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Abstract A number of technical consequences of the formal definitions of
the semantics of Accellera PSL 1.1 Foundation Language are proved. These
include direct characterizations of the semantics of derived LTL operators,
duality of until operators, and the semantic correspondences that underly the
clock rewrite rules given in Appendix B of the Accellera PSL 1.1 Language
Reference Manual. The Prefix/Extension Theorem of [4] is shown to hold
for PSL 1.1 Foundation Language. Results concerning the weak and strong
promotions of boolean expressions and of Sequential Extended Regular Ex-
pressions to formulas are also proved. This work has supported the analysis
and review of the formal semantics of PSL 1.1 Foundation Language and
the effort to achieve semantic alignment between Accellera SystemVerilog
3.1 Assertions and PSL 1.1 Foundation Language.
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1 Introduction

Accellera Property Specification Language 1.1 [1], abbreviated as PSL 1.1 , is a
standard language for precisely defining temporal properties of designs. The lan-
guage is broadly divided into the Foundation Language and the Optional Branching
Extension. This report is concerned only with the Foundation Language and does
not discuss further the Optional Branching Extension. The Foundation Language
is a linear temporal logic that includes:

• Standard boolean operators on formulas (negation, conjunction, disjunction).

• Standard LTL operators (globally, eventually, strong and weak nexttime, strong
and weak until).

• A clocking operator for defining the granularity of time, which may differ from
one part of a formula to another.

• Sequential Extended Regular Expressions , or (seres), for defining finite-length
regular patterns, together with strong and weak promotions of seres to formulas
and an implication operator for predicating a formula on match of the pattern
specified by a sere.

• An operator for aborting a formula “asynchronously” on satisfaction of a boolean
condition.

• Numerous derived operators that abbreviate the writing of useful combinations
of more basic operators.

The Foundation Language is defined with respect to boolean expressions over a given
set of atomic propositions. The boolean expressions are the building blocks for the
seres. The Foundation Language also provides both strong and weak promotions
of boolean expressions to formulas of the logic, in analogy with the strong/weak
pairings of the LTL operators and the strong/weak promotions of seres. As a
result the clocking operator of the logic is strengthless, as in [5].
The formal syntax and semantics of the Foundation Language is defined in Ap-

pendix B of [1]. Appendix B gives separate explicit definitions for the syntax and
semantics of unclocked and clocked seres and formulas.1 The unclocked seres and
formulas involve no clocking operator, and their semantics is defined with respect
to a path. The clocked seres and formulas can involve instances of the clocking
operator, and their semantics is defined with respect to a path and a clock context.
Intuitively, an instance of the clocking operator coarsens the granularity of time so
that, for instance, the nexttime operator moves not to the next state on the path,
but rather to the next state where the clock ”ticks”. In both cases, the definitions
are given explicitly only for generating sets of basic sere and formula operators.
The purpose of this report is to prove a number of technical consequences of

the formal definitions in Appendix B. One use of these results has been as “sanity
checks” on the quality of the formal definitions. Since the formal definitions are

1As shown in Section 5 below, the semantics of clocked seres and formulas can be
derived from the semantics of unclocked seres and formulas using the rewrite rules. Ap-
pendix B gives the explicit definitions of the clocked semantics for didactic reasons.
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terse and given explicitly only for the basic operators, some effort is involved in
the analysis of semantic relationships, especially those involving derived operators.
Another use of the results has been in the alignment effort between Accellera Sys-
temVerilog 3.1 Assertions [2] (abbreviated as SVA 3.1 ) and PSL 1.1 Foundation
Language. One of the primary goals of that effort was to provide a mapping from
from a subset of SVA 3.1 Concurrent Assertions to PSL 1.1 Foundation Language
and to prove semantic equivalence of an SVA 3.1 assertion from the subset and
its image under the mapping. In the course of that work, a number of technical
lemmas about PSL 1.1 Foundation Language were proved, and most of them are
collected in this report. Finally, in several cases the work leading to the present
results uncovered flaws in the formal semantics of SVA 3.1 and/or draft definitions
of the formal semantics of PSL 1.1 Foundation Language. Known errors have been
corrected in SVA 3.1a and the final version of PSL 1.1 Foundation Language. Thus,
the work leading to the results presented in this report has improved the quality of
both Accellera languages.
The technical results in this report are not mathematically deep. They are, for

the most part, intuitive but not entirely obvious. As a result, this report should be
accessible to a reader who is familiar with elementary set theory and functions and
who is comfortable reading Appendix B of [1]. Some of the results in this report
have been proved independently by mechanical means [6].
The rest of this report is organized as follows.

• Section 2 gives preliminaries and notations and introduces the extended alphabet
used in definition of the semantics in Appendix B of [1].

• Section 3 discusses the way the primitive forms for this report differ from those
in Appendix B.

• Section 4 provides direct semantics of the derived LTL operators over proper
words. Duality of until operators is also discussed.

• Section 5 presents the rewrite rules from Appendix B for transforming clocked
seres and formulas into unclocked versions. For both seres and formulas, the
semantic correspondence between a clocked entity and the rewritten unclocked
entity is proved.

• Section 6 contains a few results on clock ticks.

• Section 7 presents results on the semantics of tight satisfaction (i.e., matching)
of seres.

• Section 8 discusses promotion of seres to formulas. Most of the unclocked results
have been presented in the context of a simpler logic in [3].

• Section 9 proves that the Prefix/Extension Theorem of [4] holds for PSL 1.1
Foundation Language, both in unclocked and clocked forms.

• Section 10 discusses the promotion of boolean expressions to formulas and their
relation to sere formulas.

• Section 11 shows that inductive definitions of the unclocked and clocked PSL
formula satisfaction relations can be given for the set of proper words without
relying on the definitions of formula satisfaction for non-proper words.
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• Section 12 presents some miscellaneous lemmas on formulas, primarily from the
work on mapping from SVA 3.1 to PSL 1.1.

For reference, the semantic definitions from Appendix B of [1] are copied in an
appendix with notations adapted to the conventions of this report.

