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Abstract

Balanced allocation of online balls-and-bins has long been an active area of research for efficient
load balancing and hashing applications. There exists a large number of results in this domain with
different settings, such as parallel allocations [1], multi-dimensional allocations [5], weighted balls [4]
etc. For sequential multi-choice allocation where m balls are thrown into n bins with each ball choosing
d (constant) bins independently uniformly at random, the maximum load of a bin is O(log log n) +m/n
with high probability [3]. This offers the current best known allocation scheme. However, for d =
Θ(log n), the gap obtained is of O(1) [9]. A similar constant gap bound has been established for parallel
allocations with O(log∗ n) communication rounds [12].

In this paper we propose a novel multi-choice allocation algorithm, Improved D-choice with Esti-
mated Average (IDEA) achieving a constant gap with high probability for the sequential single-dimensional
online allocation problem with constant d. We achieve a maximum load of dm/ne with high probabil-
ity for constant d choice scheme with approximately constant number of retries or rounds per ball. We
also show that the bound holds even for an arbitrary large number of balls, m >> n. Further, we gen-
eralize this result to the weighted case, where the balls have weights drawn from an arbitrary weight
distribution with finite variance. We show that the gap in this case is also independent of the number of
balls thrown and is a constant. We also propose that IDEA provides constant gap bound w.h.p. in the
multi-dimensional scenario for m = n.

1 Introduction

A central research area in the domain of randomized algorithms is the occupancy problem for balls-into-
bins processes [2, 7, 3, 12, 13]. The framework of the problem involves the analysis of the online allocation,
wherein a set of independent balls is to be assigned to a set of bins. The occupancy problem helps to model
several realistic problems into a formal mathematical structure, and hence opens an active area of work in
probability theory as well as in computer science.

In the classical “balls-into-bins” problem, m balls are sequentially thrown into n bins, where each ball
is placed into one of the bins independently and uniformly at random (i.u.r.). The natural question then is
to analyze the maximum load in any of the bins. Mapping the problem to the application domain, we may
consider the balls to be jobs or tasks and the bins to be servers. The problem then reduces to scheduling the
jobs with balanced load allocations among the servers.

Probably one of the earliest applications of randomized load balancing is in the context of hashing.
For the chaining method during hash clash, the length of the lists in the hash buckets are a measure of the
retrieval complexity. For a uniform hash function, the length of the lists follow the same distribution as the
number of balls in a bin in this case.

The advent of parallel and distributed systems required efficient online load balancing among the servers
to improve the throughput of the system. Dependence on a centralized environment for uniform load bal-
ancing is highly undesirable for such systems due to high communication complexity. With the introduction
of the Cloud Computing paradigm, the placement of virtual machines (VMs) on servers provided a new
dimension to the applicability of the randomized balanced allocation study.

Other applications such as the design of Multimedia or Data Servers use disk arrays where a data
unit is partitioned and stored in a distributed fashion. These applications demand even (balanced) ac-
cess of the disks on retrieval [15] and Karp in [11] discusses applications in video-on-demand (termed
k-orientability [7]). The balls into bins problem accurately describes these applications only when the balls
have uniform weights. Other applications assume the loads to be of different weights to model its various
dimensions.

This paper tackles the problem of sequential online allocation of balls into bins. Assuming we have n
bins and m balls arriving one at a time are to be thrown into these bins, the problem is to devise an efficient
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algorithm such that the allocation of the balls is nearly balanced among all the bins. In formal terms, the
load in each of the bins should be as close to the average, (m/n) as possible. We initially study the case
of single-dimensional sequential placement of uniform weighted balls into bins problem and then extend
it for the general weighted case. Finally we also observe that IDEA provides the same result w.h.p. for
multi-dimensional balls-into-bins problem for m = n.

In this context, we define Gap to be the difference between the heaviest loaded bin and the average load.
The currently best known algorithm bounds Gap to O(log log n) with high probability using the symmetric
d-choice placement strategy [2, 13]. In the d-choice method, each ball selects d bins i.u.r. among the n bins
and is allocated to the least loaded bin among them. It is well-known that if d = Θ(log n) choice, the gap is
O(1) [9].

