
RI 10006 28 May 2010 Computer Science

IBM Research Report

ReComp: QoS-aware Recursive service
Composition at minimum Cost

Vimmi Jaiswal

Independent

India

Amit Sharma

IIT Kharagpur

Kharagpur
India

Akshat Verma

IBM Research Division

IBM India Research Lab

4-Block C, ISID Campus, Vasant Kunj
New Delhi - 110070. India.

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo -

Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for pub-

lication outside of IBM and will probably be copyrighted is accepted for publication.

It has been issued as a Research Report for early dissemination of its contents. In

view of the transfer of copyright to the outside publisher, its distribution outside of

IBM prior to publication should be limited to peer communications and specific re-

quests. After outside publication, requests should be filled only by reprints or legally

obtained copies of the article (e.g., payment of royalties). Copies may be requested from

IBM T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY

10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at

http://domino.watson.ibm.com/library/CyberDig.nsf/home

ReComp: QoS-aware Recursive service

Composition at minimum Cost

Vimmi Jaiswal, Amit Sharma, and Akshat Verma
1 Independent

2 IIT Kharagpur
3 IBM Research-India

Abstract. In this work, we address the problem of selecting the best
set of available services or web functionalities (single or composite) to
provide a composite service at the minimum cost, while meeting QoS
requirements. Our Recursive composition model captures the fact that
the available service providers may include providers of single as well as
composite services; an important feature that was not captured in earlier
models. We show that Recursive Composition is an intrinsically harder
problem to solve than other studied compositional models. We use insights
about the structure of the Recursive Composition model to design an ef-
ficient algorithm BGF-D with provable guarantees on cost. Our approach
is equally suitable for all platforms that compose existing functionalities
including web services and web mashups. As an embodiment, we design
and implement the ReComp architecture for Recursive Composition of
web-services that implements the BGF-D algorithm. We present compre-
hensive theoretical and experimental evidence to establish the scalability
and superiority of the proposed algorithm over existing approaches.

1 Introduction

The world wide web has often been viewed as a vast repository of knowledge
and services in the form of custom web sites or services. A lot of research has fo-
cussed on leveraging these services to create composite value-added functionality
with a very small lead time. The first wave of integrating distinct functionalities
available on the web came in the form of web services. The key idea driving
web-services was standardization of interfaces, which allowed an end-user to au-
tomatically discover, select and use a web service of his or her interest. The
standardization of interfaces also led to the trend of composite value-added ser-
vices; where a service provider uses existing web-services to compose value-added
services. Web services had become very popular in the early part of the decade,
with many directory services like RemoteMethods [5], xMethods [7], WSIndex
[6] providing a list of available services.

An alternate model for providing integrated services on the web has emerged
recently in the form of web mashups. Web mashups do not burden the provider
of single services to build a standard interface but build custom interfaces for
each web site that is being integrated. This allows mashups to be build over
existing web sites as well and many web-sites today can be viewed as mashups.
For example, the site zoomtra [20] provides the cheapest airfare between any 2
indian cities by querying the sites of individual airlines. The only requirement
to create a mashup is that the web sites being integrated (or mashed up) expose

their API publicly. The popularity of web mashups have led to the the emer-
gence of more structured frameworks providing a rich set of user-configurable
modules. For example, Yahoo Pipes [4], one of the most popular platforms of
this type has over 30,000 customized feed processing flows in a short time [17].
Further, tools are being developed for rapid deployment of mashups [15] without
programming effort. Web service framework and collaborative mashups provide
two different web paradigms for integrating web functionality. We use the term
service composition to capture such integration of web services as well as mashup
of web site functionalities.

Service composition may be perceived as a problem of (i) discovery of services
that may provide one or more of the functionalities needed for a composite service
(ii) selection of the appropriate services, if more than one options are available
and (iii) binding of the individual services. One may note that the first and
third problems differ for the two paradigms but the service selection problem is
identical for both web mashups and composite web services. The focus of this
work is the service selection problem and we use service selection and service
composition interchangeably in the paper.

The emerging trend of service delivery or web site functionality with differ-
entiated Quality of Service (QoS) adds an important facet to the service com-
position problem; a composite service provider may find more than one provider
providing a functional requirement needed by the composite service. Hence, the
composite service provider needs to select providers for individual requirements
not only based on the functional properties of the service(s) provided by them,
but on non-functional properties as well. Further, the composite service provider
also needs to ensure that the composite service is provided at a competitive price
while meeting any required QoS guarantees. Hence, a web provider can be char-
acterized along two dimensions : (i) a cost charged by the provider and (ii) a
QoS parameter guaranteed by the provider. A typical QoS parameter is average
response time (e.g., delay for a stock quote service), which is also used in this
work. However, our framework works for any linear QoS parameter.

The underlying service selection problem seen by the composite service provider
is fairly complicated: competing providers may provide sub-services (or the func-
tionalities) that the composite service needs at various [price,QoS] points. The
presence of existing providers of composite services adds another dimension to
the complexity. Service selection now needs to evaluate a composite service (pro-
viding a subset of the overall functionality required) against various combinations
of basic or smaller composite services with respect to the cost-QoS tradeoff. We
term the problem of recursive service selection from basic or smaller composite
service as Recursive Composition and address this problem.

1.1 Travel Planner Service

We present the following service scenario example to elucidate Recursive Com-
position. Consider a value-added web mashup or service that provides complete
travel planning using various individual services.

The Travel Planner service (Fig. 1(a)) consists of (i) Attraction Selection
(ii) Transport Booking and (iii) Purchase, which use other existing services in

Air,Train
Time

Estimation

SELECTION

ATTRACTION
BOOKING

TRANSPORT PURCHASE

Attractions

Estimation
Distance

Information
Transport Attraction

Tickets

Taxi
 Booking

 Booking

RECURSIVE FLOW OF extractBest

&CAR

FLIGHT

REQD COMPOSITE SERVICE

AVAILABLE COMPOSITE SERVICES

FLIGHT&CAR

Expedia

TIME&DISTANCE

Mapquest

1
1

2
TRANSPORT
BOOKING

CAR

Google Maps

Hertz

FLIGHT

RyanAir Swiss

 FLIGHT CAR

DISTANCE
EST.