3



2 Preliminaries and notation

Throughout the rest of this report, “PSL” is used to mean “PSL 1.1 Foundation
Language”. For concreteness, this report uses the Verilog flavor of PSL and sets
language terminals using a typewriter font. Braces are used around operands of
certain sere operators and around seres that are promoted to formulas. Many of
these braces were required in earlier versions of the language but are optional in [1].
The letters i, j, and k always denote non-negative integers.
Let P denote the underlying set of atomic propositions. The ordinary alphabet

for the semantics of PSL is the power set 2P. Let B denote the set of boolean
expressions. There is understood to be a relation of boolean satisfaction ⊆ 2P×B.
The notation “� b” (respectively, “� / b”) means that (�, b) ∈ (respectively,
(�, b) �∈ ). For � ∈ 2P and b, c ∈ B, it is understood that � b iff � / !b and that
� b && c iff both � b and � c. The “true” (respectively, “false”) element of
B is denoted “true” (respectively, “false”), and it is understood that

� true and � / false

for all � ∈ 2P.
The extended alphabet for the semantics of PSL is

Σ = 2P ∪ {	,⊥}

The relation is extended to letters in Σ by defining

	 b and ⊥ / b

for all b ∈ B. Unlike letters of the ordinary alphabet, 	 false and ⊥ / true.
Let 	̄ = ⊥, ⊥̄ = 	, and �̄ = � for � ∈ 2P.
A word over Σ is a sequence of letters from Σ. The concatenation of word v

followed by word w is denoted vw. If v is infinite, then vw = v. Word u is a prefix
of word w, denoted u � w, iff there exists a word v such that w = uv. Word w is
an extension of word u, denoted w  u, iff u is a prefix of w. Word v is a suffix of
word w iff there exists a finite word u such that w = uv.
The number of letters in word w is called the length of w and is denoted |w|.

If w is infinite, then |w| is ω. The letters of a word are assumed to be indexed
consecutively beginning at zero. If |w| = 0, then w has no letters and is said to
be empty. If |w| > 0, then the first letter of w is denoted w0; if |w| > 1, then the
second letter of w is denoted w1; and so forth. Let w̄ denote the word over Σ such
that w̄i = wi. In other words, w̄ is obtained from w by interchanging 	 with ⊥.
If i < |w|, then wi.. denotes the suffix of w beginning at wi. In other words,

wi.. = wiwi+1 · · ·w|w|−1 if w is finite, and wi.. = wiwi+1 · · · if w is infinite. If
i ≥ |w|, then wi.. denotes the empty word. If i ≤ j < |w|, then wi..j denotes the
finite subword wi · · ·wj of w. If h < i < |w|, perhaps h < 0, then wi..h denotes the
empty word. �k denotes the finite word of length k each letter of which is �. �ω

denotes the infinite word each letter of which is �.
The semantics of matching the patterns of seres is defined via a relation of tight

satisfaction by finite (possibly empty) words. In the unclocked case, the relation
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is binary and defines when a finite word w tightly satisfies an unclocked sere r,
denoted

w |≡ r

In the clocked case, the relation is ternary and defines when a finite word w tightly
satisfies a sere r in the context of the clock represented by boolean expression c,
denoted

w |≡c
r

The semantics of PSL formulas is defined via a relation of satisfaction by finite
(possibly empty) or infinite words. In the unclocked case, the relation is binary and
defines when a word w satisfies an unclocked formula f , denoted

w |= f

In the clocked case, the relation is ternary and defines when a word w satisfies a
formula f in the context of the clock represented by boolean expression c, denoted

w |=c f

The two preceding satisfaction relations are also called unclocked and clocked neu-
tral satisfaction (respectively) to distinguish them from the following unclocked and
clocked weak (−) and strong (+) satisfaction relations. For w a word over Σ and f
an unclocked PSL formula,

w |=− f iff w	ω |= f

w |=+ f iff w⊥ω |= f

For w a word over Σ, c a boolean expression, and f a PSL formula,

w |=c− f iff w	ω |=c f

w |=c+ f iff w⊥ω |=c f
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3 Primitives

Many of the results in this report are proved by induction over sere or formula
structure. The primitive sere and formula operators for these proofs differ slightly
from those presented in Appendix B of [1]. This section describes the differences.
In Appendix B of [1], “[*0]” is a primitive sere, and “[*]” is the primitive rep-

etition operator for seres. In this report, we prefer to use “[+]” as the primitive
repetition operator for proofs by induction over sere structure because the argu-
ments for “[+]” tend to require less case splitting than for “[*]”. This is because
“r[*]” intuitively means “zero or more repetitions of r”. In an inductive proof,
the argument for “zero repetitions” is typically redundant with the argument for
“[*0]” and usually must be handled separately from the argument for “one or more
repetitions”. On the other hand,

r[+]
def= r ; r[*]

which intuitively means “one or more repetitions of r”. This change of primitives
for the proofs is justified by Lemmas 3.3 and 3.4 below.
The following two lemmas give direct semantics for r[+] in the unclocked and

the clocked cases.

Lemma 3.1. Let w be a finite word over Σ, and let r be an unclocked sere. Then
w |≡ r[+] iff there exist k > 0 and w1, . . . , wk such that w = w1 · · ·wk and wj |≡ r
for each 1 ≤ j ≤ k.

Proof.

w |≡ r[+]
iff w |≡ r ; r[*]
iff there exist w1, u1 such that w = w1u1 and w1 |≡ r and u1 |≡ r[*]

By definition,

u1 |≡ r[*]
iff u1 |≡ [*0] or there exist w2, u2 such that |w2| > 0 and u1 = w2u2 and

w2 |≡ r and u2 |≡ r[*]
iff |u1| = 0 or there exist w2, u2 such that |w2| > 0 and u1 = w2u2 and

w2 |≡ r and u2 |≡ r[*]

By repeating the application of this definition to the suffix uj and using the fact
that |w| bounds the number of times the suffix can be split, it follows that

u1 |≡ r[*]
iff |u1| = 0 or there exist k ≥ 2 and non-empty w2, . . . , wk such that

u1 = w2 · · ·wk and wj |≡ r for each 2 ≤ j ≤ k

Therefore

w |≡ r[+]
iff

(A):
there exist w1, u1 such that w = w1u1 and w1 |≡ r and either |u1| = 0 or
there exist k ≥ 2 and non-empty w2, . . . , wk such that u1 = w2 · · ·wk and
wj |≡ r for each 2 ≤ j ≤ k
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Let

(B):
there exist k > 0 and w1, . . . , wk such that w = w1 · · ·wk and wj |≡ r for
each 1 ≤ j ≤ k

Assume (A). If |u1| �= 0, then (B) clearly follows. Otherwise, (B) follows by
letting k = 1.
Assume (B). Suppose w is empty. Then all of the wj are empty, and, since k > 0,

w = w1 |≡ r. In this case, (A) holds with k = 1 and u1 = 0. Otherwise, w is
non-empty, so there is at least one non-emtpy wj . Discard all the empty wj and
reindex. Then (A) holds, either with k = 1 and |u1| = 0 or with k ≥ 2.

Lemma 3.2. Let w be a finite word over Σ, let c be a boolean expression, and
let r be a sere. Then w |≡c

r[+] iff there exist k > 0 and w1, . . . , wk such that
w = w1 · · ·wk and wj |≡c r for each 1 ≤ j ≤ k.

Proof. Analogous to the proof of Lemma 3.1.

The following two lemmas give the semantics of r[*] as derived from [*0] and
r[+].

Lemma 3.3. Let w be a finite word over Σ, and let r be an unclocked sere. Then
w |≡ r[*] iff w |≡ {[*0]} || {r[+]}.

