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A Hybrid Algorithm for Error Trace Explanation

Vijayaraghavan Murali1, Nishant Sinha2, Emina Torlak3, and Satish Chandra4

1 NUS, Singapore 2 IBM Research, India 3 UC Berkeley, USA 4 Samsung Electronics, USA

Abstract. When a program fails, the cause of the failure is often buried in a
long, hard-to-understand error trace. We present a new technique for automatic
error localization, which formally unifies prior approaches based on computing
interpolants and minimal unsatisfiable cores of failing executions. Our technique
works by automatically reducing an error trace to its essential components—a
minimal set of statements that are responsible for the error, together with key
predicates that explain how these statements lead to the failure. We prove that our
approach is sound, and we show that it is useful for debugging real programs.

1 Introduction

Understanding why a program failed is the first step toward repairing it. But this first
step is also time-consuming and tedious. It involves examining the error trace of a fail-
ing execution (typically generated by print statements), reducing that trace to statements
relevant to the error, and figuring out how the relevant statements transform program
state to cause the observed failure (e.g., an assertion violation). Although debuggers aid
this process by providing watchpoints and breakpoints, it is still a mostly manual task
that relies heavily on programmer intuition about the code. In particular, classic debug-
gers cannot remove irrelevant statements from the error trace to help the programmer.

1 x=3; x = 3
2 y=5;

3 z1=y+x; z1 = y + 3,x = 3

4 z2=y-x; z1 = z2 + 6

5 assert(z2>z1); false

Fig. 1. Explaining error traces using abstract la-
bels after each statement

Dynamic slicing [1, 36] was intro-
duced as a way to automatically remove
irrelevant statements from the trace. Slic-
ing is done using dependency informa-
tion (data or control), removing state-
ments that do not impact the violated as-
sertion via any chain of dependence. The
main limitation of dynamic slicing is that
it does not consider the semantics of the
bug, which can result in irrelevant state-
ment being retained. For example, in the
error trace shown in the left column of
Figure 1, dynamic slicing cannot rule out
statement 2, whereas at a semantic level,
the value of y is irrelevant.

In this paper, we propose a new semantics-aware technique for analyzing error
traces and for helping programmers understand the cause of an error. Given an error
trace, our algorithm produces a slice of the original trace annotated with abstract labels
explaining the failure. For example, our algorithm produces the slice {1, 3, 4, 5} for the



trace in Figure 1, along with the explanatory labels highlighted in gray, which show
why the assertion z2>z1 fails. We call such an annotated slice an error explanation.

Briefly, given an error trace, our technique computes an error explanation in two
steps. First, it computes an interpolant for each statement in the original trace. An in-
terpolant is a formula that captures the effect of a given statement on the program state
(as defined in Section 2), and in the context of error explanation, interpolants serve
as explanatory labels. Next, the trace is sliced by eliding all statements that are sur-
rounded by identical labels. Throughout this paper, we make use of two conventions:
(i) the interpolant before the first statement of a trace is always true , which will not be
shown, and (ii) if a particular statement does not have a label after it, the previous label
is assumed to be present there. In our example (Figure 1), this approach would elide
statement 2, which is semantically correct.

A slice produced by our algorithm is sound in that it fails for every binding of its
free variables to values (such as the variable y for our example subtrace), and it is min-
imal in that it cannot be reduced any further without loss of soundness. Our technique
guarantees both soundness and minimality by exploiting two central results of this pa-
per. The first result is a theorem characterizing a class of interpolant labelings, which
we call inductive interpolant labelings (IILs), that always lead to sound slices. The sec-
ond result is a theorem relating slices induced by “maximally stationary” IILs, in which
labels remain unchanged over a maximal set of statements (this is defined precisely in
Section 3), to minimal unsatisfiable cores (MUC) of the formula that encodes the trace
semantics. Informally, a MUC is an unsatisfiable fragment of a formula that becomes
satisfiable if any of its constraints are removed. The formula for our example trace
(Fig. 1) is shown below, and the constraints comprising its sole MUC are highlighted in
gray:

x = 3 ∧ y = 5 ∧ z1 = y + x ∧ z2 = y − x ∧ z2 > z1

Our technique uses this MUC to produce the maximally stationary IIL shown in the
figure, which leads to the sound and minimal slice {1, 3, 4, 5}.

1 a[2]=0; a[2] = 0

2 i=h; a[2] = 0, h = 1, i = h

3 i++; a[2] = 0, h = 1, i = 2

4 v=a[i]; h = 1, i = 2, v = 0,h ≤ j, j ≤ 1

5 j=j-h; h = 1, i = 2, v = 0, j = 0

6 a[j]=v; a[0] = 0

7 assert(a[0]==11 ∧ a[1]==14); false

Fig. 2. Error explanation by [12] for shell-sort

Previous work [12] that uses
interpolant-based slicing tries to
increase stationariness by ad hoc
ways without respecting the in-
ductive property of labeling (see
Sec 2.2 for a quick summary). This
can lead to unsound slices. As an
example of such unsoundness, con-
sider the faulty shell-sort program
from [12], which we will investi-
gate in detail in Sec. 5.1 (Fig. 7).
The technique in [12] returns the
annotated sliced trace shown in
Fig. 2 (taken from Fig. 4 of [12]).
Although the slice annotation con-

sists only of interpolant labels, the slice is unsound because it does not violate the



assertion in the following environment:

{h 7→0, j 7→2, a[0] 7→11, a[1] 7→14}

The unsoundness is due to the omission of several statements that set the variables h
and j. These statements are necessary for reproducing the failure, and they are included
in the sound slice computed by our algorithm (Fig. 7).

