
H-0218 February 2004
Computer Science

IBM Research Report

Overlapping Memory Operations with Circuit Evaluation in
Reconfigurable Computing

Yosi Ben-Asher
CS Haifa University

Israel

Daniel Citron, Gadi Haber
IBM Research Division

Haifa Research Laboratory
Haifa 31905

Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Overlapping Memory Operations with Circuit Evaluation in Reconfigurable
Computing

Yosi Ben-Asher
CS Haifa University, Israel

yosi@cs.haifa.ac.il

Daniel Citron
IBM Research Labs in Haifa, Israel

citron@il.ibm.com

Gadi Haber
IBM Research Labs in Haifa, Israel

haber@il.ibm.com

Abstract

This paper considers the problem of compiling pro-
grams, written in a general high-level programming lan-
guage, into hardware circuits executed by an FPGA (Field
Programmable Gate Array) unit. In particular, we con-
sider the problem of synthesizing nested loops that fre-
quently access array elements stored in an external mem-
ory (outside the FPGA). We propose an aggressive compi-
lation scheme, based on loop unrolling and code flatten-
ing techniques, where array references from/to the external
memory are overlapped with uninterrupted hardware eval-
uation of the synthesized loop’s circuit. We implemented a
restricted programming language called DOL based on the
proposed compilation scheme and our experimental results
provide preliminary evidence that aggressive compilation
can be used to compile large code segments into circuits,
including overlapping of hardware operations and memory
references.

1 Introduction

Hardware compilation is an emerging technology used
to compile programs or parts of programs directly to hard-
ware circuits. Usually, the resulting circuits are executed
on a reconfigurable device such as the FPGA, in order to
accelerate execution. Hardware compilation is more eco-
nomic in terms of power and execution time as there is no
need to fetch values (from the memory/registers), decode
or store. Ideally, values are directly propagated from one
operation/gate to the other. Figure 1 demonstrates the ap-
proach of compiling a program directly into a hardware cir-
cuit (consisting of the ���,����� and ����� operations) vs.

mod

mod

mod

mux

plus

x

x

2

1

2

1

plus

mux

2

x 1

plus

mux

x

set register1, 3

notzero register1, jump L0

L1:

store register2,add(x)

call mod

push 2

push register2

load register2,add(x)

L0: do i=1 .. 3 {

 x++;
}

 if(x mod 2 == 0)

zero register0, jump L1

increment register2

decrement register1

Figure 1. Compiling into circuit versus compiling to
machine instructions

the usual method of compiling it into a fixed set of machine
instructions. Hardware compilation can automatically ex-
pose hidden parallelism in the original code as a circuit is
always evaluated in parallel (e.g., the ��� and the ���� of
the circuit in figure 1 are evaluated in parallel). Finally, (ide-
ally), hardware compilation can ease the task of developing
ASIC applications, allowing the developer to use high-level
algorithmic description, rather than HDL languages such as
VHDL.

Hardware compilation is a complex area of research that
combines compilation techniques [14] with the study of var-
ious FPGA-based architectures [5]. In general, the circuits
generated by the compiler are executed on an external re-
configurable unit (usually an FPGA co-processor) in three
stages:

1

fetch - input values are loaded from the memory to the re-
configurable unit.

eval - the underlying circuit is evaluated in hardware.

update - the output values computed by the circuit are
written back to the memory.

The overhead involved with data transfers between the re-
configurable unit and the memory can easily dominate the
speedup obtained from the hardware evaluation of the cir-
cuit. For example, the GARP architecture [10] uses special
hardware queues to speed up transfer of values between the
memory and the reconfigurable unit. In this work we pro-
pose an aggressive compilation scheme that attempts to re-
duce this overhead, and thus improve the effectiveness of
hardware compilation.

In this paper we describe the main requirements of a
hardware compilation scheme needed in order to obtain effi-
cient management of memory references by reconfigurable
architectures. Consider the following basic model of hard-
ware compilation:

Definition 1.1 A code segment � of a program 	 is com-
piled to a generic circuit
� that is evaluated whenever the
execution of 	 passes through �. An evaluation of
� is
considered “efficient” if, when the execution of 	 passes
through �, all the input values of
� are available and
ready to be fed into the circuit. Similarly, we require that the
execution of 	 can continue immediately after the evalua-
tion of
� completes, without the need to wait for updating
the memory with the values computed by
� , to finish.