Proof.

w |≡ r[*]
iff either

w |≡ [*0]
or

there exist u, v such that |u| > 0 and w = uv and u |≡ r and v |≡ r[*]
iff [for (⇐), if |u| = 0, then w = v |≡ r[*]]

either
w |≡ [*0]

or
there exist u, v such that w = uv and u |≡ r and v |≡ r[*]

iff either
w |≡ [*0]

or
w |≡ r ; r[*]

iff either
w |≡ [*0]

or
w |≡ r[+]

iff w |≡ {[*0]} || {r[+]}
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Lemma 3.4. Let w be a finite word over Σ, let c be a boolean expression, and let
r be a sere. Then w |≡c

r[*] iff w |≡c {[*0]} || {r[+]}.

Proof. Analogous to the proof of Lemma 3.3.

Appendix B of [1] lists both the strong and weak boolean formulas among the
primitive formula types. Given formula and boolean negation, though, only one
of the boolean formula forms need be a primitive. In the proofs in this report,
we regard only the strong boolean formula form as a primitive. The next lemmas
justify this simplification.

Lemma 3.5 (Duality of Boolean Satisfaction). Let � ∈ Σ, and let b be a
boolean expression. Then � b iff �̄ / !b.

Proof. If � ∈ 2P, then � = �̄ and the result follows because the relation has the
property that � b iff � / !b when � ∈ 2P. If � = 	, then � b and �̄ = ⊥ / !b.
If � = ⊥, then � / b and �̄ = 	 !b.

The following notation is used to eliminate ambiguity between boolean expression
negation and boolean formula negation.

Notation 3.6. Let b be a boolean expression.

• s(b) denotes the strong boolean formula b!.

• w(b) denotes the weak boolean formula b.

Lemma 3.7 (Unclocked Duality of Boolean Formulas). Let b be a boolean
expression, and let w be a word over Σ. Then

1. w |= w(b) iff w |= !s(!b)

2. w |= s(b) iff w |= !w(!b)

Proof. Note that 2 follows from 1 by negating both the boolean expression and the
formulas. Here is the proof of 1:

w |= !s(!b)
iff w̄ �|= s(!b)
iff ¬(|w̄| > 0 and w̄0 !b)
iff |w̄| = 0 or w̄0 / !b
iff [Lemma 3.5; |w̄| = |w|]

|w| = 0 or w0 b
iff w |= w(b)
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Lemma 3.8 (Clocked Duality of Boolean Formulas). Let b, c be boolean ex-
pressions, and let w be a word over Σ. Then

1. w |=c w(b) iff w |=c !s(!b)

2. w |=c s(b) iff w |=c !w(!b)

Proof. Note that 2 follows from 1 by negating both the boolean expression and the
formulas. Here is the proof of 1:

w |=c !s(!b)
iff w̄ �|=c s(!b)
iff ¬(there exists 0 ≤ j < |w| such that w̄0..j is a clock tick of c and w̄j !b)
iff for all 0 ≤ j < |w| such that w̄0..j is a clock tick of c, w̄j / !b
iff [Lemma 3.5]

for all 0 ≤ j < |w| such that w̄0..j is a clock tick of c, wj b
iff w |=c w(b)

9



4 Direct semantics of LTL operators

This section gives direct unclocked and clocked semantics of the derived LTL op-
erators X (weak nexttime), F (eventually), G (globally), and W (weak until). There
are some nuances to the semantics for general words over the extended alphabet Σ.
However, the words over Σ that are of primary interest are those that are proper
according to the following definition.

Definition 4.1. A word w over Σ is called proper if it is of the form w = uv,
where u is a word over 2P and either v is empty or v = 	ω or v = ⊥ω.

The set of proper words includes all the words over 2P and all the words over Σ that
are required for recursive evaluation of unclocked and clocked formula satisfaction
by proper words. This fact is explained further in Section 11.
The results of this section show that the unclocked semantics of the LTL operators

over proper words are the usual ones. In particular, duality between weak and strong
untils is proved for proper words in the usual way. The clocked semantics of the
LTL operators over proper words are intuitively similar, but there is a subtlety in
one of the duality relationship for untils.

Lemma 4.2 (Direct Unclocked Semantics of X). Let f be an unclocked PSL
formula, and let w be a word over Σ. Then w |= X f iff either |w| ≤ 1 or w1.. |= f

Proof.

w |= X f
iff w |= !X! !f
iff w̄ �|= X! !f
iff ¬(|w| > 1 and w̄1.. |= !f)
iff either |w| ≤ 1 or w1.. |= f

Lemma 4.3 (Direct Clocked Semantics of X). Let f be an PSL formula, let c
be a boolean expression, and let w be a word over Σ. Then w |=c X f iff for all
0 ≤ j < k < |w| such that w̄0..j and w̄j+1..k are clock ticks of c, wk.. |=c f

Proof.

w |=c X f
iff w |=c !X! !f
iff w̄ �|=c X! !f
iff ¬(there exist 0 ≤ j < k < |w| such that w̄0..j and w̄j+1..k are clock ticks of

c and w̄k.. |=c !f)
iff for all 0 ≤ j < k < |w| such that w̄0..j and w̄j+1..k are clock ticks of c,

wk.. |=c f
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Lemma 4.4 (Direct Unclocked Semantics of F). Let f be an unclocked PSL
formula, and let w be a proper word over Σ. Then w |= F f iff there exists 0 ≤ k <
|w| such that wk.. |= f .

Proof.

w |= F f
iff w |= [true U f]
iff there exists 0 ≤ k < |w| such that wk.. |= f and for all 0 ≤ j < k,

wj.. |= true
iff (A):

there exists 0 ≤ k < |w| such that wk.. |= f and for all 0 ≤ j < k, wj �= ⊥
Let

(B):
there exists 0 ≤ k < |w| such that wk.. |= f

Clearly, (A) implies (B). Assume (B). If wk �= ⊥, then, since w is proper, wj �= ⊥
for all 0 ≤ j < k, and so (A) holds. Otherwise, wk = ⊥. Let k′ be the minimal
index such that wk′

= ⊥. Then, since w is proper, wk′.. = ⊥ω = wk.. |= f , and for
all 0 ≤ j < k′, wj �= ⊥. Therefore (A) holds.

Lemma 4.5 (Direct Clocked Semantics of F). Let f be a PSL formula, let c
be a boolean expression, and let w be a proper word over Σ. Then w |=c F f iff
there exists k < |w| such that wk c and wk.. |=c f .

