precision Recall

Activity 85.3 89.3
Start Event 100 87.5
Intermediate 64.3 56.3
End Event 93.3 87.5
Gateway 89.2 100
Pool 100 100
Data Object 80.5 90.1

Overall 87.5 87.2

Moreover, the curves show less than 2% deviation as we increase the size beyond
1000 nodes.

Figure 6 shows that the proportion of process model entities in our data set
was heavily skewed toward activities. In order to study the effects of the distri-
bution of process model entities on our approach, we filtered out a completely
balanced subset of observations. There were only 16 intermediate events in the
original dataset, so we randomly chose 16 instances for each entity to form our
balanced dataset. Table 6 lists precsion and recall results, obtained via cross val-
idation, when we ran a C4.5 decision tree learner on this balanced set. Here, we
observe that the accuracies in interpreting intermediate events and data objects
have improved considerably. However, the overall results are not as good because
the dataset size is much smaller (only 112 observations).

In the unsupervised case, for k = 5, we obtained clusters that represented
activity, pool, gateway, start event, and end event. However, on increasing k
beyond 5, we observed that the new clusters represented new process semantics,
such as join/merge, fused merge, branch points, etc., but they did not isolate
data objects or intermediate events, which are part of our target set.

Discussion Figure 7 indicates that the classification approach could work just
as well with only a third of our current dataset size. However, for such approaches
to succeed, the input set should have a balanced distribution of target model en-
tities. We missed two BPMN classes because they existed only as fringe entities,
but we were able to recover them from a balanced dataset.

The results show that clustering is indeed effective in grouping together re-
lated process semantics. The relational features and shape name were found to
be the most discriminative features. The set of cues words for gateways emerged
as the top textual feature. We realize that textual features need to be mod-
eled more effectively, e.g., by capturing the relative position of words within a
sentence, performing parts-of-speech tagging, and using WordNets.

5 Related Work

Although informal expressions of business process designs are extremely com-
mon, (to the best of our knowledge) there is no existing research that addresses
the problem of automatically understanding process diagrams. Moreover, there

have been no studies of the challenges that arise in interpreting diagrams created
using stencil-based tools, such as Visio, Powerpoint, and Dia.

However, there exists a large body of work in the area of understanding line
drawings and hand sketches (e.g., [1, 3, 9, 15]). The primary problem addressed
by sketch recognition is that of identifying various shapes present in a diagram;
semantic interpretation follows directly from a fixed mapping between the ge-
ometry of source shapes and the semantics in the target metamodel [3, 9]. In
contrast, the primary challenge in inferring formal process models from informal
flow diagrams is the detection of higher-level semantics—the basic shapes are
readily parsable from the diagram format. Thus, unlike the research in sketch
recognition, our work focuses on semantic interpretation of informal diagrams.

Gross [8] presents an approach for sketch interpretation, which consists of:
low-level glyph recognition, detection of spatial relations among glyphs, and
assembly of glyphs into high-level configurations. Although the approach is or-
ganized in a similar manner as ours, the high-level structural patterns (e.g., tree
and polyline) that they discover do not have any semantic significance. More-
over, polyline recognizers in these sketching tools can detect only pre-specified
patterns of inter-linked lines and are not as general as our edge-inference algo-
rithm. Barbu et al. [2] apply frequent graph discovery to symbol recognition from
line drawings: their approach extracts a feature vector to represent nodes and
applies an unsupervised hierarchical clustering algorithm. Unlike our approach,
they focus on inferring graphic symbols only and not semantic classes. Also, we
consider a richer set of features that includes higher-level relational attributes,
such as indegree and outdegree.

Approaches in visual language theory (e.g., [6, 7, 16]) rely on upfront codifica-
tion of the production rules for interpretation. Such codification becomes hard in
the presence of local styles of diagramming (individual, group, or organization-
based). Our work can be viewed as the first step toward learning such grammars.
Wittenburg [16] shows that relational grammars are required to parse process
modeling constructs. Our current work attempts semantic classification at the
level of a single node. Future work can attempt learning more complex relational
patterns involving a sequence of nodes (e.g., loop, fork, and merge).

