
H-0222 (H0404-001) March 31, 2004
Computer Science

IBM Research Report

The AGEDIS Tools for Model Based Testing

A. Hartman, K. Nagin
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

The AGEDIS Tools for Model Based Testing
A. Hartman and K. Nagin
IBM Haifa Research Laboratory

Haifa University, Mt. Carmel 31905
Haifa, ISRAEL

+972-4-8296211

hartman@il.ibm.com

ABSTRACT
We describe the tools and interfaces created by the AGEDIS
project, a European Commission sponsored project for the
creation of a methodology and tools for automated model driven
test generation and execution for distributed systems. The project
includes an integrated environment for modeling, test generation,
test execution, and other test related activities. The tools support a
model based testing methodology that features a large degree of
automation and also includes a feedback loop integrating
coverage and defect analysis tools with the test generator and
execution framework. Prototypes of the tools have been tried in
industrial settings providing important feedback for the creation
of the next generation of tools in this area.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging].

General Terms
Verification, Validation

Keywords
Automated test generation, UML modeling, test execution
framework, coverage analysis, defect analysis.

1. INTRODUCTION
Model based testing is still not a widely accepted industry practice
despite the existence of academic and industrial case studies (see
e.g. �[4],�[5], �[8], and �[11]�[9]) which discuss its advantages over
traditional hand crafted testing practices. There are several
reasons for this. Robinson �[13] mentions the need for cultural
change in the testing community, the lack of adequate metrics for
automated testing, and the lack of appropriate tools and training
material. The AGEDIS project is an attempt to remedy the last of
these obstacles to the wider adoption of model based testing. The
AGEDIS project has created a set of integrated tools for the
behavioral modeling of distributed applications, test generation,
test execution, and test analysis. Moreover the AGEDIS tools are

accompanied by a set of instructional materials and samples that
provide an easy introduction to the methodology and tools used in
model based testing. The case studies �[5] undertaken by the
AGEDIS partners �[1]show that not all of the tools are sufficiently
mature for widespread adoption, but that they have all the
necessary elements in place, that they are well integrated with
each other, and that they provide a coherent architecture for model
based testing with well defined interfaces. The importance of this
architecture lies in that it may be used as a plug and play
framework for more or less sophisticated tools to be used as
appropriate, and when more mature tools become available. As an
example, the Microsoft tools for model-based testing come in two
flavors, a light weight tool using visual modeling and
straightforward test generation algorithms �[12], and a heavy
weight tool using a text based modeling language and
sophisticated test generation based on model checking �[10]. Either
of these tools could be plugged in to the AGEDIS testing
framework and take advantage of the features and facilities
provided by the complementary tools. Similarly, other modeling
languages may be substituted for the AGEDIS modeling language,
simply by providing a compiler to the AGEDIS intermediate
format for model execution. The importance of the AGEDIS tools
and architecture lies not so much in the quality of one or other of
the tools, but in the framework for integration of tools from
different suppliers with different requirements and strengths.

2. ARCHITECTURE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA ’04, July 11-14, 2002, Boston, Mass. USA.

User
Interface

Behavior
Model

Execution
Directives

Generation
Directives

Compiler

Analyzers

Edit/Browser

Generator

Execution
Engine

Simulator

SW Component User Input Public Interface

Execution
Trace

Abstract Test
Suite

Execution
Interface

UML
Modeler

XML
Editor

Figure 1 The AGEDIS architecture

1

The AGEDIS architecture is illustrated above.

The diagram illustrates the software components of the AGEDIS
framework, the user input artifacts, and the public interfaces for
the use of tool makers

The user inputs three pieces of information describing the system
under test (SUT): a) the behavioral model of the system, b) the
test execution directives which describe the testing architecture of
the SUT, and c) the test generation directives which describe the
strategies to be employed in testing the SUT. Both a) and b) are
entered using a UML modeling tool equipped with the AGEDIS
UML profile (e.g. Objecteering UML Modeler), whereas c) is
input via an XML editor (e.g. XML Spy).