This paper makes the following contributions:

1. We formally characterize error explanations using the notion of inductive inter-
polant labelings, which may be viewed as special kind of Hoare proofs.

2. We characterize two key properties of error explanations: soundness and minimal-
ity. We show that IILs form sound error explanations.

3. To characterize minimality, we introduce a new notion of maximally stationary
labelings. We show that computing these labelings is equivalent to computing MUC
of the path formula of the failing trace.

4. Finally, we propose a new hybrid algorithm which combines interpolant computa-
tion with a black-box MUC computation procedure to compute sound and minimal
error explanations. We have implemented this algorithm and applied our prototype
to two small case studies.

The rest of the paper is organized as follows. Section 2 reviews the background
material on MUCs, interpolants, and the corresponding trace minimization methods.
Section 3 establishes formal properties of a restricted, but sound, form of interpolant
labeling, and the notion of minimality of slices. These properties are exploited in Sec-
tion 4 to develop our new algorithm for error trace explanation. We evaluate the efficacy
of the algorithm in Section 5, discuss related work in Section 6, and present concluding
remarks in Section 7.

2 Preliminaries

Our work is related to two previous techniques ([20] and [12]). We give a brief overview
of those techniques and introduce the necessary terminology along the way. Both of
these utilize the path formula Φπ corresponding to a failing execution path π in a pro-
gram P . The formula Φπ takes the form ι ∧ F ∧ ε, where ι is the input that triggered
the failure of the assertion ε in P , and F = (φ1 ∧ φ2 · · · ∧ φn) is the SSA encoding of
π. Because π violates ε, the path formula Φπ is unsatisfiable.

2.1 Unsatisfiable Core based Error Trace Explanation

Every unsatisfiable formula Φ = φ1 ∧ . . . φn contains one or more unsatisfiable cores,
which are subsets ofΦwhose conduction is unsatisfiable. When every proper subset of a
core is satisfiable, it is called a minimal unsatisfiable core (MUC) [32]. An unsatisfiable
formula Φ also contains one or more satisfiable subsets. When every proper superset
of such a subset is unsatisfiable, we call it a maximal satisfiable subset (MSS). The



complement of an MSS is called a minimal correcting subset (MCS), which denotes a
minimal subset of Φ whose removal from Φ will make it satisfiable again. The set of
MUCs and the set of MCSs of Φ are duals of each other [21]: one can be obtained by
computing the irreducible hitting sets of the other.

Computing MCSs (or, dually, MUCs) of a path formula Φπ identifies the relevant
statements in a trace π [20]. For the example in Fig. 1, this method might first compute
an MCS consisting of the statement on line 1, which would be flagged as a possible fix
for the error. If the programmer wanted to see another repair candidate, the technique
would compute another MCS, consisting of the statement on line 3, and so on. This
process eventually flags all MCSs, covering all the statements in each MUC. It would
not flag the statement on line 2, because it does not appear in any MUC of the trace.

2.2 Interpolants-based Error Trace Explanation

Given a pair of formulasA andB, where ¬(A∧B) holds, an interpolant ofA andB [8],
denoted by Itp(A | B), is a formula I over the common symbols of A and B such that
A ⇒ I and B ⇒ ¬I . Given an indexed set (or sequence) of formulas Φ = [Ai]

n
i=1,

such that
∧
Φ = false, let Ai = [Ak]

i
k=1 and Bi = [Ak]

n
k=i+1 for some 1 ≤ i ≤ n.

An interpolation sequence for Φ is a sequence I = [Ii]
n
i=0, such that the following

holds: (i) I0 = true and In = false; (ii)
∧
Ai ⇒ Ii and

∧
Bi ⇒ ¬Ii, where each Ii

is an interpolant; and (iii) each Ii is over symbols common to the sets Ai and Bi. The
sequence I is said to be inductive if for each Ii, Ii ∧ Ai+1 ⇒ Ii+1. An interpolant
sequence for a path formula F (which is itself a sequence [ι, φ1, . . . , φn, ε], with SSA
subscripts dropped), shows the intermediate state abstractions that lead to the error, and
hence constitutes an explanation for why π failed.

Ermis et al [12] compute interpolant labelings in the following way. First, they ob-
tain a sequence of candidate interpolant labels from a theorem prover for each location
along the failing path. This initial set of labels is then minimized by a greedy procedure
which substitutes an interpolant at a given location, say Ij , by one from another loca-
tion, say Ik, and checks if Ik is an interpolant at location j. If this greedy substitution
succeeds, then all statements between the two program points are deemed irrelevant
and sliced away. We show that this greedy technique may produce unsound labelings
(defined below) and hence cannot be used in general for computing error explanations.
(We caution the reader that the term ‘inductive’ is used in [12] in a different sense than
in this paper.)