6 Conclusions and Future Work

We presented a comprehensive approach for discovering formal process models
from informal process diagrams that contain structural and semantic ambigui-
ties. We presented techniques for resolving the structural ambiguities to extract
precisely a flow graph underlying a process diagram. We also showed that stan-
dard pattern-classification techniques can be successfully employed in interpret-
ing process semantics if the features space is carefully modelled. Our approach
mimics human reasoning used in recognizing diagram semantics: it models re-
lational, geometric, and textual attributes of flow elements as features during
pattern classification, instead of simply relying on shape name (as given in the
stencil) as existing tools do. Our empirical results showed that unsupervised
clustering can almost match supervised techniques in performance; thus, such
an approach can work in practical scenarios where sound training data may not

be available. Our tool, idiscover, has better precision and recall, in both struc-
tural inference as well as semantic interpretation, than the state-of-the-art Visio
import capabilities.

Future work can strive to improve the precision and recall of semantic in-
terpretation through more efficient modeling of textual cues because text is the
only reliable feature in highly ambiguous scenarios. Label association can also
be perfected by tracking spatial patterns of label assignments that emerge due
to local styles followed by designers. Finally, future research can investigate the
identification of higher-level relations (block structures) between model entities
(e.g., sub-process, loop, and fork-merge) and extend the approach to other vari-
eties of flow diagrams.

Acknowledgements We would like to thank Indrajit Bhattacharya, David Marston,

Juhnyoung Lee, Rakesh Mohan, Sugata Ghosal and Kathleen Byrnes for their valuable

inputs and many useful discussions on the topic. We thank Vanitha Nachimuthu and

Mary Joshua for their efforts in preparing the training data.

References
1. A. Apte and T. Kimura. Recognizing multistroke geometric shapes: an experimen-

tal evaluation. In Proc. of ACM UIST, pages 121–128, 1993.
2. E. Barbu et al. Frequent graph discovery: Application to line drawing document

images. Electronic Letters on Computer Vision and Image Analysis, 5(2), pages
47–57, 2005.

3. Q. Chen, J. Grundy, and J. Hosking. SUMLOW: early design-stage sketching of
UML diagrams on an E-whiteboard. Software Focus, 38(9), pages 961–994, 2007.

4. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A Comparison of String Distance
Metrics for Name-Matching Tasks. In IIWeb, pages 73–78, 2003.

5. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley, New York,
2001.

6. R. P. Futrelle et al. Understanding diagrams in technical documents. IEEE Com-
puter, 25(7), pages 75–78, 1992.

7. E. Golin and S. Reiss. The specification of visual language syntax. In IEEE
Workshop on Visual Languages, pages 105–110, 1989.

8. M. Gross. Recognizing and interpreting diagrams in design. In Workshop on
Advanced Visual Interfaces, pages 88–94, 1994.

9. T. Hammond. Tahuti: A geometrical sketch recognition system for UML class
diagrams. In ACM SIGGRAPH 2006 Courses, pages 25, 2006.

10. J. Iivari. Why are CASE tools not used? Communications of ACM, 39(10), pages
103, 1996.

11. A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE
Transactions on pattern analysis and machine intelligence, 22(1), pages 4–37, 2000.

12. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
13. S. Pal and S. Mitra. Multilayer perceptron, fuzzy sets, and classification. IEEE

Transactions on Neural Networks, 3(5), pages 683–697, 1992.
14. J. Quinlan. C4. 5: Programs for Machine Learning. Morgan Kaufmann, 2003.
15. D. Rubine. Specifying gestures by example. In Proc. of the Conf. on Computer

graphics and interactive techniques, pages 329–337, 1991.
16. K. Wittenburg and L. Weitzman. Relational grammars: Theory and practice in

a visual language interface for process modeling. Visual language theory, pages
193–217, 1998.