In this paper we propose a novel algorithm, Improved D-choice with Estimated Average, (IDEA) for
efficient placement of the balls in the bins. We prove that this technique provides a constant Gap with high
probability (w.h.p.) even when d is kept constant, albeit with an approximately constant number of retries
or rounds per ball. We further extend the result to show that the guarantee also holds true for the heavily
loaded case, i.e. m >> n w.h.p. Our technique is different from the typical greedy d-choice process in that
it places the ball in the bin that has load equal-to or lower than the estimated average of that bin. Using
approximately constant number of retries such a bin can be found for each ball and hence the load in each
bin tends towards the estimated average which also tends towards the actual average, resulting in constant
upper bound on the gap. Our strategy is also different from the typical asymmetric strategy [17] where
in case of tie over the load, the leftmost bin gets the ball. Our result can have profound implication both
theoretically and practically on the online load balancing algorithms.

The outline of the paper is as follows: Section 2 presents an introduction to the known works and results
in this domain. In Section 3 we propose the detailed outline of the IDEA algorithm for allocating the
balls into the bins. Section 4 provides the theoretical proof for bounding the Gap to a constant quantity
with high probability. Section 5 provides insights into the working of the IDEA algorithm. Section 6.1
depicts its extension for the general weighted balls case, and Section 6.2 exhibits similar results for the
multi-dimensional scenario. Finally, Section 7 concludes the paper.

2 Related Work

The study of “balls-into-bins” problem dates back to the study of hashing by Gonnet. He showed that when
n balls are thrown into n bins i.u.r., the fullest bin has an expected load of (1 + o(1)) log n/ log logn [10].
The maximum loaded bin in this approach was shown to beO(log n/ log log n) w.h.p. [8]. It was also shown
that for m ≥ n log n balls, a bin can have a maximum load of m/n+ Θ(

√
m log n/n).

Azar et al. [2] showed that if the balls chose sequentially from d ≥ 2 bins i.u.r. (called Greedy[d]
algorithm) and greedily selected the bin currently with the lowest load, the Gap could be bounded by
O(log log n/ log d) w.h.p. However, the solution worked only for the case when m = n. They also showed
that the bound is stochastically optimal, i.e. any other greedy approach using the placement information of
the previous balls to place the current ball majorizes to their approach. However, if the alternatives are drawn
from separate groups with different rules for tie breaking, it results in different allocations. [17] presents such
an asymmetric strategy and using witness tree based analysis proves that this leads to an improvement in
the load balance to O( log log(n)d log(φd)

) w.h.p. where, φ2 is the golden ratio and φd is a simple generalization.
Our algorithm is different from both these techniques in that it uses the estimated gap as the criterion for
choosing the bin and makes potentially multiple retries, where in each retry d bins are chosen i.u.r.

For the heavily loaded case, m >> n, the bound of O(log log n/ log d) w.h.p. was later proven in [3]
using sophisticated techniques in two main high level steps. In the first step, they show that when the number
of balls is polynomially bounded by the number of bins the gap can be bounded by O(ln ln(n)), using the
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concept of layered induction and some additional tricks. In particular, they consider the entire distribution
of the bins in the analysis (while in typical m = O(n) case the bins with load smaller than the average
could be ignored). In the second step, they extend this result to general m >> n case, by showing that
the multiple-choice processes are fundamentally different from the classical single-choice process in that
they have short memory. This property states that given some initial configuration with gap ∆, after adding
poly(n) more balls the initial configuration is forgotten. The proof of the short memory property is done by
analyzing the mixing time of the underlying Markov chain describing the load distribution of the bins. The
study of the mixing time is via a new variant of the coupling method (called neighboring coupling). It was
also shown that when d = Θ(log n) the gap becomes O(1) [9].

Cole et al. [6] showed that the two-choice paradigm can be applied effectively in a different context,
namely, that of routing virtual circuits in interconnection networks with low congestion. They showed how
to incorporate the two-choice approach to a well-studied paradigm due to Valiant for routing virtual circuits
to achieve significantly lower congestion.

Kunal et.al. [16] prove that for weighted balls (weight distribution with finite fourth moment) andm >>
n, the expected gap is independent of the number of balls and is less than nc, where c depends on the weight
distribution. They first prove the weak gap theorem which says that w.h.p Gap(t) < t2/3. Since in the
weighted case the d choice process is not dominated by the one choice process, they prove the weak gap
theorem via a potential function argument. Then, the short memory theorem is proved. While in [3] the
short memory theorem is proven via coupling, [16] uses similar coupling arguments but defines a different
distance function and use a sophisticated argument to show that the coupling converges.

The (1+β)-choice scheme [14] proved that if a ball chooses with β ∈ (0, 1) probability the least loaded
bin of d = 2 randomly chosen bin, and otherwise i.u.r. a single bin, the Gap becomes independent of m and
is given by O(log n/β).