TIME
EST.

MAXHEAP

ONLY BASIC SERVICES

BGF

BGF−D

(a) (b)
Fig. 1. (a) Composite Travel Planner Service and (b) Recursive Flow

order to build the composite service. The Travel Planner service first invokes a
provider of Tourist Attractions Service to create a list of nearby attractions and
then invokes providers of Mapping Services to provide Distance and travel Time
Estimation between various attractions. The service then computes a target set
of attractions and identifies transport arrangements using providers of Transport
Information service. It then makes the required Taxi, Train and Flight Booking.

There may be many providers at different cost-performance points for each
service. For example, a planner looking for tours in Europe would find that the
train tickets can be purchased through TrenItalia Ticket Service or Eurail Ticket
Service. Eurail website has a better response time but the cost of the same ticket
is higher than TrenItalia. Further, a single provider may provide more than one
required service. For example, Google Maps provides both distance and travel
time estimate whereas goitaly.about.com provides only distances. Similarly, Ex-
pedia service provides both flight and car booking. Further, there are many
existing mashup services on the web for travel that query the airlines, train or
hotel websites that the travel planner service can leverage. Hence, the Travel
Planner Service would need to select a subset of various providers in a manner
such that all the required basic services can be obtained. Further, the Travel
Planner Service needs to create this service with a fast response time and still
provide cost effective options.

Fig. 1(b) shows the inherent recursive nature of the problem. At each level
of the composition tree, composite services may exist which compete directly
with the combination of two or more services in the same level. The service
parameters (cost and delay) of these dynamically composed sub-services is ob-
tained recursively by traversing its children in the tree. In the example shown,
for estimating the Time and Distance related to a trip, the planner makes a
choice between a composite service like Google Maps, and two separate services
for Time Estimation and Distance Estimation. These two separate services are
combined recursively from the simpler services below it, and then compared with
the composite service. Further, the recursion may not be restricted to only one
level. In the example shown, the Time Estimation service further breaks up into
estimation for road travel, and flight travel. Another important characteristic
of web-based services is the time-varying price of services, necessitating a late
binding (or dynamic composition). Existing composition frameworks are unable

to capture this inherent recursive nature of web services, and new algorithms are
needed to handle dynamic composition of web functionalities in the Recursive
Composition framework.

1.2 Contribution

We present a cost-minimizing QoS-aware Recursive Composition framework that
uses basic as well as already existing composite services to create new value-
added composite services on a service delivery platform within a QoS delay
bound. We show that Recursive Composition is a fundamentally much harder
problem than already existing composition forumulations. By showing that Re-
cursive Composition is at least as hard as the Set Cover problem, we establish
that existing approximation schemes (e.g., Dynamic programming based FP-
TAS) for already studied composition problems [19, 18] are not applicable for
the Recursive Composition problem. We use insights from real service settings
to identify a Disjoint Set property amongst the providers. Through a careful
use of this property, we design a fast recursive algorithm BGF -D with good
theoretical properties. To evaluate the BGF -D algorithm, we implement it in
a recursive web service framework called ReComp and conduct a comparative
evaluation of BGF -D algorithm with other approaches under a wide variety of
scenarios. BGF -D meets all the requirements of automated, dynamic ’service
composition agents’: simplicity, efficiency, deterministic behavior, and guarantees
on the goodness of the solution. Our proposed algorithm is useful for composition
of web services as well as to create web mashups.

1.3 Related Work

Many researches have investigated techniques that deal with modeling and stan-
dardization of interfaces for reliable discovery of web services [1, 10] and in mech-
anisms for automated run-time composition of services [9, 12]. Of late, there
has been a lot of interest in frameworks for automatically creating mashups [4],
even extending it to spreadsheet-based creation of mashups for rapid deploy-
ment [15]. Recently, the algorithmic aspects of service composition have also
attracted attention for web services. In [19], Yu and Lin investigate service se-
lection algorithms to maximize utility with a single QoS constraint extending it
to include multiple QoS constraints in [18]. Similar composition algorithms have
been proposed in [8, 21], albeit in a slightly different framework.

However, all these algorithms use a Service Composition model, where every
service provider provides only one service. As we show, the Recursive Compo-
sition model that uses both basic as well as composite service providers is fun-
damentally harder than the existing Service Composition models, and requires
design of new methodologies. In our model, one provider can provide more than
elementary service, packaged together as a composite service. Further, the ob-
jective in existing formulations is utility-maximization and none of them handle
cost-minimization, which is also a popular objective for many service providers.
Finally, dynamic composition of services require a composition algorithm that
is fast, simple to implement, and has deterministic behaviour with cost guaran-
tees. Most of the earlier work is based on heuristics [18], Dynamic Programming
[19] or Integer Programming [8, 21], and is not suitable for on-the-fly dynamic
composition.

2 Model and Problem Formulation

In this paper, we use the term composite service to refer to both composite web
services as well as a mashup, service provider to denote web sites as well as web
service provider, and basic service to denote both individual web services as well
as a single web functionality from a website.

Consider a web delivery platform with N existing service providers and a new
service provider that wants to offer a new composite service CS. We denote the
basic services required to compose CS by the set S = {u1, ...uM}. Each service
provider Pi on the service delivery platform is characterized by its offering set
osi, where each entry in the offering set corresponds to one or more of these basic
services uj . For each provider Pi and a basic service uj ∈ osi, dj

i denote the delay
bound guaranteed by Pi for providing service uj. It is important to note here
that a basic service interaction may require multiple rounds of interactions and
dj

i captures the duration between the first request to the service and the final
response from the basic service. Generally, providers provide a delay guarantee
for services that they provide, and we can directly plug in these guarantees for
the delay in our model. Further, ci denotes the cost or the price of using the
provider Pi. For services uj not provided by provider Pi, the corresponding dj

i is
set to infinity. In practise, a single provider may provider a service at multiple
[Cost,QoS] points and we capture it in our model by treating each [Cost,QoS]
as a new provider.