Proof.

w |=c F f
iff w |=c [true U f]

iff there exists k < |w| such that wk c and wk.. |=c f and for all 0 ≤ i < k

such that w̄i c, wi.. |=c true

iff there exists k < |w| such that wk c and wk.. |=c f and for all 0 ≤ i < k,
if w̄i c then for all i ≤ j < |w|, if w̄i..j is a clock tick of c then
wj true

iff (A):
there exists k < |w| such that wk c and wk.. |=c f and for all 0 ≤ i < k,
if w̄i c then for all i ≤ j < |w|, if w̄i..j is a clock tick of c then wj �= ⊥

Let

(B):
there exists k < |w| such that wk c and wk.. |=c f

Clearly, (A) implies (B). Assume (B). Since wk c, wk �= ⊥. Since w is proper,
wj �= ⊥ for all 0 ≤ j ≤ k. Suppose that 0 ≤ i < k and w̄i c and i ≤ j < |w| and
w̄i..j is a clock tick of c. Suppose i < j. Then w̄i !c. Since w̄i c, it follows
that w̄i = 	, hence wi = ⊥, a contradiction. Therefore j = i < k, and so wj �= ⊥.
This proves (A).
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Lemma 4.6 (Direct Unclocked Semantics of G). Let f be an unclocked PSL
formula, and let w be a proper word over Σ. Then w |= G f iff for all 0 ≤ k < |w|,
wk.. |= f .

Proof.

w |= G f
iff w |= ![true U !f]
iff ¬(w̄ |= [true U !f])
iff [Lemma 4.4]

¬(there exists 0 ≤ k < |w| such that w̄k.. |= !f)
iff for all 0 ≤ k < |w|, w̄k.. �|= !f
iff for all 0 ≤ k < |w|, wk.. |= f

Lemma 4.7 (Direct Clocked Semantics of G). Let f be a PSL formula, let c
be a boolean expression, and let w be a proper word over Σ. Then w |=c G f iff for
all 0 ≤ k < |w| such that w̄k c, wk.. |=c f .

Proof.

w |=c G f
iff w |=c ![true U !f]
iff ¬(w̄ |=c [true U !f])
iff [Lemma 4.5]

¬(there exists 0 ≤ k < |w| such that w̄k c and w̄k.. |=c !f)
iff for all 0 ≤ k < |w| such that w̄k c, w̄k.. �|=c !f

iff for all 0 ≤ k < |w| such that w̄k c, wk.. |=c f

Lemma 4.8 (Direct Unclocked Semantics of W). Let f, g be unclocked PSL
formulas, and let w be a proper word over Σ. Then w |= [f W g] iff for all
0 ≤ k < |w| such that wk.. �|= f , there exists 0 ≤ j ≤ k such that wj.. |= g.

Proof.

w |= [f W g]
iff w |= [f U g] || G f
iff either

w |= [f U g]
or

w |= G f
iff [Lemma 4.6]

(A):
either
1. there exists 0 ≤ k < |w| such that wk.. |= g and for all 0 ≤ j < k,

wj.. |= f
or
2. for all 0 ≤ k < |w|, wk.. |= f

12



Let

(B):
for all 0 ≤ k < |w| such that wk.. �|= f , there exists 0 ≤ j ≤ k such that
wj.. |= g

Assume (A). Let 0 ≤ k < |w| be such that wk.. �|= f . Then the first disjunct
of (A) must hold, so there exists 0 ≤ k′ < |w| such that wk′.. |= g and for all
0 ≤ j′ < k′, wj′.. |= f . Therefore, k′ ≤ k, and so with j = k′ the conclusion of (B)
holds. This proves (B).
Now assume (B). Suppose the second disjunct of (A) fails, so there exists 0 ≤

k′ < |w| such that wk′.. �|= f . Without loss of generality, k′ is minimal. Therefore,
for all 0 ≤ j < k′, wj.. |= f . By (B), there exists 0 ≤ k ≤ k′ such that wk.. |= g,
and so the first disjunct of (A) holds.

Lemma 4.9 (Direct Clocked Semantics of W). Let f, g be PSL formulas, let c
be a boolean expression, and let w be a proper word over Σ. Then w |=c [f W g] iff
for all 0 ≤ k < |w| such that w̄k c and wk.. �|=c f , there exists 0 ≤ j ≤ k such
that wj c and wj.. |=c g.

Proof.

w |=c [f W g]
iff w |=c [f U g] || G f
iff either

w |=c [f U g]
or

w |=c G f
iff [Lemma 4.7]

(A):
either
1. there exists 0 ≤ k < |w| such that wk c and wk.. |=c g and for all

0 ≤ j < k such that w̄j c, wj.. |=c f
or
2. for all 0 ≤ k < |w| such that w̄k c, wk.. |=c f .

Let

(B):
for all 0 ≤ k < |w| such that w̄k c and wk.. �|=c f , there exists 0 ≤ j ≤ k

such that wj c and wj.. |=c g

Assume (A). Let 0 ≤ k < |w| be such that w̄k c and wk.. �|=c f . Then the
second disjunct of (A) cannot hold, so there exists 0 ≤ k′ < |w| such that wk′

c

and wk′.. |=c g and for all 0 ≤ j′ < k′ such that w̄j′ c, wj′.. |=c f . Therefore,
k′ ≤ k, and so with j = k′ the conclusion of (B) holds. This proves (B).
Now assume (B). Suppose the second disjunct of (A) fails, so there exists 0 ≤ k′ <

|w| such that w̄k′
c and wk′.. �|=c f . Without loss of generality, k′ is minimal.

Therefore, for all 0 ≤ j < k′ such that w̄j c, wj.. |=c f . By (B), there exists
0 ≤ k ≤ k′ such that wk c and wk.. |=c g, and so the first disjunct of (A) holds.
This proves (A).
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Lemma 4.10 (Unclocked Duality of Untils). Let f, g be unclocked PSL for-
mulas, and let w be a proper word over Σ. Then

1. w |= [f U g] iff w |= ![!g W (!f && !g)].

2. w |= [f W g] iff w |= ![!g U (!f && !g)].

Proof.

1. w |= ![!g W (!f && !g)]
iff w̄ �|= [!g W (!f && !g)]
iff [Lemma 4.8]

¬(for all 0 ≤ k < |w| such that w̄k.. �|= !g, there exists 0 ≤ j ≤ k
such that w̄j.. |= !f && !g)

iff there exists 0 ≤ k < |w| such that wk.. |= g and for all 0 ≤ j ≤ k,
wj.. |= f || g

iff [let k be minimal such that wk.. |= g]
there exists 0 ≤ k < |w| such that wk.. |= g and for all 0 ≤ j < k,
wj.. |= f

iff w |= [f U g]

2. w |= ![!g U (!f && !g)]
iff w̄ �|= [!g U (!f && !g)]
iff ¬(there exists 0 ≤ k < |w| such that w̄k.. |= !f && !g and for all

0 ≤ j < k, w̄j.. |= !g)
iff for all 0 ≤ k < |w| such that w̄k.. |= !f && !g, there exists 0 ≤ j < k

such that w̄j.. �|= !g
iff for all 0 ≤ k < |w| such that wk.. �|= f || g, there exists 0 ≤ j < k such

that wj.. |= g
iff for all 0 ≤ k < |w| such that wk.. �|= f , there exists 0 ≤ j ≤ k such that

wj.. |= g
iff [Lemma 4.8]

w |= [f W g]

Lemma 4.11 (Clocked Approximate Duality of Untils). Let f, g be PSL
formulas, let c be a boolean expression, and let w be a proper word over Σ. Then

1. w |=c [f U g] iff w |=c ![!g W (!f && !g)].