In the parallel setting, [12] showed that a constant bound on the gap is possible with O(log∗ n) commu-
nication rounds. Adler et.al. [1] consider parallel balls and bins with multiple rounds. They present analysis
for O( log log(n)log(d) ) bound on the gap (for m = O(n)) using O( log log(n)log(d) +O(d)) rounds of communication.

For offline balls-into-bins problem, using maximum flow computations it was shown that the maximum
load of a bin w.h.p. is dm/ne + 1. [7] showed that for m > cn log n balls, where c is a sufficiently large
constant, a perfect distribution of the balls was possible w.h.p. However, no such similar result is found in
the literature for the online sequential case for constant d choice.

Mitzenmacher et. al. in [5] addresses both the single choice and d-choice paradigm for multidimensional
balls and bins under the assumption that the balls are uniform D-dimensional (0, 1) vectors, where each ball
has exactly f populated dimensions. They show that the gap for multidimensional balls and bins, using the
two-choice process, is bounded by O(log log(nD)). We provide a better bound of O(1) w.h.p. for m = n
case.

In this paper, we study a novel online sequential allocation algorithm for balls-into-bins based on a
constant d-choice strategy and prove a constant gap bound both for m = n and the heavily loaded case
m >> n along with for the general weighted balls and multi-dimensional scenario.

3 The IDEA Algorithm

In this section we discuss the working of the Improved D-choice with Estimated Average (IDEA) algorithm.
We consider there are n bins andm balls which arrive in an online fashion. We initially assume that the balls
are of uniform weights and are numbered according to the order of their arrival. In hashing applications, the
number of the balls based on their arrival order plays no role in assisting better or faster retrieval. Hence,
this assumption does not decrease the complexity of the problem at hand. Later we also provide a blueprint
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of the case when such a numbering of the balls in not allowed and the weighted balls case with the weights
of the balls drawn from an arbitrary distribution with finite variance.

Algorithm 1: IDEA Algorithm
Require: Number of bins (n), Number of balls (m) and Maximum iteration (γ)
Ensure: Balanced Allocation of Balls-into-Bins

for all bin Bi, i ∈ [1, n] do
Initialize the load, LBi and estimated average, ÂBi to 0

end for
for all ball bj , j ∈ [1,m] do
loop← 0
while loop ≤ γ do

Choose d bins, C = {Bin1, Bin2, · · ·Bind} i.u.r. from the n bins
if set C contains at least one bin with negative or zero estimated gap, ˆGapBini = LBini − ˆABini
then

Break while
end if
loop← loop+ 1

end while
Place ball bj in the bin, B ∈ C having the lowest estimated gap, ˆGapB
LB ← LB + 1
for all bins, Bini ∈ C do

if ˆABini > dj/ne then
flag ← 1

else
flag ← 0

end if
if flag = 0 then

ˆABini ← ˆABini + 1/d
end if

end for
end for

Given each bin has an accurate knowledge of the average number of balls in the system, m/n it is easy
to distribute the balls so as to obtain a perfectly balanced allocation. IDEA operates on the above principle,
where each bin independently calculates a fairly good estimate of the current average number of balls in the
system. Each bin is then loaded nearly equal to its estimated average value. In the remainder of this section
we show how each bin independently estimates its average which we later prove, with a high probability, to
be very close to the actual average, m/n. We also show that each bin is then loaded close to its estimated
average value, giving a maximum load of dm/ne with a constant gap allocation w.h.p.

The IDEA algorithm initially works as in the d-choice algorithm. On arrival of a ball bj , it i.u.r. chooses
d bins (d is constant) as its possible candidates for placement. Each bin, Bi, i ∈ [1, n] is characterised by

two parameters: (i) Current Load, Lji , and (ii) Current Estimated Average, ˆ
Aji . For each bin we define its

estimated gap, ˆ
Gapji as the difference between its current load and its current estimated average. Formally,

ˆ
Gapji = Lji −

ˆ
Aji .
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The ball bj is then allocated to the bin having the lowest value of ˆ
Gapji among the d chosen bins. Given

the definition of Gap (in Section 1) we would like to place the ball in a bin with negative or zero Ĝap. This
would ensure that the loads in the bins be close to their estimated average values and thus lead to a lower
Gap. Hence, if in the d choice a ball selects no bin with negative or zero ˆGapi, it re-chooses its candidate
d bins. To boost the probability of a ball choosing a bin having such ˆGapi, this re-choosing will be carried
out γ times, where γ will later be shown to be approximately a constant.

