
H-0219 (H0403-002) March 27, 2004
Computer Science

IBM Research Report

The Generic Manageability Library (GeMaL)

Y. Aridor, Y. Gal, Z. Har'El, A. Orlovsky, B. Rochwerger, M. Silberstein
IBM Research Division

Haifa Research Laboratory
Haifa 31905

Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

The Generic Manageability Library (GeMaL)

Y. Aridor, Y. Gal, Z. Har’El, A. Orlovsky, B. Rochwerger, M. Silberstein
IBM Haifa Research Lab.

{aridor,yoavg,zharel,arieo,rochwer,marks}@il.ibm.com

Abstract

The OGSA Generic Manageability Library consists

of a set of Grid Services definitions and their Java im-
plementation aimed at simplifying the development of
self-managing systems according to the IBM auto-
nomic computing architecture [][1].

GeMaL defines a generic manageability interface
that developers can use to wrap different components
and manage them in a standard fashion. GeMaL is
defined on top of the Open Grid Services Infrastructure
(OGSI) [12] and few additional operations to fulfill
some functionality gaps. These are discussed in detail
in this paper. Moreover, GeMaL supports hierarchical
(multi-layered) management systems by supporting
composability (of a multi-layered management sys-
tem), pluggability (of different management tools e.g.,
analyzers) and configuration (of the management sys-
tem). Finally, GeMaL is composed of a very limited set
of interfaces which are easy to use in autonomic sys-
tems.

Several components have already been GeMaLized
(wrapped with GeMaL interfaces) and are included
with the library: Tivoli TAME, the IBM AC Generic
Adapter (GA), IBM Solution Install (SI), Apache, Xin-
dice, and Tomcat. These components are managed, via
GeMaL interfaces, (autonomically) by the Tivoli
TAME tool or (manually) by the GeMaL Visual Ob-
server - a graphical management tool included with
the library.

1 Introduction

The IBM Autonomic Computing Architecture [1] is
about building self-managing systems to reduce the
increasing complexity of managing IT systems. The
basic principle behind this architecture is that self man-
aging systems are implemented with an intelligent con-

trol loop. This control loop is composed of two ele-
ments: a managed element and an autonomic manager.
As shown in Figure 1, the managed element (ME) is the
controlled system component. The autonomic manager
(AM) is the component that implements the control
loop. The autonomic manager gathers information from
the managed element through its sensors and changes
the state of the managed element through its effectors.
The combination of the sensors and effectors form the
manageability interface. The control loop itself is di-
vided into four functional parts: Monitor, Analyze, Plan
and Execute; these communicate through asynchro-
nous messaging and share common data in the Knowl-
edge component.

Managed Element

Autonomic Manager

Monitor

Analyze Plan

ExecuteKnowledge

Sensors Effectors

Sensors EffectorsM
an

ag
ea

bi
lit

y
In

te
rfa

ce{

{

Figure 1: The autonomic computing components and
the MAPE-K control loop.

Consider now a typical multi-tier application. There are
several possibilities on how to build autonomic man-
gers to control complex environments like this. For
example we can build a flat autonomic manager control-
ling the entire site (Figure 2), in which case it will need
to deal with issues such as collecting and understand-
ing data from multiple sources, and issuing commands
to the different components. Alternatively, we can
build a hierarchical autonomic manager (Figure 3), with
tier-specific autonomic managers and higher level man-
ager which will need to deal with the coordination

1

among the different managers. Clearly, there are many
other possible combinations and the answer as to
which approach is the best is not clear and it may be
from different solutions.