Assume that both the code segment preceding � and the
code executed immediately after � are compiled to circuits.
Then the previous condition can be stated as follows:

Definition 1.2 Let ��� � � � � �� be a sequence of code
segments that are compiled to circuits
�� � � � � �
�� in
respect and are executed one after the other. Then
�� ��������� � � � � ��� �

����

���

�����
���

����� ���
����� � ���� ����
��������

where ���� ���
��� is the number of
��’s inputs that must
be loaded from memory and ���� ����
��� are the outputs
computed by
�� that must be stored to memory.

The �� ����� is devided by 2 since the fetch and update
operations can be performed in parallel.

Load/store operations can be overlapped with circuit
evaluation only if �� ��������� � � � � ��� � �. The

�� ����� can also be computed for the size of
�� in
which case the �� ����� measure will serve as an upper
bound to the amount of time available for memory opera-
tions.

The conditions for efficient hardware compilation can be
stated as follows:

1. There is a partitioning of program 	 into code seg-
ments such that most of the code segments in the exe-
cution trace of 	 are compiled into circuits.

2. The mem ratio of any consecutive sequence
��� � � � � �� of code segments in the execution
trace of 	 is greater than one.

3. All memory addresses in ���� ���
����� can be com-
puted in hardware and in parallel during the evaluation
of
�� .

4. All memory addresses in ���� ����
����� can be
computed in hardware and in parallel during the eval-
uation of
�� .

Our proposed solution works by “flattening” each fre-
quently executed code segment, containing one or several
consecutive or nested loops, into a large “main-loop”. The
body of the main-loop (referred to here as the chunk) is
compiled to a circuit such that each evaluation of this circuit
computes one iteration of the main-loop. Each chunk may
consist of several iterations of the original program loop (or
loops) in the compiled code segment. For example, the loop

��� �� � �� � � �� ���� �� ����� � �� �� �� � �	����
�

can be executed in chunks of �� iterations each. Thus, when
computing variable � for the chunk of � � ��� ��� � � � � ��,
we can potentially load/prepare input values �	��
� �	��

that are needed for the next chunk of � � �� �� � � � � �.

Obtaining optimal partitioning to chunks such that the
mem-ratio is larger than 1, is not always trivial. Con-
sider for example the multiplication of two � � � matrices

 � ��� with the inner loop:

����� � �� � � � � � ���
	�
	�
 � � �	�
	�
 ��	�
	�
�

The resulting circuit is a “long” chain of �� plus-gates and
multiplications with about �� load operations. Thus, for
any partitioning to chunks, each chunk will include only
long chains of the above type. Consequently, the mem-ratio
of naive matrix multiplication is about � which is barely
tolerated. However, compilers can overcome this problem
by partitioning the �, � matrices into sub-matrices of size
� � � each, and applying the matrix multiplication oper-
ation in the granularity of sub-matrices. Therefore, when

2

partitioning to chunks of size� �, the mem-ratio is ��

�� � �,
yielding potentially fast execution. These loop transfor-
mation techniques, suitable for improving the mem-ratio
(including the above example) fall into the scope of exist-
ing compiler optimization methods aimed to improve data
cache behavior.

In this work we developed a restricted programming lan-
guage called DOL designed to test this hypothesis regarding
the potential and the ability to overlap memory operations
and circuit evaluation. We report preliminary results show-
ing that programs written in DOL can achieve good mem-
ratio and can be efficiently compiled into hardware using
the proposed scheme.

2 Related works

Related works can be divided into two categories: lan-
guages and compilation techniques, and reconfigurable ar-
chitectures built to explore the premise of reconfigurable
computing.

The basic concept of hardware compilation was pro-
posed by N. Wirth [15], who showed how to synthesize
high-level programs to circuits, based on their syntax tree.
Currently, hardware compilation relies on modern compiler
technology to synthesize code using “low-level” intermedi-
ate representations of programs (such as RTL, data depen-
dency graphs, and control flow graphs). For example the
PRISM-I/II compiler [1] works by first generating the RTL
(Register Transfer Language) code, then generating circuits
out of simple basic blocks using the data dependency graphs
of these blocks.