The current estimated average for each of the d bins finally selected by the ball is then incremented by
1/d. In the next paragraph we discuss the selection of such an increment value. We intuitively argue that
for each bin if Âi is finally close to the actual average (m/n) w.h.p., and its load Li is nearly equal to its
estimated average, the overall Gap in the system will be minimized and the maximum load of a bin will be
dm/ne. The pseudo-code of IDEA algorithm is shown in Algorithm 1.

The probability that a bin is chosen by a ball in its d choice is given by d/n. So when n balls arrive a bin
will be chosen d times on expectation. For each such choice the estimated average of the bin is incremented
by 1/d (Algorithm 1). Hence, its final estimated average will be 1, which is indeed the actual average of
the system. However, from Lemma1 we observe that a bin might be chosen d log n times or lesser w.h.p.
Since we increase the estimated average by 1/d, the estimated average may increase beyond 1 in such cases.
Hence the estimated average of a bin may be greater that 1 in two situations:
(i) Not more than n balls have arrived, but the bin has been chosen close to d log n times, or
(ii) More than n balls have arrived.
For case (i), the estimated average of the bin should still remain 1, while in the other case, the estimated
average should be increased as usual. It is here that the numbering of the balls come into effect. If the
estimated average of a bin goes beyond 1 and the next ball which selects this bin has a number less than n,
the bin knows that it may be chosen d log n times and hence refrains from increasing its estimated average
until a ball with number more than n selects it. Similarly when the estimated average of a bin increases
beyond α, α ∈ N, it checks if the next ball selecting it has a number greater than αn. Thus the balls
communicate their numbers as well while choosing the d candidate bins.

However in the scenario where numbering of the balls is forbidden, to differentiate between the two
cases, we use the sampling technique among the bins. A bin with estimated average just above α, in this
case chooses log n bins i.u.r. and communicates with them for their estimated average. If the average of the
estimated averages of the sampled bins are significantly lower than that of this bin (by some threshold, T ),
the bin comprehends that case (i) has happened, i.e., it is receiving more than d balls out of n balls and thus
refrains from increasing its estimated average. However, if the average of the estimated averages are close
to that of the communicating bin (difference is less than T ), the bin decides that more than αn balls are
arriving and increases its estimated value as usual. The probability that the error in the sampled average is
greater than a constant ε is given by 1

n for log n sampled choice (sampling theorem). Hence w.h.p. of 1− 1
n

we obtain the right decision for each bin.
Hence, we find that IDEA dynamically adapts its estimated average to be closer to the actual average

of the system. In either case, the estimated average of a bin is increased by at most 1 for every n balls.

4 Theoretical Framework

In this section, we provide a theoretical proof of the constant gap performance of the IDEA algorithm.
First, we bound the number of balls that may select each bin. We then establish that each ball in the IDEA
algorithm chooses at least one bin having negative Ĝap with a high probability, which makes the load of
each bin converge to its estimated average value. Finally, we bound the Gap of the system to a constant
value w.h.p. We assume m balls to arrive in an online fashion and there are n bins.
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Lemma 1. If each ball chooses d bins i.u.r. out of n bins, each bin is chosen by md
n balls on expectation,

and by at most mdn log n balls with high probability.

Proof. Define Y1, Y2, · · ·Ym to be indicator random variables corresponding to balls b1, b2, · · · , bm respec-
tively. Let Yi = 1 represent the event that the ball bi chose bin B as one of its d candidate bins, otherwise
Yi = 0, ∀i ∈ [1,m]. Since the balls choose d bins i.u.r., the probability that bin B is chosen among the d
bins, or Pr(Yi) = 1, is given by d/n. Let X be a random variable depicting the number of balls that chose
B among its d candidate bins. Hence, X =

∑m
i=1 Yi. The expected value of X is,

E[X] = E[

m∑
i=1

Yi] =

m∑
i=1

E[Yi] =

m∑
i=1

d

n
=
md

n
[By Linearity of Expectation] (1)

Applying Chernoff’s bound on X we obtain,

P (X > (1 + δ)E[X]) <
eδ

(1 + δ)
(1+δ)

∴ P (X > (1 + δ)
md

n
) <

eδ

(1 + δ)
(1+δ)

Substituting δ = log n− 1 we have,

P (X >
md

n
log n) <

elogn−1

(log n)logn
=

n

e(log n)logn
(2)

Let y = (log n)logn. Hence, log y = log n log log n. We have,
⇒ log(y/n) = log n (log log n− 1) = log n (log log n− log log ee)

For large values of n, log log(n/ee) ≥ 1, giving log(y/n) ≥ log n. Therefore, we have y > n2.
Substituting in Eq. (2),

P (X >
md

n
log n) <

1

en
(3)

Hence, bin B is chosen by at most mdn log n balls with a high probability of 1− 1
en .