MEMEME

AM

S E

M

A P

EK

Tier 1:
Static

Content

Tier 2:
Business

Logic

Tier 3:
Back end
Database

S ES ES E

Figure 2: Flat autonomic management of a typical
multi-tier application:

AM

M

A P

EK

MEMEME

AM

S E

M

A P

EK

Tier 1:
Static

Content

Tier 2:
Business

Logic

Tier 3:
Back end
Database

S ES ES E

S E

AM

M

A P

EK

S E

A M

M

A P

EK

S E

Figure 3: Hierarchical autonomic management of a
typical multi-tier application

In environments like this, it is desirable to remove from
the autonomic managers the need to deal with details
specific to a particular managed element (data format,
available commands, etc.). Furthermore, complexes like
these are built today out of non autonomic comp o-
nents, hence a mechanism to wrap existing comp o-
nents/system with autonomic computing interfaces is
required. These are the issues that the Generic Man-
ageability Library (GeMaL) presented in this paper
deals with: how do we virtualize managed elements in a

way that simplifies the task of building autonomic man-
agers for heterogeneous distributed systems? Once we
have this virtualization, how do we simplify wrapping
up existing components so they easily can be plug into
an autonomous complex system?
The Open Grid Services Architecture (OGSA) [5] has
been proposed as a framework for the integration and
management of distributed systems. In the spirit of
OGSA, GeMaL virtualizes the different managed ele-
ments by defining a generic manageability interface and
exposing it as Grid Services. Through this interface
users of GeMaL cam compose hierarchical autonomic
systems (composability), where each component can be
replaced by another component with similar functional-
ity (pluggability) and actions at all levels are coordi-
nated among different autonomic managers (coordi-
nated execution).

2 The Generic Manageability Library
Following the OGSA paradigm, we define the auto-
nomic computing manageability interface as a set of
OGSA services. The Generic Manageability Library
(GeMaL) provides an extensible implementation of
these services which simplifies the development of
managed elements. To allow maximum flexibility, Ge-
MaL classes are built as OGSA Operation Providers [7],
one for each porttype defined. Using this approach,
allows us to easily add the GeMaL functionality to any
Grid Service.

2.1 The Sensor PortType
In the AC architecture data is collected from each man-
aged element through the following two interactions
styles:
1. In the Retrieve-state interaction style, the auto-

nomic manager queries the managed element for a
particular piece of information For state data e.g.,
CPU load. this can be mapped to the findSer-
viceData operation of the GridService
porttype. However, there are types of information
which do not fit well into the state data definition.
As shown in Figure 4, the GeMaL Sensor port-
type provides additional operations to collect and
query history-like data, i.e., data that is accumu-
lated during the entire lifetime of the managed ele-
ment such as logging information. The
queryEvents operation is used to selectively
(using XPath) retrieve data from the managed ele-
ment history of events. Internally, applications can
store this kind of history data in different places
and format, hence we need to specifically tell the

2

managed element which data source should be ex-
posed to the queryEvents operation; this is
what the collectEvents and stopCol-
lectingEvents operations are for.

2. In the Receive-Notification interaction style, the
autonomic manager expresses interest in some data
(by XPath based subscription); when matching
data appears, the managed element asynchro-
nously notifies the autonomic manager. Again, for
state data, this could be mapped to the sub-
scribe operation of the Notification-
Source and the deliverNotification op-
eration of the NotificationSink porttype.
Notifications for history-like are necessary only for
newly arrived events – the Sensor porttype de-
fines the LastEvents service data element as a
window of configurable size into the events his-
tory.

2.1.1 The SensorProvider class

GeMaL’s default implementation for the sensor port-
type extends the NotificationSource-
Provider class included with the Globus Toolkit 3.
It adds support for XPath based subscriptions1, i.e.,
notifications are sent to each subscriber only when the
changed service data element matches the XPath ex-
pression associated with the subscription. All imple-
mentations of the Sensor porttype should extend
this class.

ogsi.NotificationSource

subscribe()
unsubscribe()

<<Interface>>

gemal.Sensor

queryEvents()
collectEvents()
stopCollectingEvents()

<<Interface>>
globus.NotficationSourceProvider

globus.OperationProvider
<<Interface>>

gemal.SensorProvider

subscribe()
unsubscribe()

Figure 4: The SensorProvider class diagram.
This class implements the Sensor interface and adds
to the default NotificationSourceProvider
support for XPath based subscriptions.