Some hardware compilers work by extracting short in-
struction sequences and compiling them to circuits. These
include the PRISC compiler [16] and the Chimaera C com-
piler [18]. Such compilers rely on combining techniques
[14] to generate multi-operand instructions executed by the
reconfigurable unit.

Some compilers require explicit statements to mark code
segments that should be compiled to circuits, such as the
Napa C compiler [9]. The GARP compiler [3] uses Instruc-
tion Level Parallelism (ILP) methods to compile the inner
most loops of a C program to circuits. The GARP compiler
uses hyperblock optimizations [12] to increase the size of
the resulting circuits. There is also an attempt to use soft-
ware pipelining [14] in the GARP compiler. Vectorization
techniques have also been suggested for hardware compi-
lation in [17]. Some efforts are made to apply hardware
compilation on Java programs [18].

Another existing compilation direction is to use the C
language together with parallel constructs to form high-

ALU

PALU

ALU

MEM MEM

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

MEM

REGISTER FILE

reconfig
array

regular
CPU

inst.
cache

data
cache

CPUPRISC
GARP CPU

MQ

RAW tile array

HOST CPU

Figure 2. Sample of reconfigurable architectures.

level hardware description languages such as Transmogri-
fier C [8], Handel-C from Celoxica, and Streams-C.

There are many reconfigurable architectures of which we
will describe three. Note that in these architectures, the re-
configurable unit must frequently access an external mem-
ory and fetch inputs for the circuit that is being evaluated
by the reconfigurable unit. PRISK [16] (see figure 2) adds a
programmable functional unit (PFU) to the datapath of the
CPU. The PFU allows the CPU to execute special instruc-
tions generated by the PRISC compiler for the current pro-
gram. Note that in this case, the reconfigurable unit works
with the register file and not with the memory, thus reducing
the special instructions to use only registers as inputs. The
GARP architecture [10] (see Figure 2) uses a reconfigurable
array as a co-processor to execute suitable inner loops of a
program in hardware. Note that here, the reconfigurable
array can access the data cache, the memory and the CPU
registers, thereby speeding up load/store operations. The re-
configurable array of the GARP is a 2D array of 2-bit func-
tional units that can be dynamically connected to form the
circuits that are synthesized by the GARP compiler. The
RAW machine [2] (see Figure 2) is a highly distributed ar-
chitecture consisting of a 2D array of reconfigurable pro-
cessing elements (PEs). The connections between the PES
can be dynamically changed by the host. Thus, reconfigu-
ration is executed both inside each PE, and between the PE
themselves. Here, the memory is distributed, as each PE has
its own memory but can also access other local memories
using internal communication lines. Thus, the RAW ma-
chine has to suspend circuit evaluation to perform load/store
operations.

3 Compilation method

As explained in the introduction, the proposed compila-
tion scheme takes a sequence of nested do-loops and trans-
forms them into one large loop (referred to as the“main-
loop”) whose body (called the “chunk”) is compiled to a

3

combinatorial circuit (called the “generic circuit”). The
goal is to show that such a partitioning strategy is (a) feasi-
ble and (b) obtains sufficiently high mem-ratios.

In general, the compiler uses several transformations
(which can be regarded as special variants of known loop
transformations [6]) to “flatten” the program to a main-loop.
We omit the technical details and only demonstrate how the
transformations work via examples (using C-like syntax):

Flattening two nested loops - This transformation is re-
lated to loop coalescing [6].

����� � �� � � �� � ��� �
���� �� � ��
����	 � �� 	 � �� 	 ���
���� ��� �
��� 	� � ��	� ��� �

����� � �� 	 � �� � � ��
	 � ��	 �� 	 � ���	 � ���
���	 �� �� ���� �� � ��
���� �� � �
��� 	� � ��	� ��� �

Flattening two consecutive loops - This transformation is
related to loop fusion [6].