Lemma 2. At any iteration, the estimated average of each bin is approximately equal to the current average
with high probability.

Proof. We assume here that Z balls have already arrived and have been placed among the n bins. The
number of balls that chose bin B among its d candidates is Zd

n on expectation, since each bin can be chosen
by a ball with a probability of dn . The number of such balls is also bounded by Zd

n log nwith high probability
(by Lemma 1). However, a bin does not increment its estimated average by more than d times for every n
balls. For each choice the bin B increases its estimated average by 1

d . Hence the current value of ÂB is
given by,

ÂB =
Zd

n
· 1

d
=
Z

n
, which is the current average.

Hence, the estimated average Â of any bin is nearly equal to the actual average w.h.p.

Observation 1. The variance of the estimated average of a bin B for n balls is,

V ar[ÂB ] = V ar[
X

d
] = V ar[

1

d
.

n∑
i=1

Yi] =
1

d2

n∑
i=1

V ar[Yi]

=
1

d2
.n
d

n
(1− d

n
) =

1

d
− 1

n
[From Lemma 1]
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Lemma 3. The sum of the estimated gap, Ĝap over all the bins at any time is zero.

Proof. Each ball chooses d candidate bins uniformly and randomly and is finally allocated to the bin having
the lowest estimated gap. Hence for all the d chosen bins, IDEA increases their estimated average by 1/d.
The load of d−1 bins which do not receive the ball remains same, and thus their estimated gap decreases by
the above factor. However, for the bin in which the ball is placed, its load increases by 1 and its estimated
gap increases by 1 − 1/d. Hence the sum of change of the estimated gap over the d chosen bins in any
iteration is 1− 1/d+ (d− 1)(−1/d) = 0.

Lemma 4. The number of bins having a zero or negative estimated gap, Ĝap is Θ(n).

Proof. Let there be α bins with positive Ĝap, β bins with negative estimated gap, and θ bins having 0
estimated gap. Hence, α+ β + θ = n. We would like to establish a lower bound on β + θ. In order to have
minimum number of bins with negative or zero Ĝap, the value of the gap should be minimum for bins with
a positive gap and maximum for bins with a negative gap. The minimum positive estimated gap for a bin is
Z(1 − d−1

d ) when Z(d − 1) balls have arrived in the system, of which only Z balls have been committed
into the bin. The maximum negative estimated average that a bin may have in this case is −Z(d−1)

d . Hence,

α.(Z(1− d− 1

d
)) + β.(−Z(d− 1)

d
) + θ.0 = 0 [From Lemma 3]

∴ α = β(d− 1)

As α+ β + θ = n, we have dβ + θ = n. So, the number of bins with zero or negative Ĝap is Θ(n).

Lemma 5. Each ball chooses at least one bin having negative estimated gap among its d choices w.h.p. in
γ rounds.

Proof. Each ball selects independently and uniformly at random d candidate bins for its placement among
the n bins. Hence the probability that bin Bi is chosen as a candidate for ball bj is, P ji =

(
n−1
d−1

)
/
(
n
d

)
= d

n .
Let there be c bins with zero or negative Ĝap. The probability that neither of these bins are selected as
candidate by a ball =

(
n−c
d

)
/
(
n
d

)
. The ball may re-select its candidates at most γ times. Therefore, the

probability that neither of the c bins are selected in any of the γ tries =
((
n−c
d

)
/
(
n
d

))γ . Hence the probability
that at least one bin with negative Ĝap is selected in the γ iteration is given by,

P (at least one selected) = 1−

((
n−c
d

)(
n
d

) )γ ≈ 1− 1

2dγ
[Assuming c = n/2 from Lemma 4] (4)

For d = 2 and γ = 2, we obtain a probability of around 0.94. However, with γ = log n, the probability becomes
nearly 1− 1

n . Further, we can show that approximately constant number of retries suffice.
Let the number of bins with positive gap at any point of time be n1−ε, where 0 ≤ ε ≤ 1. The probability Pbneg

with which a bin with a zero or negative gap is chosen in γ iterations is given by,

Pbneg = 1−

((
n1−ε

d

)(
n
d

) )γ

For a zero or a negative bin to be chosen with a high probability, we need Pbneg ≥ 1 − 1
nφ

, where φ > 0. Hence

for
(

1− (n
1−ε

n )dγ
)
> 1 − 1

nφ
. Thus, γ > φ

dε . Hence, at least one such bin is chosen by each ball in approximately
constant γ re-polls or rounds per ball w.h.p.