2.3 Labeling and Sound Slices

Given a program trace π = [Si]
n
i=1, a labeling L for π is the sequence of labels [Ii]ni=0.

An error labeling L for a failing path π consists of labels which form an interpolant
sequence for π. We say that L is stationary across Si, denoted st(L, i) iff Ii−1 ≡ Ii. A
labeling L for π induces a slice ρ = {Si ∈ π|¬st(L, i)} that excludes statements in π
across which L is stationary.

We say that ρ is a sound slice of π iff the path formula for ρ is unsatisfiable. Intu-
itively, this means that ρ is also a failing path. Instead of saying that the path formula



for π is unsatisfiable, for simplicity we say that π is unsatisfiable or π contains an un-
satisfiable core.

3 Desired Properties of Error Explanations

In this section, we discuss two key properties for error explanations: soundness and
minimality. We first exemplify that explanations based on unrestricted interpolant la-
belings are not guaranteed to be sound. We then introduce the defining properties of
sound and minimal explanations.

3.1 Sound Error Explanations

Figure 3(a) shows an error trace with a valid interpolant labeling (i.e., every label is
a valid interpolant at its location), which however, corresponds to an unsound error
explanation. According to this explanation, statements 1 and 3 are irrelevant to the error,
because both are surrounded by stationary labels (true and z = 1, respectively). But
removing statements 1 and 3 from the trace leaves the variables z and x1 unconstrained,
which renders the rest of the trace satisfiable.

1 z=1;

2 x=3; z = 1
3 x1=x+1;

4 z1=z+1; z1 = 2

5 assert(x1>5 && z1>5); false

1 z=1; z = 1
2 x=3;
3 x1=x+1;

4 z1=z+1; z1 = 2

5 assert(x1>5 && z1>5); false

(a) (b)

Fig. 3. Problem with interpolants as labels for error explanation

Hoare	  proofs	  

Interpolant	  labelings	  

IILs	  

Maximally	  sta6onary	  IILs	  

Fig. 4. Relating Hoare proofs, Inter-
polant labelings and IILs.

The basic problem of general interpolant la-
belings is that a labeling as a whole may be un-
sound, even when the individual labels are valid
interpolants. To ensure soundness (Theorem 1),
we restrict the space of admissible sequences of
interpolant labels to include only inductive inter-
polant labelings (IILs). An IIL is a sequence of
interpolants that satisfies the inductive property
(cf. Sec. 2)—each interpolant in an IIL must result
from the conjunction of the preceding interpolant
and the intervening program statement. That is, if
I1 and I2 are the interpolant labels before and af-
ter a statement S, then I1 ∧ S =⇒ I2.
Remark. IILs correspond to a Hoare proof for a

failing path π, i.e., {Ij−1}Sj{Ij} is a valid Hoare triple for each 1 ≤ j ≤ n. In an
arbitrary Hoare proof for failure of π (with true and false as the first and last labels



respectively), the assertion labels are inductive but not interpolants, i.e., they may con-
tain symbols local to either the prefix or the suffix. Also, interpolant error labelings do
not form a Hoare proof, in general, because they may not be inductive. IILs both corre-
spond to a Hoare proof as well as contain labels only over symbols common to the prefix
and the suffix. Fig. 4 shows the general relationship between Hoare proofs, interpolant
labelings and IILs visually (maximally stationary IILs are explained in Sec. 3.2).

It is easy to see that the inductive property forbids the labeling sequence in Fig. 3(a),
as true∧ x = 3 6=⇒ z = 1. A possible IIL for this trace is given in Fig. 3(b), and it is
the labeling computed by our method (Section 4). To the best of our knowledge, none
of the previous methods for interpolant-based error explanation (including [12, 31])
guarantee the inductive property, nor any alternative soundness condition (see Sec. 6).

Theorem 1. (Sound Error Labelings)
If an error labeling L for π is an inductive interpolant labeling (IIL) then the sliced
error path π′ induced by L is sound.

Proof. W.l.o.g., assume that exactly two statements Sj and Sk (j < k) are sliced away
from the error path π to obtain π′. Now, we know the following:

(1) Ij is the same as Ij−1 and Ik is the same as Ik−1, because Sj and Sk are sliced
away

(2)
∧
{S1, . . . , Sj−1} =⇒ Ij−1 (Interpolant property)

(3) Ik ∧
∧
{Sk+1, . . . Sn} is unsatisfiable (Interpolant property)

This means Ik−1 ∧
∧
{Sk+1, . . . Sn} is unsatisfiable (1)

(4) Ij ∧
∧
{Sj+1, . . . , Sk−1} =⇒ Ik−1 (Inductive property)

This means Ij−1 ∧
∧
{Sj+1, . . . , Sk−1} =⇒ Ik−1 (1)

From (2) and (4), we have
(5)

∧
{S1, . . . , Sj−1, Sj+1, . . . , Sk−1} =⇒ Ik−1

From (3) and (5), we have
(6)

∧
{S1, . . . , Sj−1, Sj+1, . . . , Sk−1, Sk+1, . . . , Sn} is unsatisfiable.