The goal of the composition problem is to create the composite service CS
by selecting a subset of the N providers such that the total cost of providing
the composite service is minimized. Further, the composite service should have
a delay no more than some delay bound D. Formally, the goal of the composi-
tion problem is to find a matching xj

i from the basic services uj to the service
providers Pi, such that

min
∑N

i=1
xici; s.t.

∑N

i=1

∑M

j=1
dj

ix
j
i ≤ D,

∑N

i=1
xj

i ≥ 1 ∀j,xi = maxj xj
i ∀i(1)

An intuitive way to visualize the problem is as a flow problem on a graph with
M legs (parts), where we want to route unit flow through the M legs. In each leg
j, there may be up to N links (one corresponding to each service provider that
provides the service) that can route the flow, and any solution to the problem
routes the unit flow through one or more of these links for each leg. The total
cost of the solution is the cost of distinct service providers selected in the M legs.
The optimal solution to the problem is a set of flows that has the minimum cost
incurred in the M legs, and the delay averaged over all the flows is bounded by
D. In typical settings, the average delay seen by all the separate flows should be
bounded by D. We capture it using the following additional integrality constraint
xj

i ∈ {0, 1}. We call this version of the problem as Bounded Delay Composition
and is the focus of this work.
3 Characterizing Recursive Composition

We investigate the Bounded Delay Recursive Composition problem in this work.
Henceforth, we will use the term Recursive Composition to refer to this version of
the problem. Researchers have looked at a simplified version of the problem ear-
lier, where the platform has no composite services and all the N service providers

provide exactly one of the M basic services. We formulate this restricted scenario
in an equivalent, but slightly different formulation from the one in [19], called
Independent Set Composition.
Definition 1 A service delivery platform with N service providers is said to
satisfy the Independent Set Composition property if for any two service providers
Pi, Pj, i 6= j, we have (osi ∩ osj = φ) ∨ (osi = osj).

Earlier solutions to this problem have looked at Dynamic Programming based
solutions for the problem and we first investigate if the Recursive Composition
problem can also benefit from such techniques. We first characterize the Indepen-
dent Set Composition problem. This model captures the composition problems
addressed in [19, 21] by framing cost as inverse of utility. We show that the
problem is related to a generalization of the knapsack problem, called the Exact
k-item Knapsack Problem (EkKP) problem.

It is well known that the knapsack problem is NP-hard and the same prop-
erties hold for unbounded knapsack and its EkKP variant [11]. It is also known
that EkKP is polynomially solvable in O(Nk) by brute force, if k is a fixed con-
stant [13]. We have proved the hardness of the composition problem by showing
that the Exact k-item Unbounded Knapsack (EkKP) problem can be converted
to an instance of the composition problem. Hence, any solution to the compo-
sition problem would imply a solution to the EkKP problem. For lack of space,
we have omitted all proofs that are available in the appendix.

Theorem 1. Independent Set Composition is NP-hard.

We have shown that the Independent Set Composition problem is NP-hard. How-
ever, knapsack and many of its generalization are amenable to approximation
techniques and have a Fully Polynomial Time Approximation Sceheme (FP-
TAS) algorithm [11]. We show that the general Recursive Composition problem
is much harder, and approximation algorithms with constant factor approxima-
tion bounds do not exist. To establish that, we have proved (proof in appendix)
that the Recursive Composition problem is at least as hard as the Set Cover
problem.
Definition 2 Set Cover Problem: Given a finite universe U = {e1, e2, ..., en} of
N members, S = {s1, s2, ..., sm}, ∀isi ⊆ U , a collection of subset of U and a
weight function w : s → R

+ that assigns a positive real weight to each subset of
U , find the minimum weight subcollection of S whose union is U .

Theorem 2. The Recursive Composition Problem is at least as hard as the
Weighted Set Cover Problem.

Set Cover Problem belongs to a different class of problems than single dimension
knapsack problems. Feige has shown [14] that the Set Cover problem can not
be approximated in polynomial time of (1 − o(1)) log N , unless NP has quasi-
polynomial time algorithms. Raz and Safra [16] have established a bound of
c log N , under the stronger assumption of P 6= NP . The above results clearly
indicate that a Dynamic programming based algorithm would not be able to
find the optimal solution for the Recursive Composition problem. Hence, existing
techniques proposed for the Composition Problem can not be applied or adapted
for the Recursive Composition problem. Further, the strong results preclude
even the existence of constant factor approximation algorithms for the general
problem. Hence, we investigate new approaches for this very hard problem.

4 Recursive Composition
Recursive Composition is one of the hardest problems within the NP-Complete
class. Hence, we look for structural properties in the problem to solve it.

4.1 Disjoint Set Composition
A composite service typically can be broken down into one or more sub-services,
where each sub-service may again be a composite service. A typical example is
a Shopping application, that uses Browsing, Credit Card Processing, and Inven-
tory Management services. The Credit Card Processing sub-service may again be
broken down into Credit Card Verification and Credit Card Charging services.
Similarly, Inventory Management may consist of Supply Chain Management ser-
vices, Item Alerts, and Accounting services and one may use basic services or
a composite service for the complete Inventory Management sub-service. How-
ever, one may never find a provider providing services from both Inventory and
Credit Card domains, say, a provider providing both Credit Card Verification
and Supply Chain Management services. Similarly, in our Travel Planner Ser-
vice example, a Mapping service may provide Distance and Time Information. A
Booking Service may provide Taxi and Flight Booking. But it is not common for a
provider to provide services that cover both Booking and Mapping domains. For
example, the same provider may not provide Taxi Booking and Time Estimation
services together.

The clear separation of domains amongst the various sub-services often re-
flects itself in a disjointness property amongst the service providers. This as-
sumption draws its weight from the fact that it is necessary to have an expertise
in a domain to provide quality services. Hence, when a provider expands the
offered services, he/she would usually offer another service in the same domain.
Encompassing one domain completely before venturing into other domains also
helps a provider in engaging customers. We term this property as Disjoint Set
Composition, defined next.
Definition 3 A service delivery platform with N service providers is said to
satisfy the Disjoint Set Composition property if for any two service providers Pi,
Pj, i 6= j, (osi ∩ osj 6= φ) ⇒ (osi ⊆ osj) ∨ (osj ⊆ osi).