����	 �
� 	 � �� 	 ��� ����� � �� � � ��
� � �� �� � ������ 	 � ���

��� �
��� �� �
���
�� ���� � ��
��� �

��� �� �
���
��

����� � �� � � �� � ��� ��� ���� � �
����
����� �
����

Flattening conditional loop - If statements must be
placed inside loops.

���� � �� ����� � �� � � �� � ���
����� � �� � � �� � ��� � ��� � � ��
����� �
���� ���� �� � �� � � �� � � ��

���� �� �� ����� �
���� �

Loop unrolling [14, 6] - used to increase the size of a
loops body and consequently the size of the generic
circuit. For example the code ����� � �� � � �� � �
���	�� �
� � �	�� �
 � �	�� �
� is unrolled to

����	 � �� 	 � �� ��
���	 � � ���
���� ��� �
��� 	� � ��	� ���
���� ��� �
��� 	 � �� � ��	 � �� ���
���� ��� �
��� 	 �
� � ��	 �
� ���
	� � � � ��� ���	 �� ��
��
���� ��� �
��� 	� � ��	� ���
���� ��� �
��� 	 � �� � ��	 � �� ���
	 � �

� ��� ���	 �� �� ���
���� ��� �
��� 	� � ��	� ���
	 � ��
��

Only the innermost loops should be unrolled, as the
body of a loop containing other loops cannot be com-
piled to a single combinatorial circuit (the generic cir-
cuit). This is true no matter how the inner loops are
unrolled.

+

*

+

*

+

*

a[i,k+2] b[k+2,j]

a[i,k+1] b[k+1,j]

a[i,k] b[k,,j]
c[i,j]

c[i,j]

Figure 3. Generic circuit of
	�� �
� � �	�� �
 �
�	�� �
.

The basic compilation technique is to unroll the innermost
loops and then recursively (bottom-up) apply the transfor-
mations, until the whole code-segment has been flattened
into one main loop.

The DOL compiler attempts to optimize the generic cir-
cuit by creating larger sequences of simple assignments that
contain if-statements which slow down the resulted circuit.
The if-statements are implemented in hardware by using
special MUX-like circuits in order to reduce their overhead
on execution time. Consider flattening a nested loop, as-
suming that the inner loop’s range is relatively small com-
pared to that of the outer loop. In this case, we would like to
create sequences containing a maximal number of consec-
utive assignments uninterrupted by if-statements. This can
be done by mixing statements from the last iteration of the
inner loop and the following iteration of the outer loop.

The actual implementation of the above recursive
scheme does not work directly on the abstract syntax tree of
the program, but rather on an internal representation of the
loops called the DOL representation. The DOL represen-
tation of loops is in fact a partition of the loop into cases,
according to the possible values of the index variables of
that loop. For example, assume that we wish to unroll the
loop

����� � �� � � �� � ��� �	�� �
� � �	�� �
 � �	�� �

, � � times. In loop unrolling, it is necessary to con-
sider the possibility that the range � is not divided by .
The resulting partition to cases will therefore include the
following cases: � � � � � (we are free to unroll three
times),� � ��� (we unroll two times) and � � � (last iter-
ation is executed). Note that it is relatively easy to compile
the condition/body/increment parts of each case to hard-
ware, as these parts do not contain loops. For example,
the body of the case � � � � � is depicted in Figure 3.
In addition, computing the sequence of addresses and val-
ues needed by the load-in/store-out part of each case can be
also generated using simple circuits.

Each application of a transformation results in a larger

4

+

+
inputs
buffer
unit

memory device

write output values read input values

value

value

configuration configuration

buffer
unit

Output

addressaddress

of previous iteration of next iteration

FPGA

generic circuit
of the current
iteration

store−out load−in

index−unit

generic circuit
cofiguration cofiguration

index

i,j,k...

Figure 4. Configuring an FPGA to evaluate DOL
programs

loop which is also represented by cases. Thus, the final
main loop is also represented as a set of cases.

Our target architecture, as depicted in Figure 4, is an
FPGA unit configured to execute this main loop as follows:

1. An external memory holds the arrays accessed by the
program. We assume that the inputs to the program
are the initial values of these arrays. We assume that
the FPGA can load/store two items in parallel in about
the same time needed to compute arithmetic operations
(this is subject to using fast SRAM memories or using
a cache).