This set contains all statements in the error path π except Sj and Sk and so repre-
sents the sliced error path π′. Hence, the path formula for π′ is unsatisfiable, and π′ is
sound (cf. Sec. 2). The proof can be directly extended to arbitrary number of statements
sliced away. ut

3.2 Minimal Error Explanations

Our goal is to compute not only sound but also minimal error explanations, which suc-
cinctly explain the fault to the developer. No formal criteria for characterizing minimal
explanations are known. To characterize the minimality of explanations, we propose a
new criteria based on their stationariness.

Maximally Stationary Labeling. An IIL L is maximally stationary for a failing path
π iff there exists no IIL L′ (with induced slices πL and πL′ respectively), such that



πL ⊂ π′L. In order to compute maximally-stationary IILs efficiently, we show that they
correspond exactly to the MUC of the path formula for π (Theorem 2). To prove this
result, we need the following lemma which says that for any unsatisfiable core M of π,
there exists an IIL stationary across all the statements S excluded from the core.

Lemma 1. LetM be an unsatisfiable core for a failing path π and S ⊂ π. If S∩M = ∅,
then there exists an IIL L which is stationary across each statement in S.

PROOF. Let |M | = l. Let π′ = [Sik ]
l
k=1 be the projection of π = [Sj ]

n
j=1 on to M such

that each Sik ∈ M and 1 ≤ i1 < i2 · · · < il ≤ n. Because M is unsatisfiable, there
exists an IIL L′ = [Iik ]

l+1
k=1 for π′, where for each ik,

(1) Iik ∧ Sik ⇒ Iik+1
(2) Iik = Itp(ι ∧ Si1 ∧ . . . ∧ Sik−1

| Sik ∧ . . . ∧ Sil ∧ ε).
Given a statement S ∈ S, we will show how L′ can be extended to an IIL for M ∪{S}.
Assuming S occurs at position p in π, where ik−1 < p < ik, we extend L′ to L′′ by
copying Iik across S: (Ii1)Si1 . . . Sik−1

(Iik)S(Iik)Sik(Iik+1
) . . . Sil(Iil+1

).
It follows from (1) and Iik ∧S ⇒ Iik that L′′ is inductive. To prove that each label is an
interpolant, consider labels Iim where m < p. It follows from (2) that (ι ∧ Si1 ∧ . . . ∧
Sim−1)⇒ Iim . Also, (Sim∧. . . Sil∧ε)⇒ ¬Iim . Hence, (S∧Sim∧. . . Sil∧ε)⇒ ¬Iim .
Also, each Iim is defined only over the shared symbols at position m in L′′. The proof
is similar for m > p. By extending L′ for each S ∈ S iteratively, we obtain an IIL for
π. ut

Using Lemma 1, we can now prove our main theorem.

Theorem 2. An IIL L for a failing trace π is maximally stationary iff the induced slice
of L forms a MUC.

PROOF. We show that (⇒) the slice induced by a maximally stationary IIL forms a
MUC, and (⇐) for every MUC M of π, there exists a maximally stationary IIL whose
induced slice is equivalent to M . Both proofs are by contradiction.
(⇒) Suppose the slice M induced by L is not a MUC. Then there exists an S ∈ M ,
such that M \ {S} is unsatisfiable. So, by Lemma 1, there is an L′ whose induced slice
is M \ {S} ⊂M . So, L is not maximally stationary.
(⇐) By Lemma 1, there exists an IIL L whose induced slice is exactly M . Suppose L
is not maximal. So there exists IIL L′ with induced slice M ′ ⊂ M . Because L′ is an
IIL, it follows from Theorem 1 that the slice M ′ is sound, i.e., M ′ is also unsatisfiable.
So M is not a MUC. ut

In the next section, we exploit this relation between maximally stationary IILs and
MUCs to propose a new error explanation algorithm which computes maximally sta-
tionary IILs by using a MUC computation engine as a black-box. Thus the algorithm is
able to benefit directly from the advances in techniques for computing MUC.

4 A Hybrid Algorithm for Error Trace Explanation

We now present a new algorithm for error trace understanding that combines the bene-
fits of MUCs and interpolants. Fig. 5 shows the pseudocode for GENLABELS, the main
procedure of our algorithm, to which the error path π ≡ {S1, S2, . . . , Sn} is provided.



GENLABELS (π ≡ S1, S2 . . . , Sn)
1: let C := GETCORE (π) be {Sc1 , Sc2 . . . , Scm} s.t. c1 < c2 . . . < cm
2: I0 := true
3: for i := 1 to n do
4: if Si occurs in C then
5: let i ≡ ck for some k
6: V := vars (Ii−1 ∧ Si)
7: V ′ := vars (Sck+1 ∧ Sck+2 . . . ∧ Scm )
8: Ii := ∃ (V ∩ V ′).(Ii−1 ∧ Si) (eliminate irrelevant variables)
9: else
10: Ii:= Ii−1

11: endfor
12: return {I0, I1 . . . , In}

Fig. 5. Generating IILs from unsatisfiable cores

W.l.o.g we assume that the input ι and the violated assertion ε are included in π. GEN-
LABELS computes an IIL L for the failing trace π.