2. If w |=c [f W g], then w |=c ![!g U (!f && !g)]. If w |=c ![!g U (!f && !g)]
and ⊥ω �|=c g, then w |=c [f W g].

Proof.

1. w |=c ![!g W (!f && !g)]
iff w̄ �|=c [!g W (!f && !g)]
iff [Lemma 4.9]

¬(for all 0 ≤ k < |w| such that wk c and w̄k.. �|=c !g, there exists
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0 ≤ j ≤ k such that w̄j c and w̄j.. |=c !f && !g)
iff (A):

there exists 0 ≤ k < |w| such that wk c and wk.. |=c g and for all
0 ≤ j ≤ k such that w̄j c, wj.. |=c f || g

By definition,

w |=c [f U g]
iff (B):

there exists 0 ≤ k < |w| such that wk c and wk.. |=c g and for all
0 ≤ j < k such that w̄j c, wj.. |=c f

Clearly (B) implies (A).

Assume (A). Take k to be minimal such that wk c and wk.. |=c g. Let 0 ≤ j < k

be such that w̄j c. By (A), wj.. |=c f || g. If wj / c, then wj = ⊥, and so,
since w is proper, wk = ⊥, a contradiction. Therefore, wj c, and so by the
minimality of k, wj.. �|=c g. Therefore wj.. |=c f . This proves (B).

2. w |=c ![!g U (!f && !g)]
iff w̄ �|=c [!g U (!f && !g)]

iff ¬(there exists 0 ≤ k < |w| such that w̄k c and w̄k.. |=c !f && !g and
for all 0 ≤ j < k such that wj c, w̄j.. |=c !g)

iff for all 0 ≤ k < |w| such that w̄k c and w̄k.. |=c !f && !g, there exists
0 ≤ j < k such that wj c and w̄j.. �|=c !g

iff (A):
for all 0 ≤ k < |w| such that w̄k c and wk.. �|=c f || g, there exists
0 ≤ j < k such that wj c and wj.. |=c g

By Lemma 4.9

w |=c [f W g]
iff (B):

for all 0 ≤ k < |w| such that w̄k c and wk.. �|=c f , there exists
0 ≤ j ≤ k such that wj c and wj.. |=c g

Assume (B). Let 0 ≤ k < |w| be such that w̄k c and wk.. �|=c f || g. Then
wk.. �|=c f and wk.. �|=c g. Then by (B), there exists 0 ≤ j < k such that wj c
and wj.. |=c g. This proves (A).

Assume (A) and assume that ⊥ω �|=c g. Let 0 ≤ k < |w| be such that w̄k c
and wk.. �|=c f . If wk.. �|=c g, then by (A), there exists 0 ≤ j < k such that
wj c and wj.. |= g, and so the conclusion of (B) holds. Otherwise, wk.. |=c g.
If wk c, then the conclusion of (B) holds with j = k. Otherwise wk / c. Since
w̄k c, it follows that wk = ⊥. Therefore, since w is proper, wk.. = ⊥ω |=c g, a
contradiction.
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Remark: The implication

w |=c ![!g U (!f && !g)] =⇒ w |=c [f W g]

may fail if ⊥ω |=c g. For example, let

f = true

g = !{{[*0]} && {true}}!

w = ⊥ω

Note that w �|=c f . Since

	ω �|=c {{[*0]} && {true}}!

it follows that w |=c g.
Referring to the conditions (A) and (B) in the proof of part 2 of Lemma 4.11, it

follows that the precondition of (A) is always false, so (A) holds vacuously. However,
(B) does not hold. To see this, note that the precondition of (B) is satisfied for any
k: w̄k = 	 c and wk.. = w �|=c f . But there does not exist j such that wj c,
so the conclusion of (B) fails.
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5 Rewrite rules

This section treats rewrite rules for clocked seres and formulas. For both seres and
formulas, the semantic correspondence between a clocked entity and the rewritten
unclocked entity is proved.
For reference, the rewrite rules from Appendix B of [1] are copied below.

Rewrite rules for seres:

• Rc({r}) = {Rc(r)}

• Rc(b) = {!c[*] ; c && b}

• Rc(r1 ; r2) = Rc(r1) ; Rc(r2)

• Rc({r1} : {r2}) = {Rc(r1)} : {Rc(r2)}

• Rc({r1} || {r2}) = {Rc(r1)} || {Rc(r2)}

• Rc({r1} && {r2}) = {Rc(r1)} && {Rc(r2)}

• Rc([*0]) = [*0]

• Rc(r[*]) = {Rc(r)}[*]

• Rc(r @d) = Rd(r)

Rewrite rules for formulas:

• Fc((f)) = (Fc(f))

• Fc(b!) = [!c U (c && b)]

• Fc(b) = [!c W (c && b)]

• Fc(!f) = !Fc(f)

• Fc(f && g) = Fc(f) && Fc(g)

• Fc(X! f) = [!c U (c && X! [!c U (c && Fc(f))])]

• Fc([f U g]) = [(c -> Fc(f)) U (c && Fc(g))]

• Fc(f abort b) = Fc(f) abort b

• Fc(f @d) = Fd(f)

• Fc({r} |-> f) = {Rc(r)} |-> Fc(f)

• Fc({r}!) = {Rc(r)}!

• Fc({r}) = {Rc(r)}
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Lemma 5.1. Let w be a finite word over Σ, let c be a boolean expression, and let
r be a sere. Then w |≡ Rc(r[+]) iff w |≡ {Rc(r)}[+].

Proof.

Rc(r[+]) = Rc(r ; r[*])
= Rc(r) ; Rc(r[*])
= Rc(r) ; {Rc(r)}[*]

and
{Rc(r)}[+] = {Rc(r)} ; {Rc(r)}[*]

Lemma 5.2. Let w be a finite word over Σ, let c be a boolean expression, and let
r be a sere. Then w |≡c r iff w |≡ Rc(r).

Proof. By induction over the structure of r.