In the next lemma, we show that in practice only a couple of retries are needed to get a bin with zero or
negative estimated gap.
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Lemma 6. The expected number of rounds, γ per ball to find a bin with zero or negative estimated gap is
constant.

Proof. Let pi denote the probability that we find a zero or a negative bin at iteration i. Therefore, we have

pi =

(
i−1∏
1

Ppos

)
· Pneg =

i−1∏
1

1

2d
·
(

1− 1

2d

)
=

2d − 1

2id

where Ppos is the probability of selecting a bin with a positive estimated gap and Pneg is the probability of selecting
a bin with a zero or negative gap. The expected number of rounds per ball, γ to find a zero or a negative gap is given
by,

E[γ] =
∑

ipi =
(
2d − 1

) logn
d∑
i=1

i

2id
(5)

Let,

S(i) =

logn
d∑
i=1

i

2id
(6)

∴
S(i)

2d
=

logn
d∑
i=1

i

2(i+1)d
(7)

Subtracting Eq. (7) from Eq. (6), we have(
1− 1

2d

)
S(i) =

1

2d
− log n

d21+logn
+

1

2d (2d − 1)

∴ S(i) ≈ 2d

(2d − 1)
2 (8)

Substituting Eq. (8) in Eq. (5), we have

E[γ] ≈ 1 +
1

2d − 1
(9)

⇒ E[γ] < 2

Lemma 7. The load of each bin tends to its estimated average.

Proof. IDEA places each ball into a bin with zero or negative Ĝap, with high probability 1− 1
nφ

(Lemma 5)
using γ retries. When a ball is placed in a bin, its Ĝap increases. Thus, the probability that this bin will again
get a ball lowers. On the other hand, the bins that had been chosen but the ball was not placed in them have
a decrease in their estimated gap. Hence, the probability that a ball is placed in them increases. So, a bin
with a negative or zero Ĝap has a higher probability of a ball being allocated to it, whereby its estimated gap
tends towards 0 (in case of negative estimated gap-ed bins). On the other hand, bins with positive estimated
gap receive a ball with low probability even when chosen as candidates, and their estimated gap decreases
towards 0. Hence, we observe that the estimated gap of any bin tends towards 0. Since, estimated gap is
the difference of the load and the estimated average of a bin and the gap tends to zero, the load of the bins
becomes nearly equal to their estimated average w.h.p.

Theorem 1. The maximum load in any bin is dm/ne + Θ(1) w.h.p using the IDEA allocation algorithm
for the sequential, on-line and unweighted balls-into-bins problem.
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Proof. Using the above lemmas we observe that the estimated average of each bin finally becomes dm/ne
and the load in each bin is equal to its estimated average w.h.p. Hence the maximum load in any bin is
dm/ne+ Θ(1) w.h.p.

Corollary 1. The IDEA algorithm provides a perfectly balanced allocation with constant gap.

Proof. Since the maximum loaded bin has a load of dm/ne+ Θ(1) w.h.p. (Theorem 1), the Gap is of Θ(1)
providing a perfectly balanced allocation for the balls-into-bins problem with constant gap.

5 Discussion

We note that the Greedy[d] algorithm can also retry γ times to find a bin of even lower total number of
balls that what it could do in a single round. Still, the distribution of the balls in bins will be different than
the IDEA algorithm because the IDEA algorithm explicitly uses the expected gap to make the decision
of where the ball is placed. The key question is can the Greedy[d] algorithm give a constant gap and the
answer is negative for a single retry because of the well known lower bound of O(ln ln(n)) [2], while for
multiple retries γ has to be Θ(log(n)) [9] to achieve a constant gap. IDEA however requires only constant
(< 2) retries in the expectation (Lemma 6), to achieve the constant gap. Further, it requires γ = φ

dε retries
with high probability (Lemma 5).