GENLABELS starts by obtaining an unsatisfiable core of π by calling GETCORE
(line 1). GETCORE is a procedure that returns some unsatisfiable core (not necessarily
minimal) of the given formula, while maintaining the relative ordering of constraints
(statements) in the formula. For any core C, our algorithm computes an IIL, which, by
definition, induces a sound slice. If C is a MUC, the algorithm computes a minimal IIL.

Line 2 initializes I0 to true, the first label for any error trace. Then, for each state-
ment Si it does the following. If Si occurs in C (line 4), it computes a set V , which is the
set of variables in the conjunction of the previous label Ii−1 and the current statement
Si (line 6). It also computes V ′, the set of variables in statements that appear in the
unsatisfiable core C sequentially after Si (line 7). Now, the set V ∩V ′ will represent the
set of variables that appear in both Ii−1 ∧ Si and the the statements in the core follow-
ing Si. The complement of this V ∩ V ′ represents the variables that are not common to
Ii−1 ∧ Si and the statements in the core following Si.

On line 8, all variables in the set V ∩ V ′ are existentially quantified and eliminated
from the formula Ii−1 ∧ Si. The resulting formula is the label Ii after Si. This step
results in Ii being the “projection” of Ii−1 ∧ Si onto the variables of the statements
in C that follow Si—i.e., Ii is a formula only over the variables in V ∩ V ′. Finally, if
the current statement Si is not in the core C, line 10 sets Ii to be the same as Ii−1. In
Sec. 4.2, we prove that the labels generated in this way form an IIL for π.

As an example, consider the trace in Fig 1. Given π ≡ {x = 3, y = 5, z1 =
y + x, z2 = y − x, z2 > z1}, assume that GETCORE returns the MUC C ≡ {x =
3, z1 = y + x, z2 = y − x, z2 > z1}. Our algorithm first initializes I0 to true. For
the first statement S1 ≡ x = 3, it sets V to be the variables in I0 ∧ S1, i.e., {x},
and V ′ to be the variables in S3 ∧ . . . ∧ S5, i.e., {x, y, z1, z2}. Now, I1 is the formula
∃{y, z1, z2}.(true ∧ x = 3), which yields x = 3 after quantifier elimination. The
second statement, y=5, is not in C so we generate the same label x = 3 after it. For
S3 ≡ z1 = y+x, the sets V and V ′ would be {x, y, z1} and {x, y, z1, z2} respectively.



Thus I3 is the formula ∃{z2}(x = 3∧z1 = y+x), which is equivalent to the quantifier-
free x = 3 ∧ z1 = y + 3.

The final label I4 is interesting: V is the set of variables in I3∧S4, i.e., {x, y, z1, z2},
and V ′ is the set {z1, z2}. Therefore I4 is ∃{x, y}(z1 = y + 3 ∧ x = 3 ∧ z2 = y − x).
Eliminating the quantifier yields z1 = z2 + 6, a predicate that is not obvious from the
program. This shows that regardless of the value of y, z1 is 6 more than z2, which is
why the assertion z2 > z1 failed. It can be seen that each label is indeed an interpolant
and the sequence is inductive, as we will formally prove in Sec. 4.2.

4.1 Discussion on the Algorithm

Our algorithm can be seen as a variation on strongest postcondition (SP) and weak-
est precondition (WP) computation [9]. In general, SP and WP labels may not be
interpolants—particularly, they may carry variables not common to the prefix and suf-
fix at a program point—because they only utilize information from “one direction”
(forward for SP and backward for WP). Our algorithm fixes this by using MUCs to ob-
tain, in the forward direction, the set of relevant statements so far and, in the backward
direction, the set of variables to project away. With this knowledge, our algorithm is
able to combine the benefits of forward and backward reasoning.

Nevertheless, even if the restriction of interpolants to be only on common variables
is relaxed, SP and WP rarely keep the labels stationary. Fig. 6 shows the same example
from Fig. 3 but labeled with (a) WP and (b) SP. It can be seen that neither is stationary
at any point along the trace, hence no statement is removed from their induced slices.

1 z=1; z ≤ 4

2 x=3; x ≤ 4 ∨ z ≤ 4

3 x1=x+1; x1 ≤ 5 ∨ z ≤ 4

4 z1=z+1; x1 ≤ 5 ∨ z1 ≤ 5

5 assert(x1>5 && z1>5); false

1 z=1; z = 1

2 x=3; z = 1, x = 3

3 x1=x+1; z = 1, x1 = 4

4 z1=z+1; z1 = 2, x1 = 4

5 assert(x1>5 && z1>5); false

(a) (b)

Fig. 6. WP and SP may keep irrelevant statements in the explanation

Our algorithm uses the GETCORE procedure to project out variables unnecessary to
an explanation that corresponds to an unsatisfiable core (for which we typically use a
MUC). In Fig. 3(b), having prior knowledge of a particular MUC that excludes the con-
straint x = 3 allows our algorithm to project away x, keeping the interpolant stationary
across the statement x=3.1 Without the knowledge of such a core—e.g., if GETCORE
were to return the entire trace—the algorithm would have no basis to project away x.
It is this lack of “global knowledge” that makes explanations based purely on an in-
terpolant computation (using WPs, SPs, or similar methods) less powerful than those
seeded with a MUC.