• r = {r1}.

w |≡c {r1}
iff w |≡c

r1

iff [induction]
w |≡ Rc(r1)

iff w |≡ {Rc(r1)}
iff w |≡ Rc({r1})

• r = b.

w |≡c
b

iff w is a clock tick of c and w|w|−1 b

iff |w| > 0 and w|w|−1 c && b and for all 0 ≤ i < |w| − 1, wi !c
iff w |≡ {!c[*] ; c && b}
iff w |≡ Rc(b)

• r = r1 ; r2.

w |≡c
r1 ; r2

iff there exist u, v such that w = uv and u |≡c
r1 and v |≡c

r2

iff [induction]
there exist u, v such that w = uv and u |≡ Rc(r1) and v |≡ Rc(r2)

iff w |≡ Rc(r1) ; Rc(r2)
iff w |≡ Rc(r1 ; r2)

• r = {r1} : {r2}.
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w |≡c {r1} : {r2}
iff there exist x, y, z such that w = xyz and |y| = 1 and xy |≡c

r1 and
yz |≡c r2

iff [induction]
there exist x, y, z such that w = xyz and |y| = 1 and xy |≡ Rc(r1) and
yz |≡ Rc(r2)

iff w |≡ {Rc(r1)} : {Rc(r2)}
iff w |≡ Rc({r1} : {r2})

• r = {r1} || {r2}.

w |≡c {r1} || {r2}
iff w |≡c

r1 or w |≡c
r2

iff [induction]
w |≡ Rc(r1) or w |≡ Rc(r2)

iff w |≡ {Rc(r1)} || {Rc(r2)}
iff w |≡ Rc({r1} || {r2})

• r = {r1} && {r2}.

w |≡c {r1} && {r2}
iff w |≡c r1 and w |≡c r2

iff [induction]
w |≡ Rc(r1) and w |≡ Rc(r2)

iff w |≡ {Rc(r1)} && {Rc(r2)}
iff w |≡ Rc({r1} && {r2})

• r = [*0].

w |≡c [*0]
iff |w| = 0
iff w |≡ [*0]
iff w |≡ Rc([*0])

• r = r1[*].

w |≡c
r1[*]

iff [Lemma 3.4]
either

w |≡c [*0]
or

w |≡c
r1[+]

iff [Lemma 3.2]
either

|w| = 0
or

there exist k > 0 and w1, . . . , wk such that w = w1 · · ·wk and
wj |≡c

r1 for each 1 ≤ j ≤ k
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iff [induction]
either

w |≡ [*0]
or

there exist k > 0 and w1, . . . , wk such that w = w1 · · ·wk and
wj |≡ Rc(r1) for each 1 ≤ j ≤ k

iff [Lemma 3.1]
either

w |≡ [*0]
or

w |≡ {Rc(r1)}[+]
iff [Lemma 3.3]

w |≡ {Rc(r1)}[*]
iff w |≡ Rc(r1[*])

• r = r1 @d.

w |≡c
r1 @d

iff w |≡d
r1

iff [induction]
w |≡ Rd(r1)

iff w |≡ Rc(r1 @d)

Lemma 5.3. Let w be a word over Σ, let c be a boolean expression, and let f be a
PSL formula. Then w |=c f iff w |= Fc(f).

Proof. By induction over the structure of f .

• f = (g).

w |=c (g)
iff w |=c g
iff [induction]

w |= Fc(g)
iff w |= (Fc(g))
iff w |= Fc((g))

• f = b!.

w |=c b!

iff there exists 0 ≤ j < |w| such that w0..j is a clock tick of c and wj b

iff there exists 0 ≤ j < |w| such that wj c && b and for all 0 ≤ i < j,
wi !c

iff there exists 0 ≤ j < |w| such that wj.. |= c && b and for all 0 ≤ i < j,
wi.. |= !c

iff w |= [!c U (c && b)]
iff w |= Fc(b!)
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• f = b.

w |=c b

iff for all 0 ≤ j < |w| such that w̄0..j is a clock tick of c, wj b

iff for all 0 ≤ j < |w| such that w̄j c, if for all 0 ≤ i < j,
w̄i !c, then wj b

iff for all 0 ≤ j < |w| such that w̄j c, either there exists 0 ≤ i < j such
that w̄i / !c or wj b

iff [Lemma 3.5]
(A):
for all 0 ≤ j < |w| such that wj / !c,
either
1. there exists 0 ≤ i < j such that wi c
or
2. wj b

Let

(B):
for all 0 ≤ j < |w| such that wj / !c,
either
1. there exists 0 ≤ i ≤ j such that wi c && b
or
2. there exists 0 ≤ i < j such that wi = 	

Assume (A). Let 0 ≤ j′ < |w| be such that wj′ / !c. Then either condition 1
or condition 2 of (A) holds with j = j′. If condition 2 holds, then wj′ �∈ {	,⊥},
hence wj′ c && b, and so condition 1 of (B) holds. Suppose now that condition 1
of (A) holds, so there exists 0 ≤ i′ < j′ such that wi′ c. Without loss of
generality, i′ is minimal. If wi′ = 	, then plainly condition 2 of (B) holds.
Otherwise, wi′ / !c. Then either condition 1 or condition 2 of (A) holds with
j = i′. Condition 1 cannot hold because i′ was chosen minimal. Therefore
condition 2 holds, hence wi′ c && b, and so condition 1 of (B) holds. This
proves (B).

Assume now (B). Let 0 ≤ j′ < |w| be such that wj′ / !c. Then either condi-
tion 1 or condition 2 of (B) holds with j = j′. If condition 2 holds, then plainly
condition 1 of (A) holds. Suppose now that condition 1 of (B) holds, so there
exists 0 ≤ i′ ≤ j′ such that wi′ c && b. If i′ = j′, then plainly condition 2 of
(A) holds. If i′ < j′, then plainly condition 1 of (A) holds. This proves (A) and
completes the proof that (A) holds iff (B) holds.

(B)
iff for all 0 ≤ j < |w| such that wj.. �|= !c, either there exists 0 ≤ i ≤ j such

that wi.. |= c && b or there exists 0 ≤ i < j such that wi = 	
iff [Lemma 4.8]

w |= [!c W (c && b)]
iff w |= Fc(b)
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• f = !g.

w |=c !g
iff w̄ �|=c g
iff [induction]

w̄ �|= Fc(g)
iff w |= !Fc(g)
iff w |= Fc(!g)

• f = g && h.

w |=c g && h
iff w |=c g and w |=c h
iff [induction]

w |= Fc(g) and w |= Fc(h)
iff w |= Fc(g) && Fc(h)
iff w |= Fc(g && h)

• f = X! g.

w |=c X! g
iff there exist 0 ≤ j < k < |w| such that w0..j and wj+1..k are clock ticks of

c and wk.. |=c g
iff [induction]

there exist 0 ≤ j < k < |w| such that w0..j and wj+1..k are clock ticks of
c and wk.. |= Fc(g)

iff there exist 0 ≤ j < k < |w| such that wk.. |= Fc(g) and wk c

and wj c and for all i such that 0 ≤ i < j or j < i < k, wi !c
iff there exist 0 ≤ j < |w| − 1 such that wj+1.. |= [!c U (c && Fc(g))] and

wj c and for all 0 ≤ i < j, wi !c
iff there exist 0 ≤ j < |w| such that wj.. |= X! [!c U (c && Fc(g))] and

wj c and for all 0 ≤ i < j, wi !c
iff w |= [!c U (c && X! [!c U (c && Fc(g))])]
iff w |= Fc(X! g)

• f = [g U h].