1 A similar mechanism is available in the
ogsa_messaging_jms.gar additional package for GT
3.0.2. Use of this package requires a JMS provider; we
chose to build this feature into our provider to remove
this dependency.

2.1.2 The GenericSensorProvider class

Although many types of data may exhibit the charac-
teristics of history-like data, the focus in GeMaL has
been logging data. When application specific logging
data is to be exposed through the Sensor interface we
need to worry about the translation of this data into a
common format so autonomic managers can easily ana-
lyze data coming from different sources.
IBM’s Generic Log Adapter [6] is a rule based tool that
transforms software log events into the common base
event (CBE) format [8]. This format, which has been
submitted to OASIS for standardization, defines the
structure of an event in a consistent and a common
format.
In GeMaL we wrap the GLA under the GenericSen-
sorProvider class: it spawns the GLA engine and
on each call to the collectEvents method it adds a
new data source with the corresponding configuration
rules (a context in GLA terminology). GeMaL includes
a customized GLA sink (the component at the end of
the GLA processing chain), that catches the generated
CBEs and updates the LastEvents service data ele-
ment. The default GLA sink, which writes to a file, is
also used; then, the queryEvents method is applied
against the data generated by the GLA (see Figure 5).

GenericSensorProvider

CBEs

Application

SDE

GLA
FileSink

GeMaLSink

C
onfiguration

R
ules

C
onfiguration

 R
ules

Log File
Log File

Figure 5: The GenericSensorProvider contains
an instance of the Generic Log Adapter (GLA) to
translate, with the use of user supplied rules, the ap-
plication specific log file(s) a file with common based
events. To allow notifications, the last CBEs generated
are kept in a service data element by the GeMaLSink.

Clearly, the GenericSensorProvider class ex-
tends the SensorProvider class to support sub-
scriptions to changes in the LastEvents service
data element (see Figure 6).
The recommended approach to creating a sensor is to
use the GenericSensorProvider. Alterna-
tively, the SensorProvider can be extended to

3

either optimize the conversion process or to produce a
different data format.

ac.GenericLogAdapter

gemal.GenericSensorProvider

<<controls>>

gemal.SensorProvider

Figure 6: The GenericSensorProvider class
diagram.

2.2 The Effector PortType
This porttype follows the Perform-Action interaction
style, in which, the autonomic manager explicitly in-
vokes, synchronously, an action on the managed ele-
ment, e.g., reconfiguration. In a heterogeneous distrib-
uted system, built from many different components, the
number of possible actions may be too high, and so will
be the complexity of an autonomic manager for such an
environment. Fortunately, even with a small set of well
defined actions common across all components we can
achieve simpler yet useful autonomic managers.
A good example of achieving manageability of diverse
components through a generic interface is the System V
init scripts [9] found today in many Linux distribu-
tions. Through a very small set of operations
(start/stop/restart/status) the system is
able to control a set of diverse background processes.
To enable an application to participate in the init
process a script is provided that maps each of the
common operations into an application specific action.
GeMaL tries to extend this mechanism to autonomic
systems by defining a small set of common actions that
each managed element must implement. Managed ele-
ments can support additional actions, but to simplify
interactions with autonomic managers, non common
actions should be introduced only when there is no
natural way of mapping the desired functionality into
one of the common actions defined in the Effector
porttype. The current set of common actions defined in
the Effector porttype are shown in Figure 7.

gemal.Effector

start()
stop()
deploy()
undeploy()
configure()
execute()
create()
delete()
connect()

<<Interface>>

Figure 7: The Effector porttype class diagram.