The Disjoint Set Composition property simplifies the Recursive Composition
problem. However, this problem has at least 2 dimensions (a provider has a delay
and the number of services it covers) and existing Dynamic Programming ap-
proaches based on 1-dimension knapsack problem can still not be applied. Even
though the problem is still much tougher than Independent Set Composition, we
design a fast algorithm with provable guarantees.

4.2 BGF Algorithm
We now present Best Goodness F irst (BGF) algorithm for the Disjoint Set
Composition problem. We note that Independent Set Composition problem is a
special case of this problem and hence the algorithm is also applicable for the
Independent Set problem. We first present the algorithm in the simpler context
of Independent Set Composition and then extend it to the Disjoint Set problem.

Recall that in the Independent Set Composition problem, each provider pro-
vides exactly one service. We use P j

i to denote the ith provider of the ser-

vice uj, dj
i to denote the delay guaranteed by P j

i , and cj
i to denote the cost

charged by P j
i . We also assume that dj

i is less than the delay bound D and

∀i, j, k (dj
i < dk

i) → (cj
i > ck

i). Note that any providers that do not satisfy these
conditions can not be selected as part of optimal solution, and hence can be
discarded. BGF algorithm first constructs a low delay solution So by selecting
the least delay provider P j

o for each of the required service uj . Note that the
solution thus constructed may incur a large cost. We then swap service providers
in So by providers who provide the service at a lower cost. The order of swap-
ping is dictated by a metric that we call the goodness of a service provider and
is defined relative to the currently selected provider P j

new for any given service

uj . Formally, the goodness gj
i of P j

i is given by
cj

new−c
j

i

d
j

i
−d

j
new

.

The method repeatedly invokes an extractBest method that returns the best
provider P j∗

i∗ (with the highest goodness) to be added to the current selection
Snew. BGF then replaces the service provider selected for the service uj∗ in Snew

with P j∗
i∗ . Observe that the provider P j∗

i∗ has the property that if we swap the
previously selected service provider P j∗

new with it for providing the service uj∗,
then the decrease in cost per unit increase in delay is the maximum amongst all
possible swaps. We also check that the swap does not violate the delay constraint.
If the required swap gj∗

i∗ for a new provider P j∗
i∗ causes the delay bound to be

violated, we stop and create a new solution S1 by swapping P j∗
i∗ in the original

solution So. If S1 has a cost less than the solution Snew achieved before S1

was taken into consideration, then we return S1, otherwise we return Snew as
the solution. We also return a solution S2 obtained by accepting the swap that
violates the delay bound. The algorithm is similar to the one described in Fig. 2.

We now characterize the running time of BGF for Independent Set Compo-
sition. It is easy to see that that the method may try out every provider for each
service once before converging. Without loss of generality, assume that there are
n providers per service. Hence, it implies that we may have an outerloop of Mn,
with each iteration taking time equal to updating the Goodness data structure
G and extracting the best element from it. Since each service is independent of
other services, the goodness entry needs to be updated only for the providers
that provide the service uj∗ that has been selected in the current iteration. This
provides the following bounds on the running time of BGF .
Lemma 3. The running time for BGF is O(Mn(Update(G)+extractBest(G))).

Theorem 3. If the Goodness metric G is implemented as a sorted array, BGF
runs in time quadratic the size of the input mn, i.e., O(M2n2).
Theorem 4. If the Goodness metric G is implemented as a heap ordered tree of
depth 2 with all providers as leaf nodes and each basic service as an intermediate
node, the running time of BGF is given by O(Mn max{M, n}).

The heap-based implementation of BGF (Fig. 1(b)) provides further insights.
Observe that all the providers for each service are part of one sub-tree with the
current best goodness entry being the root of this sub-tree. Similarly, all the best
goodness entries of each service are hierarchically combined to form another sub-
tree and the procedure extractBest returns the root node of this sub-tree. One
may note that any changes in one sub-tree does not effect other providers and
this fundamental insight leads to an efficient running time of BGF . Another

important observation is that independence is not necessary for fast convergence
as long as one can ensure that changes in one heap do not lead to (a) a large
number of updates and (b) an expensive extractBest procedure. The Disjoint
Set property ensures both of these properties. We next leverage this important
observation to show how BGF works for Disjoint Set Composition.

4.3 BGF − D for Disjoint Sets

Algorithm BGF-D(ServiceSet SS)
DS = getDisjointServiceSets(SS)
∀sj ∈ DS, Compute DSj

o = minDelaySet(sj)
So = {DS1

o , ..., DSk
o },∪

k
l=1DSl

o = SS

∀sj ∈ DS,∀P
j
i ∈ sj Compute G = {g1

1 , . . . , g
j
i , . . .}

Snew = S2 = So

While (Delay(S2) < D)
g

j∗
i∗ = extractBest(G), S2 = Swap(Snew, P

j∗
i∗)

If(Delay(S2) < D)
Snew = S2, ∀i Recompute g

j∗
i , Update(G, g

j∗
i)

Else
S1 = Swap(So, P

j∗
i∗)

If cost(S1) < Cost(Snew) return S1, S2

Else return Snew, S2

Fig. 2. BGF-D Algorithm
We now present an extension of BGF for Disjoint Set Composition that we

call BGF -D. The key difference between Independent Set Composition and Dis-
joint Set Composition is in the choice of good service providers (providers with
high goodness) available for swapping with the current best solution. In Disjoint
Set Composition, we have providers who provide multiple services. Hence, the
goodness function needs to be defined for a set of services, instead of a single
service. This requires us to define the best service provider (the one with the
highest goodness) for each set of services that has an eligible service provider.