A bin, B is chosen by d balls among n balls on expectation. However, the bin may be chosen αd times,
0 ≤ α ≤ 1 among the first ρ balls that arrive. As such, the Greedy[d] choice algorithm will place the
balls in empty or lesser loaded bins if available. In the remaining balls, B is chosen (1 − α)d times. Now,
for large values of α, even if all these balls are placed in it, B will have a load far less than the average of
the system. So the Gap increases. However, for IDEA with large α values, the estimated average for B
will be large and hence its estimated gap will be significantly lower than the other bins. So, it has a higher
probability of a ball being allocated to it. Thus, when the remaining balls arrive and a small fraction of them
are placed inB, its load will still be closer to the actual average as compared to the d-choice algorithm. This
sensitivity towards skewness in the random choices also enables IDEA to arrive at a better allocation than
the d-choice.

6 Extended Framework

6.1 Weighted Case

In this section we consider the weighted case of the balls-into-bins problem where the balls have weights
drawn from a distribution χ with an expected weight W ∗, such that the weight of any ball W has a finite
variance and can be bounded by (W ∗ − k) ≤W ≤ (W ∗ + k), where k is a constant. We apply the IDEA
algorithm and show that the gap is also constant w.h.p. in such scenarios.

Theorem 2. The maximum load in any bin is W ∗(dm/ne+ Θ(1)) w.h.p using the IDEA allocation algo-
rithm for the sequential, on-line and weighted balls-into-bins problem.

Proof. Reworking the lemmas stated in Section 4 we observe that the estimated average of each bin con-
verges to W ∗dm/ne and that the load in each bin tends to its estimated average w.h.p. Hence the maximum
load in any bin is given by W ∗(dm/ne+ Θ(1)) w.h.p. The complete proofs of the lemmas for the weighted
case is provided in Appendix A.

Corollary 2. The IDEA algorithm provides a perfectly balanced weighted allocation with constant gap
even for the general weighted case of the Balls-into-bins problem.
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Proof. From Theorem 2 we observe that as the maximum load is W ∗(dm/ne + Θ(1)). Hence IDEA
provides a perfectly balanced allocation for the weighted case w.h.p. having a constant gap ofW ∗Θ(1).

6.2 Multi-Dimensional Case

In this section, we consider the multidimensional (md), variant of the balls and bins problem. One multidi-
mensional variant, proposed by [5] is as follows: Consider throwing m balls into n bins, where each ball is
a uniform D-dimensional (0-1) vector of weight f . Here, each ball has exactly f non-zero entries chosen
uniformly among all

(
D
f

)
possibilities. The average load in each dimension for each bin is given asmf/nD.

Let l(a, b) be the load in the dimension a for the bth bin. The gap in a dimension (across the bins)
is given by gap(a) = maxbl(a, b)avg(a), where avg(a) is the average load in the dimension a. The
maximum gap across all the dimensions, maxagap(a), then determines the load balance across all the
bins and the dimensions. Thus, for the multidimensional balanced allocation problem, the objective is to
minimize the maximum gap (across any dimension). We refer to the multidimensional ball as md-ball and
the multidimensional bin as md-bin.

In another variation of multidimensional balanced allocation the constraint of uniform distribution for
populated entries is removed. Here again, each ball is a D dimensional 0-1 vector and each ball has exactly
f populated dimensions, but these populated dimensions can have an arbitrary distribution. In the third
variation that is most general of the three, the number of populated dimensions, f , may be different across
the balls, where f then is a random variable with an appropriate distribution.

Each md-ball has f populated dimensions, where f could be constant across the balls or a random
variable with a given distribution. Let, si(t) denote the sum of the loads (minus corresponding dimension
averages) across all D dimensions for the bin i at time t, expressed as si(t) =

∑D
d=1 x

d
i . This reduces

the problem to that of the scalar weighted case. The IDEA algorithm works based on the sum of the
dimensions for each bin. Also, for each choice of the bin, its estimated average is now incremented by f

d .

Theorem 3. For the multi-dimensional scenario, the IDEA algorithm provides a constant gap for uniform
distribution of the f populated dimensions for each ball with m = n.

Proof. Following the analysis in Section 6.1, the Gap in the system is bounded by Θ(1). Hence, the dif-
ference of the number of balls in the maximum bin and the actual average of the system is constant. For
m = n, the average is 1 and so the number of balls in the maximum bin is also a constant. Given a uniform
distribution of the f populated dimensions of each ball over D, the Gap is bounded by Θ(1).