The behavioral model of the system under test is specified by the
user in a combination of UML class diagrams, state diagrams, and
object diagrams. The syntax and UML profile for this modeling
language is described in �[1]. The state diagrams are annotated
with the IF action language defined in �[2].

The test generation directives, describing the test strategy, are
provided by the user either as test purposes using UML state
diagrams, or as default test directives for global model coverage at
varying levels of detail. These are also defined in �[1].

The test execution directives describe the testing interface to the
SUT and give the mappings from the model’s abstractions to the
concrete SUT interfaces for control and observation. These are
defined by an XML schema.

The three public interfaces for inter-tool communication are: a)
the model execution interface, b) the abstract test suite, and c) the
suite execution trace.

The execution interface is defined in �[2] and consists of the APIs
used by both the test generator, and the model simulator. It
incorporates the necessary data for simulation of the model of the
SUT, including the controllable and observable features of the
SUT.

Both the abstract test suite and the suite execution trace are
defined by a single XML schema available at �[3]. These two
public interfaces provide all the necessary information to describe
the test stimuli, and both the expected and observed responses by
the SUT. The XML schema is a predefined abstract representation
of all test suites and execution traces in a common format.

There are a number of tools that have been integrated into the
AGEDIS framework including: a) a UML modeling tool, b) a
model compiler, c) a model simulator, d) a test generation engine,
e) a test execution engine, f) a test suite editor and browser, g) a
coverage analysis tool, h) a defect analysis tool, and i) a report
generator. All of these tools are activated from a graphical user
interface, which has management facilities for the various artifacts
produced in the testing process.

The modeling tool (not shown in the architecture diagram) can be
any UML modeling tool with the ability to use the AGEDIS
profile. The AGEDIS system uses the Objecteering UML Modeler
with its convenient profile builder to produce an XML
representation of the model.

The XML file is compiled, together with the test generation
directives to create a combined representation of the model and
testing directives in the IF 2.0 language. This representation is
shown on the diagram as the execution interface.

The model simulator provides feedback on the behavior of the
model in the form of message sequence charts describing
execution scenarios. This simulator is an essential tool to enable
the user to debug the model.

The test generator creates an abstract test suite consisting of test
cases which cover the desired testing directives. The test generator
is based on the TGV engine �[9], but with additional coverage and
observation capabilities derived from the GOTCHA test generator
�[6].

The execution engine presents each stimulus described in the
abstract test suite to the SUT, and observes the responses, waits
for callbacks, and traps any exceptions thrown. The responses are
compared with those predicted by the model, and a verdict is
reached. The execution engine writes a centralized log of the test
trace in a format defined by an XML schema. The execution
engine also has the ability to run multiple instances of test cases
and create stress testing from the functional tests created by the
test generator. See �[7] for details.

Both the test suite and execution trace can be browsed and edited
by the AGEDIS editing tool. The browser presents the test
artifacts in a tree form mirroring the hierarchy described in the
schema. The tool is useful for composing additional manual test
cases to add to the automatically generated test suites.

The coverage analysis and feedback tool which is integrated with
AGEDIS is the functional coverage tool FoCus �[14] which is
available from alphaworks. This tool enables the user to define a
functional coverage model in terms of the methods and attributes
of the objects in the SUT. FoCus itself provides coverage analysis
reports, and AGEDIS has fitted it with a feedback interface, which
creates test purposes for the generation of more test cases in order
to increase the functional coverage.

The defect analysis and feedback tool was created for the
AGEDIS tool set. It reads the suite execution trace and analyses
the test cases which ended in failure. This was deemed a valuable
addition to a testing framework featuring a large degree of
automation, since large numbers of test cases are run
automatically, and the same defect may be encountered many
times in a given test suite. The defect analysis tool clusters test
cases according to the similarities between the defects observed
and the steps in the test cases immediately prior to the observation
of the defect. The user can either view the clustering report or
generate a new test purpose which will direct the test generator
towards producing additional test cases which will replicate the
characteristic defect of a cluster of test cases.