2.2.1 The EffectorProvider class

The EffectorProvider is a Java abstract class
which developers of managed elements extend to tailor
the implementation of each common action to the rele-
vant operation specific to the managed element. In ad-
dition to basic exception throwing of non supported
actions, it provides utility methods to simplify the use
of parameters in generic common actions.
In OGSi it is common to pass to each operation a single
parameter: an XML document. This allows the defini-
tion of generic operation which can be customized at
the implementation by passing as parameters different
structures all represented as an XML tree. Although
this approach is convenient for interface design, it is
inconvenient to work with in the implementation where
language specific data structures are easier to use.
In GeMaL we gave up some the flexibility of XML ex-
tensibility, and opted for a more programmer-friendly
approach for generic parameter handling. Parameters to
each common generic action are defined at the interface
level as XML extensibility; but at the underlying java
implementation, all common actions use a Properties
list. Given that the name of the parameter to each action
is specific to the action implementation and to the man-
aged element, there is a need to register the keys of the
Properties list. For this function a utility method reg-
ister is provided by the EffectorProvider.
This method should be called at the initialization stage
of the concrete classes extending this class.

gemal.Effector
<<Interface>>

gemal.EffectorProvider

register()

Figure 8: The EffectorProvider class di agram.

4

2.2.2 The SinkEffectorProvider class

In addition to the common actions, there are cases
where we need to extend the NotificationSink
porttype. This is needed to enable the flow of notifica-
tions from managed elements to autonomic managers
(which also implement the Effector porttype) or to
intermediaries (see section 3.1).
For those managed elements that need the Notifi-
cationSink functionality, GeMaL provides the
SinkEffectorProvider class (see Figure 9). It
extends the EffectorProvider to provide a de-
fault implementation of the connect operation: a call
to this operation with a grid service handle as a parame-
ter will cause the SinkEffectorProvider in-
stance to subscribe to notifications from the corre-
sponding grid service (assuming it is a notification
source). . To enable selection of which events are to be
sent to a SinkEffectorProvider, the Selec-
tionRule service data element is used: if it is set to a
valid XPath expression, then this expression is used on
as a parameter on all subscriptions.
It also provides a default implementation of the de-
liverNotification operation: when it receives a
notification it updates the LastEvents service data
element
Naturally, a managed element for which this default
behavior is not appropriate should extend the
SinkEffectorProvider and override either op-
eration (or both)
See section 3.1 for an example usage of this utility class.

ogsi.NotificationSink
<<Interface>>

gemal.Effector
<<Interface>>

gemal.EffectorProvider

register()

gemal.SinkEffectorProvider

connect()
deliverNotification()

Figure 9: The SinkEffectorProvider class di a-
gram.

2.3 Using GeMaL: Creating a Managed
Element

Although autonomic systems can be built from scratch,
we believe that the fist step toward autonomic comput-

ing will be making managed elements out of existing
systems , i.e., we need to wrap systems/components
with a well defined manageability interface. Using Ge-
MaL this is a three steps process: 1) create a sensor for
your system either by providing translation rules for
the Generic Log Adapter; or by implementing your own
sensor provider (which should implement the Sen-
sorPortType interface and extend the Notifica-
tionSourceProvider) and tailoring it to your ap-
plication needs; 2) implement the relevant operations in
your effector provider (which should extending the
default GeMaL EffectorProvider); and finally, 3)
creating a grid service deployment descriptor that puts
together these operation providers. In this section we
will go into what we did in each of these steps to create
the Apace Managed Element.