w |=c [g U h]

iff there exists 0 ≤ k < |w| such that wk c and wk.. |=c h and for all
0 ≤ j < k such that w̄j c, wj.. |=c g

iff [induction]
there exists 0 ≤ k < |w| such that wk c and wk.. |= Fc(h) and for all
0 ≤ j < k such that w̄j c, wj.. |= Fc(g)

iff there exists 0 ≤ k < |w| such that wk.. |= c && Fc(h) and for all
0 ≤ j < k, either w̄j / c or wj.. |= Fc(g)

iff [Lemma 3.5]
there exists 0 ≤ k < |w| such that wk.. |= c && Fc(h) and for all
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0 ≤ j < k, either wj !c or wj.. |= Fc(g)
iff there exists 0 ≤ k < |w| such that wk.. |= c && Fc(h) and for all

0 ≤ j < k, wj.. |= c -> Fc(g)
iff w |= [(c -> Fc(g)) U (c && Fc(h))]
iff w |= Fc([g U h])

• f = g abort b.

w |=c g abort b

iff either w |=c g or there exists 0 ≤ j < |w| such that wj b and
w0..j−1	ω |=c g

iff [induction]
either w |= Fc(g) or there exists 0 ≤ j < |w| such that wj b and
w0..j−1	ω |= Fc(g)

iff w |= Fc(g) abort b
iff w |= Fc(g abort b)

• f = g @d.

w |=c g @d
iff w |=d g
iff [induction]

w |= Fd(g)
iff w |= Fc(g @d)

• f = {r} |-> g.

w |=c {r} |-> g
iff for all 0 ≤ j < |w| such that w̄0..j |≡c

r, wj.. |=c g
iff [induction, Lemma 5.2]

for all 0 ≤ j < |w| such that w̄0..j |≡ Rc(r), wj.. |= Fc(g)
iff w |= {Rc(r)} |-> Fc(g)
iff w |= Fc({r} |-> g)

• f = {r}!.

w |=c {r}!
iff there exists 0 ≤ j < |w| such that w0..j |≡c

r
iff [Lemma 5.2]

there exists 0 ≤ j < |w| such that w0..j |≡ Rc(r)
iff w |= {Rc(r)}!
iff w |= Fc({r}!)

• f = {r}.

w |=c {r}
iff for all 0 ≤ j < |w|, w0..j	ω |=c {r}!
iff [argument for f = {r}!]
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for all 0 ≤ j < |w|, w0..j	ω |= Fc({r}!)
iff for all 0 ≤ j < |w|, w0..j	ω |= {Rc(r)}!
iff w |= {Rc(r)}
iff w |= Fc({r})

Corollary 5.4. Let w be a word over Σ, let c be a boolean expression, and let f be
a PSL formula.

1. w |=c− f iff w |=− Fc(f).

2. w |=c+ f iff w |=+ Fc(f).
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6 Clock ticks

Lemma 6.1. Let w be a finite word over Σ. w is a clock tick of true iff there
exist k ≥ 0 and a �= ⊥ such that w = 	ka.

Proof.

w is a clock tick of true

iff |w| > 0 and w|w|−1 true and for every 0 ≤ i < |w| − 1, wi false
iff |w| > 0 and w|w|−1 �= ⊥ and for every 0 ≤ i < |w| − 1, wi = 	
iff [let k = |w| − 1, a = w|w|−1]

there exists k ≥ 0 and a �= ⊥ such that w = 	ka

Lemma 6.2. Let c be a boolean expression. Then 	k is a clock tick of c iff k > 0.

Proof.

	k is a clock tick of c

iff |	k| > 0 and 	 c and for all 0 ≤ i < k − 1, 	 !c
iff [	 satisfies all boolean expressions]

k > 0
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7 Tight satisfaction of seres

This section presents results on the unclocked and clocked tight satisfaction rela-
tions.
The rewrite rules for seres and Lemma 5.2 show that the clocked tight satis-

faction relation can be derived from the unclocked tight satisfaction relation. The
unclocked tight-satisfaction semantics of unclocked seres is related to the clocked
tight-satisfaction semantics of unclocked seres clocked by true, but the two se-
mantics are not equivalent.

Lemma 7.1. Let w be a finite word over Σ and let r be an unclocked sere. If
w |≡ r, then w |≡true

r.

Proof. By induction over the structure of r. Note that for each of the primitive
unclocked sere forms except boolean expression, the corresponding clocked sere
definition is obtained by changing |≡ to |≡c. Therefore it is enough to check the
implication in the case of boolean expressions.

w |≡ b

iff |w| = 1 and w0 b

iff w = 	0w0 and w0 �= ⊥ and w0 b
⇒ [Lemma 6.1]

w is a clock tick of true and w|w|−1 b
iff w |≡true

b

Remark: The converse of the preceding lemma does not hold. For example,
	2 |≡true

true, but 	2 |�≡ true. The converse does hold if w is a word over
2P. Therefore, for words over 2P, the unclocked tight-satisfaction semantics of
unclocked seres can be derived as a special case of the clocked tight-satisfaction
semantics of unclocked seres clocked at true. However, for general words over Σ,
the PSL unclocked tight-satisfaction semantics of unclocked seres is not derived in
this way.

Lemma 7.2. Let w be a finite word over Σ, and let r be an unclocked sere. If
w |≡ r, then no letter of w is ⊥.

Proof. By induction over the structure of r. Write good (w) to mean that no letter
of w is ⊥.
• r = b.

w |≡ b

iff |w| = 1 and w0 b
⇒ |w| = 1 and w0 �= ⊥
⇒ good (w)

• r = {r1}.
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w |≡ {r1}
iff w |≡ r1

⇒ [induction]
good (w)

• r = r1 ; r2.

w |≡ r1 ; r2

iff there exist u, v such that w = uv and u |≡ r1 and v |≡ r2

⇒ [induction]
there exist u, v such that w = uv and good (u) and good (v)

⇒ good (w)

• r = {r1} : {r2}.

w |≡ {r1} : {r2}
iff there exist x, y, z such that w = xyz and |y| = 1 and xy |≡ r1 and

yz |≡ r2

⇒ [induction]
there exist x, y, z such that w = xyz and good (xy) and good (yz)

⇒ good (w)

• r = {r1} || {r2}.

w |≡ {r1} || {r2}
iff w |≡ r1 or w |≡ r2

⇒ [induction]
good (w) or good (w)

iff good (w)

• r = {r1} && {r2}.

w |≡ {r1} && {r2}
iff w |≡ r1 and w |≡ r2

⇒ [induction]
good (w) and good (w)

iff good (w)

• r = [*0].

w |≡ [*0]
iff |w| = 0
⇒ good (w)

• r = r1[+].
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w |≡ r1[+]
iff [Lemma 3.1]

there exist k > 0 and w1, . . . , wk such that w = w1 · · ·wk and wj |≡ r1

for all 1 ≤ j ≤ k
⇒ [induction]

there exist k > 0 and w1, . . . , wk such that w = w1 · · ·wk and good (wj)
for all 1 ≤ j ≤ k

⇒ good (w)

Lemma 7.3. Let w be a finite word over Σ, let r be a sere, and let c be a boolean
expression. If w |≡c

r, then no letter of w is ⊥.
Proof.

w |≡c
r

iff [Lemma 5.2]
w |≡ Rc(r)

⇒ [Lemma 7.2]
no letter of w is ⊥

Lemma 7.4. Let r be an unclocked sere, let w be a finite word over Σ, and let t
be a finite word over Σ such that |t| = |w| and such that for all 0 ≤ i < |w|, either
ti = wi or ti = 	. If w |≡ r, then t |≡ r.