In order to achieve this, we enhance the heap-based implementation of the
goodness data structure by creating additional nodes for each set of services that
has at least one eligible service provider. Hence, instead of a tree with depth 3 for
Independent Sets, we now have a tree with depth equal to the number of disjoint
set levels. The extractBest method returns the disjoint set with the highest
goodness value in this new extended data structure. The goodness value for any
such disjoint service set DS is calculated in a recursive manner as maximum of
the goodness value for a service provider Pi whose offering set osi is DS and
the goodness of any disjoint providers Pj , Pj+1,, Pk whose combined offering
set is DS (osj ∪ osj+1...∪ osk = osi). The provider Pi, with maximum goodness
for the services set is selected as before in BGF. For calculating the composition
of constituent services that leads to the best goodness, we invoke extractBest
recursively on the services set, using the delay of the current composition for
the services set as the delay bound. At each level, we select the first composition
to violate the calculated delay bound, thus giving us an incremental decrease in
cost with respect to the current configuration.

To elaborate with an example, consider Fig. 1(b) with an already existing
composite service that provides both Time & Distance Estimation. Hence, while

trying to build the most cost-efficient solution, we create another node for Time
& Distance Estimation. Further, the goodness value of this node is calculated as
the maximum of the goodness of all providers of this composite service and the
goodness of the best goodness values of the two disjoint subsets (Time Estima-
tion, Distance Estimation), whose union is this set. The rest of the algorithm
proceeds as BGF . First, we calculate the minimum delay composition for the
given set of services. This is done by recursively computing the disjoint sets and
selecting the minimum delay providers within each disjoint set. Then, at each
step, we swap the existing solution with the highest goodness entry (DS), unless
it violates the delay bound. We describe the algorithm in Fig. 2.

The Recursive computation of extractBest works because the goodness data
structure G has no cycles. The non-cyclic nature is a direct implication of the Dis-
joint Set property, which imposes a hierarchical structure to the data structure.
Hence, it is now easy to verify by inductive reasoning similar to the one used for
BGF that the running time of BGF -D is O(N ∗(Update(G)+ExtractBest(G)),
where N is the total number of available providers. However, BGF -D computes
goodness values for each disjoint set of providers that can be potentially swapped
by a substitute set. This could potentially lead us to an exponential number of
subsets. We again leverage the disjointness property and show that the number
of such subsets (Lemma 4) are of the same order as the number of services M .
This ensures that the running time of extractBest for BGF -D is of the same
order as BGF . The other component of running time is the time required to
update the Goodness heap. However, the disjointedness proprty ensures that se-
lection of a provider only impacts the nodes in that sub-tree. This ensures that
the time for update is bounded by the number of providers that provide the ser-
vice. Hence, the results about the running time of BGF also hold for BGF -D.
We have proved the following results (proof in appendix) for BGF and BGF -D.
Lemma 4. Number of disjoint sets with at least one service provider is O(M).
Lemma 5. If the solution S achieved by BGF at any step has a delay D, then
S is the minimum cost solution which has a delay less than or equal to D.

Let Cmax be the cost of the least delay solution (So). Using the bound on
dj

i , an averaging argument and Lemma 5, we bound the cost of BGF .
Theorem 5. The Solution S1 returned by BGF has a cost no more than (Cmax+
CO)/2 where CO is the cost of the optimal. For a delay bound D, BGF returns
a solution (S2) with delay less than 2D and cost less than the cost of the optimal
solution for delay less than or equal to D. Further, the first solution returned by
BGF has a delay less than D and a cost bounded by twice the cost of the optimal
solution with delay less than D.
Corollary 1. If BGF is executed with delay D/2, its solution has delay bounded
by D and cost bounded by cost of the optimal solution with delay D.

5 Evaluation
5.1 Prototype Implementation

We have designed ReComp, a Recursive Service Composition architecture to
evaluate the BGF -D algorithm. ReComp takes as input a composite service
specification and its SLA and outputs a composite service description in the
BPEL4WS language [1]. The composite service description can be executed by

a workflow engine such as BPWS4J [3]. The composition flow in ReComp is
started with Discovery of the services that either match the complete user given
service specification or parts of it using UDDI queries. The central intelligence of
ReComp lies in the Composition Analytic module, which determines the optimal
basic services and their layout that best meets the composite service requirement.
This module implements BGF -D and uses the service description and the SLAs
of various discovered services to compute an optimal composition of the services
that can meet the SLA for the composite specification at the lowest cost. An
Assembler module then uses the interface definitions of individual web services
in the WSDL specification to generate a composite service description using
the BPEL4WS specification. This description is the final ouput generated by
ReComp and is fed to a workflow engine for execution.

5.2 Experimental Settings
Recursive Composition is a much harder problem than existing composition mod-
els and earlier heuristics or Dynamic Programming-based solutions for service
composition can not solve Recursive Composition. Since no existing algorithms
can deal with recursive composition, we implemented the following competing
algorithms in the Composition Analytic module and performed a comparative
study with BGF -D. These algorithms cover the spectrum between techniques
that are fast, and techniques the are close to the optimal solution.
Fractional Optimal Composition: This algorithm proceeds exactly as BGF -
D until the last step, where we assign fractional providers to the selected service-
set so as to completely consume the delay bound available. The cost obtained
by Fractional Optimal is less than the Optimal and provides a lower bound to
compare the effectiveness of any composition algorithm . We do not compare
against the optimal as computing it takes exponential time.
Equal Delay Allocation: The Equal Delay method breaks down the delay
bound for the composite service into equal delay bounds for the basic services.
It then selects a provider for each service that is able to provide the service at
the minimum cost within the delay bound for that basic service.
Proportional Delay Allocation: This algorithm is similar to Equal Delay
with difference that the delay bounds for each basic service are assigned in pro-
portion to the mean delay of that service. The mean delay of a service is defined
as the average delay of the service across all providers that provide the service.
One can also use an Integer Programming (IP) solver to solve the Recursive
Composition problem. However, it would take an inordinately large amount of
time and fare worse than Fractional Optimal Composition. As we show, BGF -
D approaches fractional optimal in our experiments, implying that it returns a
solution very close to the optimal.