The report generator creates management documents describing
the test cases, defects, models, and other artifacts of the testing
process.

3. INDUSTRIAL EXPERIMENTS
The AGEDIS project carried out five industrial experiments
aimed at defining and refining an automated testing methodology,
and at providing realistic requirements for the tools produced by
the consortium. These experiments are described in detail in �[5]
which was written a few weeks prior to the completion of the final
experiment.

The first two experiments used the existing model based testing
tools, TGV and GOTCHA, in order to provide requirements for
the development of the AGEDIS tools and methodology. The

2

remaining experiments used the AGEDIS tool prototypes at
various stages in their development. The subjects of these three
experiments were a Java programming interface to a messaging
protocol (IBM UK), a web-based e-tendering application
(Intrasoft International), and a piece of middleware in a message
distribution system (France Telecom).

The overall conclusions from the experiments were mixed. There
was a clear recommendation to pursue model-based testing
further, citing benefits obtained simply by the act of modeling.
The creation of a model by testers served to highlight inaccuracies
in the specifications and in several cases exposed bugs at a very
early stage in the development process. There was also much
praise for the integrated nature of the tools and their interfaces.
The abstract test suite and test execution trace format were
instrumental in the integration and interoperability of a wide
variety of tools all focused on the testing of distributed systems.
The test execution framework was also seen as providing
important automation services in an easily accessible manner.

On the other hand, the industrial testers were critical of the
modeling language and the test generator.

The use of statecharts as the main behavioral description of the
SUT was seen as useful in some contexts but not natural in others.
The choice of IF as the action language was also criticized, since
it did not provide sufficient high level programming constructs for
effective high level modeling.

The test generation algorithms proved not to be scalable to large
industrial problems, and in each case the models were restricted to
a subset of the SUT functionality, rather than testing the entire
system.

The architecture has proved itself, and will be developed further
along with more mature versions of the modeling and test
generation tools. The criticisms leveled by the industrial partners
point to a need for the tools to mature further, and for the
emphasis to be placed on ease of use and incremental introduction
of new techniques to established industrial practice.

4. AN EXAMPLE
Four examples of how to use the tools and of all the artifacts are
provided in the educational package which accompanies the tools.
In this section we will discuss some aspects of the PingPong
example.

PingPong consists of two classes a Client and a Server. The
clients may send a Ping message to the server with either high or
low priority. The server must respond immediately to a high
priority Ping by returning a Pong message to the client that sent it.
A low priority Ping should be answered with a Pong at some later
time.

Client

Server

toServer

client server

* 1

{controllable}
+sendPing(In highPrio:boolean)

{controllable}
+readPong():boolean

+returnValue : boolean

{controllable}
+purge()

+pongList : PongList+id : ClientId

+i : ClientId

Figure 2 Class diagram for PingPong

The class diagram for the system is shown above. Note that all
operations are marked as controllable – since the testing interface
can invoke the methods of any client or server.

The behavior of the client class is described by the following state
diagram:

initialised

ponged

readPong/return false; sendPing

Pong

[highPrio = true]/server.Ping(true, id);return;

[highPrio=false]/server.Ping(false, id);return;

Pong

sendPing

readPong/return true;

[highPrio=false]/server.Ping(false, id);return;

[highPrio=true]/server.Ping(true, id);return;

Figure 3 State diagram for the Client class
The behavior of the server class is described in the following state
diagram:

ServerInitialized

<<action>>
task i :=0;
while(i<3) do
 task pongList[i] := false;
 task i := i +1;
endwhile

<<action>>
task i :=0;
while(i<3) do
 if(pongList[i]) then
 client[i].Pong();
 task pongList[i] := false;
 endif
 task i := i +1;
endwhile
return;

/...

purge/...
Ping

[isHighPrio = true]/client[senderId].Pong();

[isHighPrio = false]/task pongList[senderId]:=true;

Figure 4 State diagram for the Server class
Note the use of IF as the action language describing the guards
and actions on the transitions. When necessary, notes with the
action code are attached to the transitions to simplify the diagram
layout and readability.