1 We could have also produced another IIL corresponding to the other MUC, removing the
statement z=1 in that case.



We remark that we made the design choice of using quantifier-elimination in our
algorithm for two reasons. Firstly, we do not need to depend on an interpolating the-
orem prover or construct a refutation proof of the formula. Secondly, this approach
exposes an interesting connection to SP and WP, as seen above. Having said that, our
algorithm can be easily extended to use proof-based interpolation procedures [24, 11]
by first obtaining the refutation proof p corresponding to an unsatisfiable core of π and
then computing inductive interpolants from p.

We note that our algorithm is a constructive embodiment of Lemma 1 regardless
of what GETCORE returns. When GETCORE returns a MUC, the algorithm produces
a minimal IIL. Without a MUC, it returns a sound but non-minimal IIL. In general,
minimal IILs are difficult to compute directly from failing paths: Theorem 2 enables us
to obtain them by first computing a MUC.

4.2 Properties of the Algorithm

We present formal proofs that our algorithm generates IILs for every error trace π, thus
inducing sound slices (Theorem 1).

Lemma 2. (Labels are inductive)
If Ii−1 and Ii are the labels generated by our algorithm before and after a statement Si
respectively, then Ii−1 ∧ Si ⇒ Ii

PROOF. Assume that GETCORE returned some unsatisfiable core C of the error path.
If Si did not appear in C, then according to the algorithm (line 10), Ii is the same as
Ii−1, and we are done since Ii−1 ∧ Si ⇒ Ii−1.

If Si did appear in C, then Ii ≡ ∃V ′′.(Ii−1 ∧ Si) where V ′′ is as defined in the
algorithm (lines 6-8). Assuming the theory of Ii−1 ∧ Si supports quantifier elimina-
tion, Ii−1 ∧ S ⇒ ∃V ′′.(Ii−1 ∧ Si) since quantifier elimination from a formula entails
abstraction. Therefore Ii−1 ∧ Si ⇒ Ii.

Note that by transitive closure of the inductive property, for a sequence Si . . . Sj of
statements, Ii−1 ∧

∧
{Si, Si+1 . . . Sj} ⇒ Ij .

Lemma 3. (Labels are interpolants)
Let the error path π ≡ S1, S2 . . . , Si, . . . , Sn. If Ii is the label generated by our algo-
rithm after Si, then Ii is an interpolant. That is,

(a)
∧
{S1, . . . , Si} ⇒ Ii

(b) Ii ∧
∧
{Si+1, . . . , Sn} is unsatisfiable

(c) Ii is a formula only on the common variables of {S1, . . . , Si} and {Si+1, . . . , Sn}

PROOF. Base case: true is an interpolant before S1 (or after an implicit empty S0) since
it satisfies (a), (b) and (c).

Assume that Ii−1 is an interpolant after Si−1.

(a)
∧
{S1, . . . , Si−1} ⇒ Ii−1 (hypothesis), and Ii−1 ∧Si ⇒ Ii (Lemma 2). Therefore,∧
{S1, . . . , Si} ⇒ Ii



(b) Ii−1 ∧
∧
{Si, . . . , Sn} is unsatisfiable (hypothesis).

Consider the case Si not occurring in C. Then, Ii−1 ∧
∧
{Si+1, . . . , Sn} is unsat-

isfiable (from hypothesis). The algorithm in this case sets Ii to be Ii−1. Therefore,
Ii ∧

∧
{Si+1, . . . , Sn} is unsatisfiable.

Consider the case Si occurring in C. Then, Ii−1∧
∧
{Sck , Sck+1

, . . . , Scm} is unsat-
isfiable, where i = ck and {Sck+1

, Sck+2
, . . . , Scm} is a subset of {Si+1, . . . , Sn}.

We assume that the quantifier elimination is such that Ii ≡ ∃V ∩ V ′(Ii−1 ∧ Si)
is the strongest formula implied by Ii−1 ∧ Si on the variables V ∩ V ′. That is, Ii
is equivalent to Ii−1 ∧ Si on V and V ′. We also know that V ′ ≡ vars (Sck+1

∧
Sck+2

. . .∧Scm ). This entails Ii∧
∧
{Sck+1

, Sck+2
, . . . , Scm} is unsatisfiable. There-

fore, Ii ∧
∧
{Si+1, Si+2, . . . , Sn} is unsatisfiable.

(c) We in fact prove a stronger version of (c): that Ii is only on the common variables of
{Sc1 , Sc2 , . . . , Sck} and {Sck+1

, Sck+2
, . . . , Scm} for some k where the former is

a subset of {S1, S2, . . . , Si} and the latter is a subset of {Si+1, Si+2, . . . , Sn}.
The induction hypothesis here is that Ii−1 is only on the common variables of
{Sc1 , Sc2 , . . . , Sck−1

} and {Sck , Sck+1
, . . . , Scm} where the former is a subset of

{S1, S2, . . . , Si−1} and the latter is a subset of {Si, Si+1, . . . , Sn}.