The baseline setting of our experiments simulate the Travel Planner Service,
once a set of Attractions have been selected. The service requires 5 basic ser-
vices, namely Distance Estimation, Time Estimation, Transport Information,
Taxi Booking and Train Booking. The UDDI registry does not contain all the
services required for us to perform this study and hence, we simulated a UDDI
registry that captures the required scenario. The relative weightage (or contribu-
tion) of each service to the cost and delay of the composite service was captured

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 740 760 780 800 820 840 860 880 900

p
d

f
Respone Time (ms)

Distribution

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Number of Services squared (M2)

Running Time(Gaussian)
Running Time(Uniform)

Running Time(zipf)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 3 4 5 6 7 8 9 10

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Average Number of Providers per service (n)

Running Time(Gaussian)
Running Time(Uniform)

Running Time(zipf)

(a) (b) (c)
Fig. 3. (a) Respone Time Distribution for stock quote web services. Running Time of
BGF-D with increase in (b) basic services and (c) providers.
by a weight metric (W). For each service, the weight distribution was computed
using a Zipf distribution. For each service ui, we generated 5 providers from
a cost-delay curve, where cost of a service was inversely proportional to delay
(cid

j
i = W , W is the weight of the service). The model is based on the well

known knee curve between response time and the load factor of typical Marko-
vian queueing model. In this model, the response time di is inversely proportional
to (1− rho), where ρ is the utilization of the server. This combined with the fact
that idleness (1−ρ) is directly proportional to the number of servers used (which
determines cost), implies that ci is inversely proportional to dj

i . We also added 2
composite services for (i) Distance and Time Estimation and (ii) Taxi and Flight
Booking. The providers of composite services (3 per composite service) give a
discount of 5% over the sum of cost of independent providers.

We also studied the performance by varying all the parameters from the base-
line. The most important metrics for a compositional algorithm are scalability
and cost optimization. Hence, we change the number of basic services and the
average number of providers per service. Further, we vary the overall weightage
of the basic services by changing the weight metric (W = C × D) of the ser-
vice. In order to understand the structure of the weight function, we randomly
sampled 50 services that provided stock quotations from the web service search
engine seekda. We observed that the response time fits the Gaussian distribu-
tion (Fig. 3(a)). Hence, we selected Gaussian distribution as one candidate to
generate the weight metric. In order to study the applicability of our study to
other settings like mashups, we also used the zipf distribution to generate the
weight values. Zipf distribution is commonly found in web traffic (e.g., most of
the web requests are targetted to only a few sites, file size distribution embedded
in web pages are skewed) and captures the relative weightage of various web sites
in a mashup [2]. We also experiment with the Uniform Distribution to capture
scenarios that are in between the mean-heavy Gaussian and the skewed Zipf.
Another important characteristic that may effect the performance of algorithms
is the granularity of providers along the weight function of a service. Hence,
we change the variance of the provider characteristics around the mean weight
function and study the algorithms.

5.3 Experimental Results

Scalability of ReComp We first study the time taken to compose the service
by ReComp using the BGF -D methodology. Fig. 3(b) shows that the running
time of our proposed methodology has a quadratic relationship with the number
of basic services required by the composite service. This is in line with the worst
case running time of Mn max{M, n} as proven in Theorem 4. The quadratic

relationship holds for all distributions of the weight functions. However, we ob-
serve that the running time is lower when the weight of the services is obtained
by Zipf distribution. One may note that even though the worst case running
time of BGF -D is given by Theorem 4, the actual running time may be lower if
the method hits the delay bound and can swap no more providers. For the zipf
distribution, the large skew in weightage between different component services
leads to much fewer providers for BGF -D to swap with the current solution as
we increase the number of providers. Hence, we find that the algorithm converges
faster with a high skew weight distribution like Zipf .

We next investigate the change in running time with the average number of
providers available per service (n). Fig. 3(c) shows a surprising linear relation-
ship between running time and the average number of providers per service as
opposed to the quadratic relationship suggested by Theorem 4. To understand
this behavior, we take a closer look at the theorem and observe that the worst
case running time is obtained by assuming that all providers for each service
may need to be swapped and we need n updates in each swap, before we find
the best solution. However, in actual execution, BGF -D needed to swap only
a constant number (2 or less in many cases) of providers per service. Hence, in
real execution, we see a linear relationship of BGF -D with n.

 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 4 6 8 10 12 14 16 18

C
o

s
t

o
f

S
e

rv
ic

e
 (

$
)

SLA Delay Bound (10ms)

ProportionalDelay
EqaulDelay

FractionalOptimal
BGF-D

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 11 12 13 14 15 16 17 18 19 20 21

C
o

s
t

o
f

S
e

rv
ic

e
 (

$
)

SLA Delay Bound (10ms)

ProportionalDelay
EqaulDelay

FractionalOptimal
BGF-D

 0

 10

 20

 30

 40

 50

 25 30 35 40 45 50

C
o

s
t

o
f

S
e

rv
ic

e
 (

$
)

SLA Delay Bound (10ms)

ProportionalDelay
EqaulDelay

FractionalOptimal
BGF-D

(a) (b) (c)
Fig. 4. Cost of service created by various methods with increase in Delay Bound for
(a) zipf (b) Gaussian and (c) Uniform weight distribution. Baseline delay is 10 ×10ms

Comparative Evaluation We now investigate the performance of BGF -D
in comparison to the other methodologies. Fig. 4(a) studies the performance of
various methodologies at the baseline experimental setting with change in the
delay bound D of the composite service. Since the goal is cost minimization, all
algorithms reduce cost as the delay bound is increased. We observe that BGF -
D is able to find a solution with cost that is no more than 5% away from the
fractional optimal solution. Note that fractional optimal is only a lower bound
on the optimal solution. Hence, even in cases where BGF -D is costlier than
fractional optimal, BGF -D solution may still be the optimal solution. We also
observe that the solution provided by other competing methodologies are more
than twice as expensive for the baseline delay. In fact, the Equal Delay solution
is unable to find a solution for low delay bound. We find a similar observation to
hold for Gaussian as well as Uniform distribution(Fig. 4(b),(c)). We also observe
that Equal Delay is able to find solutions for Gaussian distribution for the
complete range. This can be explained by the low variance used in the Gaussian
distribution. However, for highly skewed weights, one may not be able to find
any providers for a constant delay value as required by Equal Delay.