A test purpose asking the test generator to create a set of test cases
which involve the server purging its store of retained Ping
messages is shown below. The semantics of this state machine are
that the tester should fire any number of transitions in the initial
state until the purge operation is invoked by any object (*?* is
used in AGEDIS as a wild card), then any number of other

3

transitions may be fired. The accept state means that test cases
may end in this state of the test purpose.

{init}

tpSimpleInit

{accept}

tpSimpleAccept

?.purge()

Figure 5 System level state diagram used as a test purpose

Figure 6 A test case generated from the test purpose above
An example of a test case generated from this test purpose is
illustrated above. The view is of an abstract test suite file – as seen
through the test suite browser tool, which hides the verbose nature
of the XML and displays the test case in a tree view.

5. AVAILABILITY
The AGEDIS tools and instructional package are available for
licensing without charge by academic groups provided that no
commercial use is made of them. The license agreement can be
obtained by e-mail from the first author. Interested commercial
groups should contact imbus SA through their website
www.imbus.de.

6. ACKNOWLEDGMENTS
We would like to thank all the members of the AGEDIS team,
which includes more than 50 people at the IBM Haifa Research
Laboratory, IBM UK development laboratory, VERIMAG,
IRISA, Oxford University, France Telecom R&D, Intrasoft
International, and imbus AG. It has been an honor to work with
such a talented and dedicated team for the last three years.

7. REFERENCES
[1] AGEDIS Consortium, AGEDIS modeling language

specification, available at http://www.agedis.de.

[2] AGEDIS Consortium, Intermediate Language 2.0 with Test
Directives Specification, available at http://www.agedis.de.

[3] AGEDIS Consortium, Test Suite Specification, available at
http://www.agedis.de.

[4] Becker P., Model based testing helps Sun Microsystems
remove software defects. Builder.com
http://builder.com.com/5100-6315-1064538.html

[5] Craggs I., Sardis M., and Heuillard T., AGEDIS Case
Studies: Model-based testing in industry. Proc. 1st European
Conference on Model Driven Software Engineering, 106-
117. imbus AG December 2003.

[6] Farchi E., Hartman A., and Pinter S. S., Using a model-based
test generator to test for standards conformance. IBM
Systems Journal 41 (2002) 89-110.

[7] Hartman A., Kirshin A., and Nagin K. A test execution
environment running abstract tests for distributed software in
Proceedings of SEA 2002 448-453.

[8] Hartmann, J., Imoberdorf, C., and Meisinger, M., UML-
based integration testing. Proceedings of ACM Symposium
on Software Testing and Analysis (2000), 60- 70.

[9] Jeron, T., and Morel, P., Test Generation Derived from
Model-checking, in Proceedings of CAV99, Trento Italy
(Springer-Verlag LNCS 1633 1999), 108-122.

[10] Microsoft Research – ASML Test tool,
http://research.microsoft.com/foundations/AsmL/

[11] Offutt J. and Abdurazik A., Generating Tests from UML
Specifications, Second International Conference on the
Unified Modeling Language (UML99), 1999.

[12] Robinson H., Finite state model based testing on a
shoestring. Proceedings of STAR West 1999.

[13] Robinson H., Obstacles and opportunities for model-based
testing in an industrial software environment. Proc. 1st
European Conference on Model Driven Software
Engineering, 118-127. imbus AG December 2003.

[14] Ur S. and Ziv A. Off-the-shelf vs. custom made coverage
models, which is the one for you? In proceedings of
STAR98.

4