2. The chunk of each case of the large loop is synthesized
to a single circuit which is downloaded to a config-
uration cache of the FPGA. We thus assume that the
FPGA can dynamically switch from one configuration
to the other. Another alternative is to synthesize all the
circuits of the cases to one “large” circuit, and use dif-
ferent parts of it when the execution needs to switch to
a different case.

3. At each stage, the FPGA holds the values of the in-
dexes �� �� �� � � � associated with the large loop.

4. The FPGA evaluates the condition expressions, and the
suitable generic circuit is selected for the current itera-
tion of the loop.

5. The set of items loaded from the memory in the pre-
vious iteration are loaded into the inputs of the current
generic circuits from the inputs-buffer.

6. The evaluation of the generic circuits begins.

7. The set of addresses and values (���� � ���) of the
previous iteration are written to the memory. This is
performed while the generic circuit is evaluated, thus
overlapping the evaluation time of the generic circuit
with load/store operations.

8. The set of addresses ���� � �� of the next iteration of
the large loop is computed, executed, and stored in the
input buffer for the next iteration (overlapping evalua-
tion times and load operations).

9. While the generic circuit is evaluated, the outputs-
buffer is filled up with addresses and values that need
to be stored in the memory.

10. Not every load/store operation need to be actually writ-
ten to the main memory, in some cases, values can be
directly fetched from the output circuit of the previous
iteration.

11. The ������� expression of the current iteration is
evaluated.

Though the above setting is a general one, we can draw
some conclusions regarding necessary conditions so that ef-
ficient compilation to hardware can take place:

� The total number of cases after compilation must be
a small constant, proportional to the number of loops
in the source program. This is a key feature, allowing
us to perform small number of “dynamic” reconfigura-
tions at the FPGA, and preventing us from embedding
too many generic circuits in the FPGA.

� On average (over the execution of the final chunk), the
number of load-in/store-out operations should not ex-
ceed the average depth (in units of algebraic opera-
tions) of the generic circuit. This allows us to sup-
port the premise of the proposed approach, namely to
overlap the evaluation time of the generic circuit, with
the load/store of the inputs/outputs of the next/previous
chunk.

� The addresses computed for the load-in/store-out units
must be simple expressions of the loops’ indexes and
induction variables (e.g., �	� � �
 is preferable to
�	� � � � ��

�
�� �
). Simple indexing functions will

allow the FPGA to compute the addresses not only in
parallel, but perhaps also using no more than one or
two arithmetic operations.

� The memory address of the load-in of any chunk must
be such that it can be computed in parallel and before
the chunk is evaluated. This may prevent us from using
indirect expressions of the form �	�	�

� � � � � as the
value of �	�	�

 can be changed during evaluation of

5

Figure 5. Operations frequency in SPEC CINT2000

Figure 6. Operations frequency in SPEC CFP2000

the current generic chunk. For such cases, we are able
to provide only some restricted solutions, as will be
explained in the next section.

4 Experimental results

The first set of experiments was designed to check the
mem-ratio in general programs. We used a post-link tool to
count the total number of execution of each type of instruc-
tion (load/store/branch/ALU+FP) in the SPEC CPU 2000
benchmark suite running on the 64bit IBM Power3 archi-
tecture. The results in Figure 5 for SpecInt2000 and in Fig-
ure 6 for SpecFP2000 support the fact that the mem-ratio of

���
������	
����� is about �. Similar results were also obtained
by other works [11, 4] for SPEC CPU 2000.

In the second set of experiments we used the ARIA sim-
ulator [13] that was modified to check the mem-ratio in
”traces” that are collections of basic blocks. We stop build-
ing a trace when the number of instructions is larger than
�� or a backwards branch or branch to a register value is

Figure 7. Mem-ratio in SPEC INT 2000

Figure 8. Mem-ratio in SPEC FP 2000

encountered. A trace that is smaller than instructions is
not counted. Figures 7 and 8 show histograms of the mem-
ratio. The rightmost bars are the traces that didn’t have any
memory references and the traces that were smaller than
instructions. The results show that about ��� of the traces
have a mem-ratio higher than one. In fact, in these charts the
mem-ratio was not divided by two so that the actual result is
even higher. Note that working with traces of size less than
�� does not reveal the full potential of the proposed scheme
as the underlying compiler did not “flattened” loops and the
traces are only an approximation to fully “flattened” loops.