We also observe that Proportional Delay, BGF-D and Fractional Optimal con-
verge together for high delays. A high delay bound implies that any combination
of providers present an eligible solution. Hence, all methodologies eventually con-
verge to the least cost providers for each basic service and delay of a provider is
not relevant. Such high delay bounds are impractical for service scenarios with
SLA guarantees and For practical delay bounds, a methodology like BGF -D
intelligently optimizes the cost delay tradeoff to obtain a cost effective solution.

 0
 100
 200
 300
 400
 500
 600
 700

 2 3 4 5 6 7 8 9 10

C
o

s
t

o
f

S
e

rv
ic

e
 (

$
)

Number of Services Required (M)

ProportionalDelay
EqaulDelay

FractionalOptimal
BGF-D

 250

 300

 350

 400

 450

 500

 550

 600

 2 3 4 5 6 7 8 9 10
C

o
s
t

o
f

S
e

rv
ic

e
 (

$
)

Average # Providers per Service(n)

ProportionalDelay
EqaulDelay

FractionalOptimal
BGF-D

 260

 280

 300

 320

 340

 10 20 30 40 50 60 70 80 90

C
o

s
t

o
f

S
e

rv
ic

e
 (

$
)

Variance in Delay between Providers

ProportionalDelay
EqaulDelay

FractionalOptimal
BGF-D

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
o

s
t

o
f

S
e

rv
ic

e
 (

$
)

Services covered by Largest Available Composite Service

ProportionalDelay
EqaulDelay

FractionalOptimal
BGF-D

(a) (b) (c) (d)
Fig. 5. Comparative Cost of service created by various methods with (a) increase in
Required Services and (b) increase in Average Number of Providers per Service, (c)
increase in Delay Variance amongst Providers of the Same Service and (d) coverage of
available Composite Services

We study the cost of composite service with change in various service pa-
rameters in Fig. 5. The cost increases with increase in number of services for
all methods (cost increases with increaese in services) but BGF -D outperforms
Proportional Delay throughout the range (Fig. 5 (a)). With increase in number of
providers (Fig. 5(b)), BGF -D approaches fractional optimal as it is more likely
to find more providers near the fractional optimal solution. As delay variance
increases, we observe (Fig. 5(c))that the difference between the fractional and
the integral solution increases. This is because the chances of finding a provider
near the fractional optimal solution decrease with increase in the variance of
delay amongst the providers. Hence, the increase in cost because of rounding off
a fractional solution to an integral solution increases with increase in provider
variance. We also note that the algorithms maintain an almost similar cost as we
increase the variance of delay. We observed that Equal Delay fairs very poorly
in these experiments(Fig. 5). In fact, it fails to build up the required composite
service whenever the delay bound is competitive. This is because a skewed dis-
tribution like Zipf violates the premise on which Equal Delay is based (that all
services contribute equally to the delay). Existing Composite service providers
provide a shortcut to obtaining a good solution if they provide the solution
within the delay bound. Further, in our experimental methodology, we provide
a lower cost to a composite provider to account for economy of scale. Hence, all
methodologies are able to make use of existing composite providers to reduce
their cost (Fig. 5(d)). Further, if a composite service can provide all services, all
methodologies select the minimum cost provider for this composite service.

We observe that Proportional achieves solutions with good costs (within
25% of the cost of BGF for M ≤ 5). We surmised that this may be because all
services have the same Cost Vs Delay relationship (an inverse relationship) for
the providers providing this service. Hence, we used a different cost vs delay curve
(a1c

j
i + a2d

j
i = a3) for half of the basic services. We observed (figure omitted

for lack of space) that Proportional performed poorly because different services

had different sensitivity to delay variations and a Proportional allocation was
not able to compensate for them.

5.4 Conclusion
Our experiments comprehensively established BGF -D as an efficient algorithm
significantly outperforming other approaches with performance close to opti-
mal. The algorithm scales well with the number of services and providers and
can be practically implemented for Recursive Composition. BGF -D meets all re-
quirements for dynamic service composition: simplicity, scalability, deterministic
running time, and provable guarantees on the cost of the solution.

References

1. Web Services Business Process Execution Language TC. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsbpel.

2. L. Breslau, C. Pei, F. Li, G. Phillips, S. Shenker. Web caching and Zipf-like distri-
butions: evidence and implications. In Proc. Infocom, 1999.

3. Grid Workflow: BPWS4J. http://www.gridwork
flow.org/snips/gridworkflow/space/BPWS4J.

4. Pipes:Rewire the Web. http://pipes.yahoo.com/pipes/.
5. RemoteMethods: Resource Home Web Services (service).

http://www.remotemethods.com/.
6. Web Services Directory. http://www.wsindex.org/.
7. XMethods. http://www.xmethods.net.
8. Aggarwal, R., Verma, K., Miller, J. and Milnor, W. Constraint driven Web ser-

vice composition in METEOR-S. In IEEE SCC, 2004.
9. R. Akkiraju, B. Srivastava, A. Ivan, R. Goodwin, and T. Syeda-Mahmood. SEMA-

PLAN: Combining Planning with Semantic Matching to Achieve Web Service Com-
position. In Proc. ICWS, 2006.

10. Eyhab Al-Masri and Qusay H. Mahmoud. Investigating Web Services on the World
Wide Web. In Proc. WWW, 2008.

11. Caprara, A. et al. Approximation algorithms for knapsack problem with cardinality
constraints. In European Journal of OR, 2000.

12. Dan, A. et al. Web services on demand: WSLA-driven automated management, In
IBM Systems Journal, 2004.

13. Downey, R.G., and Fellows, M.R. Fixed-Parameter Tractability and Completeness
II: On Completeness for W[1]. In Theoretical Computer Science, 141:109-131, 1995.