Consider the case Si not occurring in C, which implies i 6= ck. Let j = k − 1. Then,
Ii (the same as Ii−1, as set by the algorithm) is only on the common variables of
{Sc1 , Sc2 , . . . , Scj} and {Scj+1

, Scj+2
, . . . , Scm}. From the hypothesis, the former

is a subset of {S1, S2, . . . , Si−1, Si} and the latter is a subset of {Si+1, Si+2, . . . , Sn},
since i 6= ck (or i 6= cj+1).

Consider the case Si occurring in C, which implies i = ck. Then, Ii−1 ∧ Si will be
on vars(Ii−1) ∪ vars(Si). Now, if all variables in vars(Si) occur in Sck+1

, . . . , Scm
then V ∩ V ′ is simply vars(Ii−1) ∪ vars(Si). Hence Ii is on the common variables
of {Sc1 , . . . , Sck} and {Sck+1

, . . . Scm}. If there is a variable v ∈ vars(Si) not
occurring in Sck+1

. . . Scm , then v will not appear in V ∩ V ′. Hence it will appear
in V ∩ V ′ and will be quantified and eliminated from Ii.

Thus, Ii is an interpolant after Si

5 Experimental Evaluation

We implemented our algorithm on the TRACER [17] framework for symbolic execution.
The GETCORE procedure was implemented to return a MUC. We computed all MUCs
using the method presented in [2], and generated an IIL for each MUC. We found that
the method scales poorly for large programs, so one can also implement algorithms
such as [21, 26, 4]. Our target programming language was C.

We provided input traces manually for our case studies, but they were automatically
converted to SSA form by TRACER. The underlying constraint solver is CLP(R) [16],



shell sort(int a[], int size)
int h=1, i, j;
do

h=h*3;
while (h <= size);
do {

h /= 3;
for (i=h; i<size; i++) {

int v = a[i];
for (j=i; j>=h &&

a[j-h]>v; j-=h)
a[j] = a[j-h];

if (i != j)
a[j] = v;

}
} while (h != 1);

1 a[0]=11
2 a[1]=14 true

3 a[2]=0 a[2] = 0

4 size=3

5 h=1; a[2] = 0, h = 1

6 i=h; a[2] = 0, h = 1, i = 1

7 v=a[i];
8 j=i;

9 i++; a[2] = 0, h = 1, i = 2

10 v=a[i]; v = 0, h = 1, i = 2

11 j=i; v = 0, h = 1, j = 2

12 a[j]=a[j-h];

13 j=j-h; v = 0, h = 1, j = 1

14 a[j]=a[j-h];

15 j=j-h; v = 0, j = 0

16 a[j]=v; a[0] = 0

17 i++;
18 assert(a[0]==11);∧

assert(a[1]==14); false

(a) (b)

Fig. 7. (a) The faulty shell sort program and (b) its error trace for input [11, 14] with labels

which uses the Fourier-Motzkin procedure for quantifier elimination over reals. We
modeled program variables in the theory of linear real arithmetic due to our choice of
solver, but any theory with quantifier elimination would work. Arrays were modeled
using uninterpreted functions, and the McCarthy axioms [23] were applied to obtain a
symbolic expression for each array reference. The heap was modeled as an array.

We now describe two case studies that serve as proof-of-concept that our algorithm
works well in practice. The first case study uses the faulty sorting example from [12],
and the second case study uses a more realistic program from the SIR repository [33].
We emphasize that the goal of this paper is mainly to provide a formal unification
of MUC-based and interpolant-based error explanation, and so user studies regarding
which approach is more “intuitive” for debugging are out of scope of this paper.

5.1 Shell Sort

Figure 7(a) shows the faulty program from [12], which is supposed to sort a given array
of integers. When applied to the already sorted input [11,14], it returns [0,11]
instead of the input itself. Our safety property therefore asserts that the output should
be [11,14]. The corresponding error trace is shown in Fig. 7(b), annotated with the
labels computed by our algorithm, where bolded statements constitute the slice. We do
not show the assume statements as they do not change the program state, and hence



do not affect the interpolants. Note that we have “grounded” h to 1 instead of execut-
ing h=h*3 and h=h/3 because our underlying solver does not reason about integer
arithmetic.

The initial label a[2] = 0 immediately suggests that there is a problem, because we
are only sorting an array of two integers and should not be accessing a[2]. The rest of
the labels capture how the value in a[2] gets propagated to a[0]. The variables h and
i are initialized to 1. Then, i is incremented to 2, causing a[i] (now 0) to be stored in
v (line 10). Next, j is initialized to i, and decremented by h twice to result in j being
0. Finally, line 16 stores v (which is 0) into a[0], causing the violation. Our algorithm
computed these labels within 2-3 seconds.

The inductiveness of labels is key to the quality of the explanation. Each label is im-
plied by the conjunction of the previous label and the intermediate (bolded) statement,
enabling local reasoning about the bug flow. Since each label is an interpolant, it only
captures variables that are relevant to the bug at each point (see, e.g., line 10, where
a[2] stops being relevant to the bug and v becomes relevant).