We developed a special programming language called
DOL (Do-loops Language) that enables the aggressive
translation of programs to circuits, based on the compila-
tion concept described in Section 3. DOL was designed
to provide a preliminary proof of concept for the compila-
tion scheme described in Section 3 by showing that flatten-
ing loops can be used to synthesize circuits. By using the
DOL compiler we were able to measure the ratio between
memory load/stores instructions and internal hardware op-
erations of in the generated circuits.

We have implemented several algorithms in DOL lan-

6

Figure 9. mem-ratio (size/(load,store)) for simple
DOL programs.

guage. No optimizations were applied on the implemented
algorithms for improved mem-ratio behavior. Figure 9 de-
scribes the average mem-ratio size ������
 	���

������	
���	�� for the
unrolling factors � � � � � ���. Note that the value of
also determines the expected size/depth of the generic cir-
cuit, e.g., for � ��, the resulting circuit will have twice
the size/depth of the circuit obtained for � �. As can be
seen from the results, large factors of mem-ratio have been
obtained for programs written in DOL. Moreover, the mem-
ratio grows proportionally to , hence any desired mem-
ratio can be obtained by selecting the right value of . This
follows from the fact that as the unrolling factor increases,
more values that were computed in previous iterations of
the main-loop, can be directly used as inputs for the next
iterations. A sufficiently good mem-ratio has also been ob-
tained for the depth of the generic circuit (Figure 10). A
high mem-ratio for the depth reduces the evaluation time
of the generic circuit to the minimum possible by the criti-
cal path length of the original code. This follows from the
fact that the proposed compilation scheme does not insert
dependencies which were not present in the original code.

Following are the results of applying DOL to the well-
known Livermore loops. This set of � sequential loops
(extracted from FORTRAN numerical code) has been used
to evaluate the power of parallelizers and parallel systems
to extract parallelism out of sequential code since the early
seventies. As described in [7] not every loop can be paral-
lelized and some are harder to synthesize than others. Loops
which result in DOL programs that include double refer-
encing (loops 2,8,13,14,15,16,17,18,24) are obviously not
included (though some cases can be handled using special
features of DOL). The mem-ratio for both, size and depth
(see Figures 11, 12) can be divided into two groups: loops
�� �� �� �� �� with low mem-ratio of less than �, and the re-
maining loops with a mem-ratio greater than �. The first

Figure 10. mem-ratio (depth/(load,store)) for simple
DOL programs.

Figure 11. Livermore loops mem-ratio for size.

group (loops �� �� �� �� ��) are highly parallel loops, where
each array element is updated only once during the loop it-
erations by values which are not computed within the loop.
Clearly, such cases (e.g., ����� � �� � � �� � � �� �	�
 �
�	�
 � �	�
) cannot obtain good mem-ratio, no matter how
we rewrite the loop. However, such initializing loops can-
not play a significant part in complex applications. Note
that for these loops, increasing reduces the mem-ratio
(rather than improving it). This is because the depth of
their resulted generic circuits remains constant for every .
Therefore, selecting a higher implies that relatively more
store/load operations occur for every ALU/FP operation.

Though these experiments do not include full bench-
marks or large applications, they do demonstrate the
premise of the proposed method, namely that programs or
special loops which do not include multiple double refer-
ences can be efficiently compiled into hardware.

7

Figure 12. Livermore loops mem-ratio for depth.

5 Conclusions

In this work, we have described a hardware-compilation
scheme of programs to circuits. The basic idea is to com-
pile a program (or a part of it) into a single main loop
whose body does not contain any branch instructions. Con-
sequently, the body of the main loop can be compiled to a
combinatorial circuit, called the generic circuit. The goal
is to execute the main loop by repeated uninterrupted eval-
uation of the generic circuit. This can be done only if we
are able to fetch input values for the next evaluation of the
generic circuit, while we are evaluating the current one. We
have shown that this can be done if the “mem-ratio” of the
main loop’s body is greater than one. We have implemented
a simple programming language called DOL in order to test
this assumption. Though the experiments presented here are
preliminary, they do support this assumption.