14. Uriel Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM
(JACM), v.45 n.4, p.634 - 652, July 1998.

15. W. Kongdenfha, B. Benatallah, J. Vayssire, R. Saint-Paul and F. Casati. Rapid
Development of Spreadsheet-based Web Mashups. In Proc. WWW, 2009.

16. R. Raz and M. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. Proc. STOC 1997.

17. A. Riabov, E. Bouillet, M. Feblowitz, Z. Liu and A. Ranganathan. Wishful Search:
Interactive Composition of Data Mashups. In Proc. WWW, 2008

18. Tao Yu and Kewi-Jay Lin. Complex Services with Multiple QoS Constraints. In
ICSOC , 2005.

19. Yu,T., and Lin, K.J. Service Selection Algorithms for Web Services with End-to-
end QoS Constraints. In Journal ISEBM, 2005.

20. Cheap Air Tickets India. http://www.zoomtra.com/
21. Zeng, L et al. Quality Driven Web Service Composition. In Proc. WWW, 2003.

A Appendix

Theorem 1. The Independent Set Composition problem is NP-hard.

Proof. Let S be the set of items 1 to N for any instance KI of the EkKP problem,
with profits pi and costs ci respectively. Let the knapsack capacity by denoted
by C. We create an instance CI of the composition problem in the following
manner. We define a composite service, which requires k basic services, and has
a delay bound of C. Further, for each service j (1 ≤ j ≤ k), we define N basic
service providers, where each service provider sj

i has delay ci and cost −pi. We
first show that a feasible solution to one problem is also a feasible solution to
the other.

Lemma 1. Any solution to an instance CI of the composition problem is also
a solution to the corresponding EkKP problem instance KI and vice versa.

Proof. We first show that any solution (xj
i) to the composition problem is also

a solution to the original EkKP . Observe that the composition problem would
pick exactly k service providers, one for each basic service. Hence,

∑
i,j xj

i = k
and only k items will be picked in the knapsack. Further, the capacity constraint
of the knapsack is not violated since

∑
i,j cix

j
i < C. The only thing remaining

for us to show is that every solution to the EkKP is also a solution for the
composition problem. Consider any knapsack solution, which picks xi copies of
item i. The corresponding composition solution would pick xi service providers
with delay wi and cost −pi respectively.

It is easy to verify that the optimal solution of the two problems are related,
which leads to the hardness result.

Lemma 2. The optimal solution OI of the composition problem instance CI is
also an optimal solution for the EkKP problem instance KI .

Theorem 2. The Recursive Composition Problem is at least as hard as the
Weighted Set Cover Problem.

Proof. Take any instance of the weighted Set Cover Problem with Universe
U = {e1, ..., en} and the collection S of its subsets sjj ∈ {1, m}. We create
an equivalent recursive composition problem in the following manner. We create
a composition problem with a composite service that requires n services, with
one service corresponding to each element ei in U . For each subset sj , we create
a provider with a cost function cj equal to the weight wj of the subset sj . We
then solve the Recursive Composition Problem with no delay bound and obtain
the least cost solution CS to provide all the n services. It is easy to verify that
the subsets corresponding to each selected provider provide a solution to the set
cover problem. Further, one can show by contradiction that if this solution is not
optimal for the set cover problem, then the solution CS is not optimal for the
Recursive Composition problem. Hence, the set cover solution corresponding to
CS is the optimal solution. This proves the result.

Theorem 3. If the Goodness metric G is implemented as a heap ordered tree
of depth 2 with all providers as leaf nodes each basic service as an intermediate
node, the running time of BGF is given by O(Mn max{M, n}).

Proof. In order to prove Theorem 4, consider Fig. 1(b) and focus on the basic
service providers. Observe that selecting one provider only effects the goodness
values of the providers that provide the same service. Hence, we need to per-
form only n updates in each iteration. Further, extractBest needs to find the
maximum of only M intermediate nodes, leading to the bound.

Lemma 4. The number of disjoint sets with at least one service provider is
O(M).

Proof. The proof is by induction.
Base Case: M = 2. It is easy to see that the number of disjoint service provider
subsets is bounded by 3. Hence, the inductive hypothesis holds for 2.
Inductive Hypothesis: Let the above be true for all M ≤ k.
Case M = k + 1: Let us look at two sub-cases. In the first case, let there be
no provider who provides all the M services. We then divide the set of service
providers into two disjoint sets. One may note that two such disjoint sets exist by
picking the provider Pi with the largest |osi| as one disjoint set and the remaining
basic services as the other set. It is easy to see (by the definition of Disjoint Set
Composition) that no provider exists that provides services that span these two
sets. Let the number of basic services in each of these two disjoint sets be k1
and k2 respectively. Hence, the total number of disjoint subsets is bounded by
O(k1) + O(k2) by the inductive hypothesis. This completes the proof for this
case.
For the case where a provider exists who provides all the k+1 services, we create
two disjoint sets by selecting basic services provided by the provider Pi with the
second largest osi as one of the two sets. A similar analysis leads to a bound of
O(k1) + O(k2) + 1, which is O(M) again. This completes the proof.

Lemma 5. If the solution S achieved by BGF at any step has a delay D, then
S is the minimum cost solution which has a delay less than or equal to D.
Proof. The proof is obtained by induction.
Observe that in the base case, we have the minimum delay solution possible.
Hence, this is the only available eligible solution for that particular delay. Hence,
the theorem holds for the base case.
Assume that the property holds after k steps and BGF -D select a new provider
Pi with goodness gi for the k + 1th swap. Also assume that the new provider
increases the delay bound by di and decreases the cost by ci. Let there be another
provider P ′

i that would have provided a better solution within the same delay
bound. Let P ′

i increase the delay by d′i and decreases the cost by c′i. In order for
P ′

i to be better than Pi, we require it to lead to a lower increase in delay (i.e.
d′i < di) and a larger reduction in cost (c′i > ci). By the definition of goodness

property, ci

di
>

c′i
d′

i

, ∀ provider P ′

i . This leads to a contradiction and completes

the proof.