2.4 The Apache Sensor
As mentioned in section 2.1.2, the preferred approach
to create a sensor is to use the Generic Log Adapter.
For Apache this means creating two set of parsing rules
and configuration parameters: one for the ac-
cess_log file and one for the error_log file.
These rules are created using the graphical rule builder
and configuration tool included with the Generic Log
Adapter. The combination of rules and configuration
parameters is a GLA context.; at runtime autonomic
managers can select which context(s) to load by invok-
ing the collectEvents(contextName) opera-
tion of the GenericSensorProvider. It is impor-
tant to note that to enable the updating of the LastE-
vents service data elements all GLA contexts should
include the definition of an additional GLA sink – the
gemal.GlaSink as follow:

<com.ibm.acad.outputter:Sink
 class-
Name="com.ibm.ogsa.gemal.GlaSink”/>
 <com.ibm.acad.outputter:Config>
 agentName=CBEMsgAgent
 </com.ibm.acad.outputter:Config>
</com.ibm.acad.outputter:Sink>

Alternatively, we could write customized log adapters
for our managed element. As in the previous approach,
for Apache we need to deal with two log file formats
hence we’ll have two adapter classes: the ApacheAc-
cessAdapter and the ApacheErrorAdapter.
We also need to write our own operation provider: the
ApacheSensorProvider (see Figure 10), which
serves as the control point for the adapter classes. In
this approach it is up to developer to manage the

5

LastEvents service data element. Given that auto-
nomic managers expect a well defined behavior for this
SDE (show a window with the n last events), the best
approach is to reuse the code that already deals with
this SDE updates, i.e., even in customized adapters it is
recommended to use the gemal.GlaSink.

gemal.ApacheSensorProvider

gemal.
ApacheAccessAdapter

gemal.
ApacheErrorAdapter

<<controls>> <<controls>>

gemal.SensorProvider

Figure 10: The ApacheSensorProvider class
diagram.

2.5 The Apache Effector
We add the effector functionality to our managed ele-
ment by extending the EffectorProvider and
implementing the relevant operations: start, stop,
configure and connect. While the implementa-
tion of the first three is pretty obvious, our implementa-
tion of the connect operation requires some addi-
tional discussion.
Going back to the multi-tier application show in Figure 2
and Figure 3 we can think of the connect operation
as a method to add to the configuration of servers at
tier n, a new server a tier n+1. In another words, we add
an application servers to the apache configuration by
invoking the connect operation on all apache man-
aged elements. In our example we use Tomcat as the
application server; adding a tomcat server to an existing
apache serve involves adding a few lines to the apache
configuration file. These lines include the address and
port of the tomcat server and the prefix used by apache
to identify the requests that need to be forwarded.
Hence the connect have three parameters which
need to be registered when the ApacheEffector-
Providers gets instantiated (see section 4). This is
achieved by placing the following code in a static ini-
tializer:

String [] keys = [“host”,“port”,“prefix”];
register(“connect”, keys);

2.6 The Deployment Descriptor
In GT3, the set of classes that form a grid service in-
stance are set in the deployment descriptor file. A grid
service is normally composed of a base class which
must be a derivative of the GridServiceImpl class
included in GT3, and a list of operation providers.
In the deployment descriptor there are descriptions for
all the persistent services a container has. Some of
these services are factories that are responsible of cre-
ating grid services. A managed element is normally de-
clared by describing the factory responsible for its crea-
tion as follow:

• Instance-Name – simple string to describe the
Element

• Instance-schemaPath – a schema that de-
scribes the element's methods and service data

• Instance-baseClassName – the GridSer-
viceImpl derivative.

• Instance-operationProviders - the effector and
sensor concrete classes specific for this man-
ages element

In the case of the apache managed element using the
GenericSensorProvider, this leads to the fol-
lowing declarations in the deployment descriptor file
(full package names were removed for clarity):

.
.
.
<parameter name="instance-baseClassName"
 value="…ogsi.GridServiceImpl" />
<parameter name="instance-className"
 value="…gemal.ManagedElementPortType" />
<parameter
 name="instanceoperationProviders"
 value=
 "…gemal.apache.ApacheEffectorProvider
 …gemal.GenericSensorProvider" />
.
.
.

3 Basic Modules for AC

3.1 Monitoring
In a distributed system a system level autonomic man-
ager may need to collect data from several sub-compo-
nents. Although this can be done by directly subscrib-
ing to, or querying, each sub-component, there are
cases where is more convenient to aggregate the inter-
esting data coming from all sub-components in a single
repository, and then using this repository as the source
of the data.