References

[1] P. M. Athanas. A functional reconfigurable architecture and
compiler for adaptive computing. In 12th Annual Interna-
tional Phoenix Conference on Computers and Communica-
tion, pages 49–55, 1993.

[2] J. Babb, M. Frank, E. Waingold, R. Barua, M. Taylor,
J. Kim, S. Devabhaktuni, and A. Agarwal. The RAW bench-
mark suite: Computation structures for general purpose
computing. In K. L. Pocek and J. Arnold, editors, IEEE Sym-
posium on FPGAs for Custom Computing Machines, pages
134–143, Los Alamitos, CA, 1997. IEEE Computer Society
Press.

[3] T. J. Callahan and J. Wawrzynek. Instruction-level paral-
lelism for reconfigurable computing. In R. W. Hartenstein
and A. Keevallik, editors, Field-Programmable Logic: From
FPGAs to Computing Paradigm, pages 248–257. Springer-
Verlag, Berlin, / 1998.

[4] J. F. Cantin and M. D. Hill. Cache performance for spec
cpu2000 benchmarks.

[5] K. Compton and S. Hauck. Reconfigurable computing: A
survey of systems and software. ACM Computing Surveys,
2000.

[6] O. J. S. David F. Bacon, Susan L. Graham. Compiler trans-
formations for high-performance computing. ACM Comput-
ing Surveys, 26(4):345–420, 1994.

[7] J. T. Feo. An analysis of the computational and parallel com-
plexity of the livermore loops. Parallel Computing, (7):163–
185, 1986.

[8] D. Galloway. The transmogrifier C hardware description
language and compiler for FPGAs. In D. A. Buell and K. L.
Pocek, editors, Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, pages 136–144, Napa,
CA, Apr. 1995.

[9] M. B. Gokhale and J. M. Stone. NAPA C: Compiling for a
hybrid RISC/FPGA architecture. In K. L. Pocek and J. M.
Arnold, editors, Proceedings of the IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM ’98), pages
126–135. IEEE Computer Society, IEEE Computer Society
Press, Apr. 1998.

[10] J. R. Hauser and J. Wawrzynek. Garp: A MIPS proces-
sor with a reconfigurable coprocessor. In K. L. Pocek and
J. Arnold, editors, IEEE Symposium on FPGAs for Cus-
tom Computing Machines, pages 12–21, Los Alamitos, CA,
1997. IEEE Computer Society Press.

[11] A. KleinOsowski and D. J. Lilja. Adapting the spec 2000
benchmark suite for simulation-based computer architecture
research. Computer Architecture Letters, 1, 2002.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated exe-
cution using the hyperblock. In 25th Annual International
Symposium on Microarchitecture, 1992.

[13] M. Moudgill, J. Wellman, and J. Moreno. Environment
for PowerPC Microarchitecture Exploration. IEEE Micro,
19(3):15–25, May/June 1999.

[14] S. Muchnik. Advanced Compiler Design Implementation.
Morgan Kaufmann, 1997.

[15] K. V. Palem, S. Talla, and W.-F. Wong. Hardware compi-
lation: Translating programs into circuits. IEEE Computer,
31:25–31, 98.

[16] R. Razdan and M. D. Smith. A high-performance microar-
chitecture with hardware-programmable functional units. In
Proceedings of the 27th Annual International Symposium on
Microarchitecture, pages 172–80. IEEE/ACM, Nov. 1994.

[17] M. Weinhardt and W. Luk. Pipeline vectorization for recon-
figurable systems. In K. L. Pocek and J. M. Arnold, editors,
Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, page n/a, Napa, CA, Apr. 1999. IEEE
Computer Society, IEEE.

[18] Z. A. Ye, N. Shenoy, and P. Banerjee. A c compiler for a
processor with a reconfigurable functional unit. In ACM In-
ternational Symposium on FieldProgrammable Gate Arrays,
pages 95–100, 2000.

8