5.2 schedule2

For our second case study, we used the schedule2 program from the SIR repository [33].
It implements a priority scheduler for a given sequence of processes and their priorities
(1, 2, or 3). The program’s distributors seeded a bug, which sets the default priority
(prio) of a process with no priority to be 1 (instead of -1). The error trace for an input
of one process with no priority is shown in Fig. 8.

We do not show the entire trace for space reasons. However, it is worth noting that
we applied dynamic slicing [27] on the original trace, which reduced its size from 129
to 58 statements, on which we applied our algorithm. In Fig. 8, the initial statement
prio=1 is the seeded bug which our labeling has captured. At line 37, a new process
is created, which is captured by the label new process 6= NULL.

At line 44, the process is added to the priority queue data structure, as shown by the
label prio queue[1].head 6= NULL. This indicates to the programmer that something
is wrong, because the process should not have been added to the queue. At line 50,
the process is retrieved from the head of the queue and set as the current job to be
executed, as captured by the label current job 6= NULL at line 51. The assertion states
that when the finish function is called to execute the processes, there should be no
jobs available, but there is one due to the bug, and therefore the assertion is violated.
Our algorithm computed these labels in about 2-3 seconds.

Ultimately the dynamically sliced trace of 58 statements was reduced to just 16
statements through our algorithm. Together with the explanatory labels, it presents a
much better explanation of the trace compared to dynamic slicing.

6 Related Work

BugAssist [20] analyzes proofs of unsatisfiability of the path formula to localize errors;
a minimal set of statements which, on removal, makes the formula satisfiable again
is marked as containing potential causes of the error. Instead, our approach computes



30 prio=1; prio = 1

31 prionew job=prio; prionew job = 1

37 new process=malloc(sizeof(struct process));

prionew job = 1, new process 6= NULL

41 prioenqueue=prionew job; prioenqueue = 1, new process 6= NULL

42 prioput end=prioenqueue; prioput end = 1, new process 6= NULL

43 processput end=new process; prioput end = 1, processput end 6= NULL

44 prio queue[prioput end].head=processput end; prio queue[1].head 6= NULL

45 prioget current=3; prioget current = 3, prio queue[1].head 6= NULL

46 prioget current=prioget current-1; prioget current = 2, prio queue[1].head 6= NULL

47 prioget current=prioget current-1; prioget current = 1, prio queue[1].head 6= NULL

48 prioget process=prioget current; prioget process = 1, prio queue[1].head 6= NULL

49 jobget process=&current job;

jobget process = &current job, prioget process = 1, prio queue[1].head 6= NULL

50 nextget process=&prio queue[prioget process].head;

jobget process = &current job, ∗nextget process 6= NULL

51 *jobget process=*nextget process; current job 6= NULL

54 jobfinish=current job; jobfinish 6= NULL

58 assert(jobfinish==NULL); false

Fig. 8. Inductive interpolant labeling computed by our algorithm for schedule2

error-explaining labels on the trace and exploits MUCs to compute a path slice relevant
to the error. Ermis et al. [12] proposed the idea of computing error-explaining labels
using interpolants. Because they compute individual labels independently, followed by
a post-processing step to improve stationariness, the resulting sequence of labels may
be unsound (cf. Sec. 3).

Popular methods for fault localization include Delta debugging [35, 7] and Dar-
win [28], which compare failing and successful program states and executions; DIDUCE
[14], which computes likely invariants from good runs and checks for their violations on
other runs; statistical methods [19], which compute suspiciousness of statements based
on the frequency of their occurrences in passing and failing runs; and methods based
on dynamic slicing [1, 36], which consider dependency flows in failing runs. Other
approaches use symbolic techniques to explain counterexamples obtained by model
checking [3, 13]. Symbolic techniques have also been used for program repair [6, 22].
Sahoo et al. [30] combine likely invariants, delta debugging and dynamic slicing tech-
niques for scalable root cause analysis on real-world programs. Error-explaining labels
may be viewed as likely invariants along the failing path; they assist the developer in
pinpointing the root cause.



Interpolant computation [24] is widely used to enable convergence of SAT/SMT-
based bounded model checking of both hardware [24] and software [15, 25]. Inter-
polants of different strengths may be derived from the same proof of unsatisfiability;
D’Silva et al. [11] present a unified lattice-based framework for ordering the inter-
polants computed by different methods. Like our method, CEGAR-based software ver-
ification techniques [15, 5], which use interpolants for refinement, also require that the
interpolant sequence is inductive [18, 34, 29]. Dillig et al. use abductive inference for
assisting developers in classifying erroneous analysis reports [10].

7 Conclusion

Interpolant-based error explanations are attractive in their ability to convey the essence
of an error trace to a programmer. In this paper, we examined their ability to filter out
statements that are guaranteed to be irrelevant to the error. Since the goal of minimal
unsatisfiable core computation is also similar, we examined whether the two techniques
have any formal relationship. We found that, in general, interpolant-based error expla-
nations are weaker than minimal cores in their ability to exclude irrelevant statements.
More importantly, we identified sufficient conditions on interpolant sequences so that
statements are not unsoundly ruled out as irrelevant; previous work is vulnerable to this
pitfall. We also pinpoint reasons why it is difficult to arrive at sound interpolant labeling
that matches minimal unsatisfiable cores in their power to exclude irrelevant statements.
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