6

For this purpose we borrow the concept of a Basket
Service from the Reporting Grid Service (ReGS) [2]. A
basket is a configurable repository of CBE’s that serves
as an intermediary between managed elements and
autonomic managers. Each basket has a filtering rule
that determines what data goes into the basket; so we
can create different basket to collect different pieces of
information.
For a basic basket that serves only as an aggregator of
data coming from different source we can use an in-
stance of the SinkEffectorProvider directly
since it already provides a filtering mechanism (through
the SelectionRule SDE) and updates the LastE-
vents SDE on each notification. For a more sophisti-
cated basket such as one that deals with persistency
users need to extend the SinkEffectorProvider
class. GeMaL includes a basket based on Apache Xin-
dice XML database.

3.2 Execution
The GeMaL EffectorProvider focuses on expos-
ing to autonomic managers the basic control and con-
figuration functionality of the managed element. How-
ever, invocation of actions on remote managed ele-
ments requires from the autonomic manager to deal with
several complex issues unrelated to its core problem
analysis logic. To remove this complexity from the main
code of autonomic managers, GeMaL provides separate
functional module – the GeMaL Coordinator.
To better understand the kinds of issues the Coordina-
tor needs to deal with, consider the following scenario:
a number of web servers are grouped for achieving high
reliability and load balancing. Each of these servers is
connected to the same data base server.
It seems reasonable to have one autonomic manager for
the database maintenance and control, and another one
to perform cluster management and monitoring. Sup-
pose that the cluster autonomic manager concludes
that it should reconfigure all cluster components, in-
cluding the database server, in order to adjust the sys-
tem to the instant overload conditions. Such reconfigu-
ration might come exactly during the periodic system
maintenance of that database server, managed by an-
other autonomic manager. Obviously collisions and
conflicts are unavoidable, hence a mechanism, most
likely based on a policy engine, to deal with conflicts
and priorities is needed.
The detection of the data base failure will eventually
lead to the autonomic manager fetching a batch of
commands to be applied to a group of managed ele-
ments. Clearly, is not scalable for the autonomic man-
ager to issue the commands one by one to each man-

aged element. Instead, execution is delegated to the
Coordinator, which takes care of the reliable execution
of the commands, similar to the functionality provided
by the Fault Tolerant Shell [4]. In addition, the Coordi-
nator provides a single entry point to access multiple
managed elements simultaneously, allowing full off-
loading of the script execution overhead from the auto-
nomic manager.
Finally, remote call invocation in distributed system is
susceptible to network and software failures, which are
related to the distributed infrastructure itself, and not to
business logic. For instance, suppose the remote call
to start function of Apache Managed Element (see
2.5) fails. It can fail due to the network failure during the
call, or as a result of service container being too busy
and dropping new connections. In both cases, the call
was not executed by the remote managed element, and
thus should probably be automatically retried later.
However, if the call fails due to the managed element
already being started by the previous calls, such call
should not be retried, and the result should be returned
to the caller.
At the time of writing, the GeMaL Coordinator is very
simplistic: it does not provide any kind of invocation
quality of service, or policy based coordination. It does,
however, simplifies the work with the managed ele-
ments, hiding the complexity of dealing with the grid
services. It implements FIFO scheduling, receiving a list
of actions from an autonomic manager, and executing
them sequentially in the order received.
As all components in our system, the Coordinator is a
managed element. In the CoordinatorEffector-
Provider all operations take as a parameter the
name to a managed element and delegate the operations
to it.
The connect operation is used to connect the Coor-
dinator to a given service container and to initiate the
discovery of the existing managed elements in it.
The execute call exposes the simple sequential script
execution functionality, outlined in the previous sub-
section. For example the following execution script,
connects to the given container, creates one managed
element and starts it:

Execute(
Connect(containerIP),
Create(containerIP,

MEname,createParams),
Start(containerIP,MEname)

)

7

4 Putting it all together
As a proof of concept, we wrapped the with the generic
manageability interface a set of varied components that
allowed us to test the entire MAPE-K loop in a self
healing scenario. Our demo scenario (see Figure 11)
consists of several Apache servers connected to sev-
eral Tomcat servers; we also have a Xindice based bas-
ket for collection of log data and the GeMaL Coordina-
tor as the execution infrastructure. For our analysis
and planning we use the Tivoli Autonomic Manage-
ment Engine (TAME) [4].
In this environment we introduced configuration error
which TAME at first was able to catch, but there wasn’t
enough information in the log data collected to clearly
identify it. Consequently, TAME requested more data
and then it was able to identify the source of the prob-
lem and issue all the corrective commands.
The actual problem determination logic in this scenario
is not that complex but the main purpose of this demo
was to show how GeMaL can be used to glue together
autonomic systems, and to exercise the functionality of
the basic modules provided with the library.

Apache(s) Tomcat (s)

Xindice Basket

Coordinator

ME

S

E

ME

S

E

ME

S

E

ME

S

E
ME

S

E

TAME

M

A P

K E

Figure 11: The GeMaL proof of concept scenario.

5 Conclusions and Future Work
The use of generic common actions has proven a valid
concept that simplifies the development of both man-
aged elements and autonomic managers. Adding new
components to a system such as the one described in
the previous section is very simple and can be done
with very little programming.
The next step in the evolution of the system will be to
enhance the coordination component to deal with all
the complex issues such as reliable invocation and pol-
icy-based action coordination and synchronization. We

also need to do some work in enhancing the functional-
ity of our monitoring infrastructure.

6 References
[1] An architectural blueprint for autonomic computing,

IBM, April 2003, http://www-
3.ibm.com/autonomic/pdfs/ACwpFinal.pdf

[2] Apache Xindice, The Apache Software Foundation,
http://xml.apache.org/xindice/

[3] Aridor, Horn, Lorenz, Rochwerger and Salem, The
Reporting Grid Services (ReGS), GGF,
http://www.gridforum.org/Meetings/ggf7/drafts/draf
t-ggf-ogsa-regs-01.3.1.pdf

[4] Chase, An Autonomic Computing Roadmap, IBM,
December 2003, http://www-
106.ibm.com/developerworks/library/ac-roadmap/

[5] Foster, Gannon and Kishimoto, The Open Grid
Services Architecture, Global Grid Forum, October
2003, https://forge.gridforum.org/projects/ogsa-
wg/document/draft-ggf-ogsa-spec/en/13

[6] Grabarnik, Ma, Salahshour and Subramenia, The
Generic Adapter Logging Toolkit, submitted to
ICAC-04,
http://www.alphaworks.ibm.com/tech/glaac

[7] Java Programmer’s Guide Core Framework,
Globus Alliance, September 2003, http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/java_program
mers_guide.html

[8] Ogle, et al., Canonical Situation Data Format: The
Common Base Event, version 2.10, IBM, October
2003,
http://xml.coverpages.org/CommonBaseEventSituat
ionDataV210.pdf

[9] Red Hat Linux 9: Red Hat Linux Reference Guide,
http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/ref-guide/s1-boot-init-shutdown-sysv.html

[10] Sandholm and Gawor, Globus Toolkit 3 Core – A
Grid Service Container Framework, Globus Alli-
ance, July 2003, http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf

[11] Thain and Livni, The Ethernet Approach to Grid
Computing. In Proceedings of HPDC, 2003

[12] Tuecke, et.al., Open Grid Services Infrastructure
(OGSI), Version 1.0, Global Grid Forum, June
2003, https://forge.gridforum.org/projects/ogsi-
wg/document/Final_OGSI_Specification_V1.0/en/1

8