7 Conclusions

This paper proposes the Improved D-choice with Estimated Average, IDEA algorithm which w.h.p. pro-
vides a perfectly balanced allocation for the sequential, online and uniform weighted balls-into-bins prob-
lem. We propose a better metric for greedy placement of the balls using the estimated average of the system
for each bin. We show that for a constant d choice and approximately constant number of rounds per ball,
the maximum loaded bin in IDEA is dm/ne + Θ(1) w.h.p. This result holds for m = n case as well as
the heavily loaded scenario where m >> n. We also extends the solution for the general weighted case
(with m >> n) to show similar results for balls with weights taken from an arbitrary distribution with finite
variance and for the multi-dimensional case with m = n for uniform distribution of f populated dimensions
over the D total dimensions.

The application of IDEA in parallel scenario along with its performance for the multi-dimensional
balls-into-bins problem in the heavy case provides an interesting future work in this domain.
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[3] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced Allocations: The Heavily Loaded Case. SIAM
J. of Computing, 35(6):1350–1385, 2006.
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A Theoretical Framework for the Weighted Case
In this section, we provide a theoretical proof of the constant gap performance of the weighted version of the IDEA
algorithm. We follow the same proof sketch as in the case of ball with unit weight. Further, we too assume here m
balls and n bins, m� n.

Lemma 8. If each weighted ball chooses d bins i.u.r. out of n bins, each bin is chosen by md
n balls on expectation,

and by at most mdn log n weighted balls with high probability.

Proof. Similar to Proof of Lemma 1.

Lemma 9. At any iteration, the estimated average of each bin is approximately equal to the current average w.h.p.
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Proof. We assume here that Z balls have already arrived and have been placed among the n bins. The number of balls
that chose binB among its d candidates is Zd

n on expectation, since each bin can be chosen by a ball with a probability
of d

n . The number of such balls is also bounded by (1 + log n)Zdn with high probability (by Lemma 1). However, a
bin does not increment its estimated average by more than d times when n balls are thrown. For each ping a bin B
receives, it increases its estimated average by W

d , which is bounded by W∗−k
d ≤ W

d ≤
W∗+k
d . Hence the current

value of ÂB is given by,

ÂB =
Zd

n
· W

∗ ± k
d

=
Z (W ∗ ± k)

n
, which is the current average.

Hence, the estimated average Â of any bin is nearly equal to the actual average w.h.p.

Lemma 10. The sum of the estimated gap, Ĝap over all the bins at any time is zero.

Proof. Each ball chooses d candidate bins uniformly and randomly and is finally allocated to the bin having the lowest
estimated gap. Hence for all the d chosen bins, their estimated average increases by W/d. The load of d − 1 bins
which do not receive the ball remains same, and thus their estimated gap decreases by the above factor. However, for
the bin in which the ball is placed, its load increases by 1 and its estimated gap increases by W

(
1− 1

d

)
. Hence the

sum of change of the estimated gap over the d chosen bins in any iteration is W
(
1− 1

d

)
+ (d− 1)−W

d = 0.

Lemma 11. The number of bins having a zero or negative estimated gap, Ĝap is Θ(n).

Proof. Let there be α bins with positive Ĝap, β bins with negative estimated gap, and θ bins having 0 estimated
gap. Hence, α + β + θ = n. We would like to establish a lower bound on β + θ. In order to have minimum
number of bins with negative or zero Ĝap, the value of the gap should be minimum for bins with a positive gap and
maximum for bins with a negative gap. The minimum positive estimated gap for a bin is ZWmin − 1

d

∑Z(d−1)
i=1 Wi ≈

Z(W ∗ ± k)
(
1− d−1

d

)
when Z(d − 1) balls have arrived in the system, of which only Z balls have been committed

into the bin. We have Wmin = min{W1,W2, . . . ,WZ(d−1)}. The maximum negative estimated average that a bin

may have in this case is −
∑Z(d−1)
i=1 Wi

d ≈ −Z(d−1)(W∗±k)
d . Hence,

α.(Z(W ∗ ± k)(1− d− 1

d
)) + β.(−Z(W ∗ ± k)(d− 1)

d
) + θ.0 = 0 [From Lemma 3]

∴ α = β(d− 1)

Further, α+ β + θ = n. Hence, dβ + θ = n. So, the number of bins with zero or negative Ĝap is Θ(n).

Lemma 12. Each ball chooses at least one bin having negative estimated gap among its d choices w.h.p. in γ rounds.

Proof. Similar to Proof of Lemma 5.

Lemma 13. The expected number of rounds, γ per ball to find a bin with zero or negative estimated gap is constant.

Proof. Similar to Proof of Lemma 6.

Lemma 14. The load of each bin tends to its estimated average.

Proof. Similar to Proof of Lemma 7.
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