Proof. By induction over the structure of r.

• r = b.

w |≡ b

iff |w| = 1 and w0 b
⇒ [|t| = |w| and either t0 = w0 or t0 = 	]

|t| = 1 and t0 b
iff t |≡ b

• r = {r1}.

w |≡ {r1}
iff w |≡ r1

⇒ [induction]
t |≡ r1

iff t |≡ {r1}

• r = r1 ; r2.

Assume w |≡ r1 ; r2. Then there exist u, v such that w = uv and u |≡ r1 and
v |≡ r2. Then there exist tu, tv such that |tu| = |u| and |tv| = |v| and t = tutv.
By induction, tu |≡ r1 and tv |≡ r2. Therefore t |≡ r1 ; r2.
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• r = {r1} : {r2}.

Assume w |≡ {r1} : {r2}. Then there exist x, y, z such that w = xyz and |y| = 1
and xy |≡ r1 and yz |≡ r2. Then there exist tx, ty, tz such that |tx| = |x| and
|ty| = |y| and |tz | = |z| and t = txtytz. By induction, txty |≡ r1 and tytz |≡ r2.
Therefore t |≡ {r1} : {r2}.

• r = {r1} || {r2}.

w |≡ {r1} || {r2}
iff w |≡ r1 or w |≡ r2

⇒ [induction]
t |≡ r1 or t |≡ r2

iff t |≡ {r1} || {r2}

• r = {r1} && {r2}.

w |≡ {r1} && {r2}
iff w |≡ r1 and w |≡ r2

⇒ [induction]
t |≡ r1 and t |≡ r2

iff t |≡ {r1} && {r2}

• r = [*0].

w |≡ [*0]
iff |w| = 0
⇒ |t| = 0
iff t |≡ [*0]

• r = r1[+].

Assume w |≡ r1[+]. By Lemma 3.1, there exist k > 0 and w1, . . . , wk such that
w = w1 · · ·wk and wj |≡ r1 for all 1 ≤ j ≤ k. Then there exist t1, . . . , tk such that
|tj | = |wj | for all 1 ≤ j ≤ k and such that t = t1 · · · tk. By induction, tj |≡ r1 for
all 1 ≤ j ≤ k, and so t |≡ r1[+].

Lemma 7.5. Let r be a sere, let c be a boolean expression, let w be a finite word
over Σ, and let t be a finite word over Σ such that |t| = |w| and such that for all
0 ≤ i < |w|, either ti = wi or ti = 	. If w |≡c r, then t |≡c r.

Proof.

w |≡c
r

iff [Lemma 5.2]
w |≡ Rc(r)

⇒ [Lemma 7.4]
t |≡ Rc(r)

iff [Lemma 5.2]
t |≡c

r
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Remark: Note that t can be taken as 	|w| in Lemma 7.4 and Lemma 7.5.

Lemma 7.6. Let r be a sere, and let c be a boolean expression. Then 	k |≡c
r iff

	k |≡true
r.

Proof. By induction over the structure of r. Let t = 	k.

• r = b.

t |≡c b

iff t is a clock tick of c and t|t|−1 b
iff [Lemma 6.2]

k > 0 and t|t|−1 b
iff [Lemma 6.2]

t is a clock tick of true and t|t|−1 b
iff t |≡true

b

• r = {r1}.

t |≡c {r1}
iff t |≡c

r1

iff [induction]
t |≡true

r1

iff t |≡true {r1}

• r = r1 ; r2.

t |≡c r1 ; r2

iff there exist u, v such that t = uv and u |≡c
r1 and v |≡c

r2

iff [induction, using u = 	|u|, v = 	|v|]
there exist u, v such that t = uv and u |≡true

r1 and v |≡true
r2

iff t |≡true
r1 ; r2

• r = {r1} : {r2}.

t |≡c {r1} : {r2}
iff there exist x, y, z such that t = xyz and |y| = 1 and

xy |≡c
r1 and yz |≡c

r2

iff [induction, using xy = 	|xy|, yz = 	|yz|]
there exist x, y, z such that t = xyz and |y| = 1 and
xy |≡true

r1 and yz |≡true
r2

iff t |≡true {r1} : {r2}

• r = {r1} || {r2}.
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t |≡c {r1} || {r2}
iff t |≡c

r1 or t |≡c
r2

iff [induction]
t |≡true

r1 or t |≡true
r2

iff t |≡true {r1} || {r2}

• r = {r1} && {r2}.

t |≡c {r1} && {r2}
iff t |≡c

r1 and t |≡c
r2

iff [induction]
t |≡true

r1 and t |≡true
r2

iff t |≡true {r1} && {r2}

• r = [*0].

t |≡c [*0]
iff |t| = 0
iff t |≡true [*0]

• r = r1[+].

t |≡c r1[+]
iff [Lemma 3.2]

there exist k > 0 and t1, . . . , tk such that t = t1 · · · tk and
tj |≡c

r1 for all 1 ≤ j ≤ k
iff [induction]

there exist k > 0 and t1, . . . , tk such that t = t1 · · · tk and
tj |≡true

r1 for all 1 ≤ j ≤ k
iff [Lemma 3.2]

t |≡true
r1[+]

• r = r1 @d.

t |≡c r1 @d

iff t |≡d
r1

iff t |≡true
r1 @d

Lemma 7.7. Let r be an unclocked sere, let c be a boolean expression, and let w
be a non-empty finite word over Σ. If w |≡c r, then w|w|−1 c.

Proof. By induction over the structure of r. Let I = |w| − 1.

• r = b.
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w |≡c
b

iff w is a clock tick of c and w|w|−1 b

iff |w| > 0, wj !c for all 0 ≤ j < |w| − 1, and w|w|−1 c and w|w|−1 b

⇒ wI c

• r = {r1}.

w |≡c {r1}
iff w |≡c

r1

⇒ [induction]
wI c

• r = r1 ; r2.

w |≡c
r1 ; r2

iff there exist u, v such that w = uv and u |≡c
r1 and v |≡c

r2

⇒ [induction]
w = uv and if u is non-empty then u|u|−1 c and if v is non-empty then
v|v|−1 c

⇒ [w = uv is non-empty; if |v| > 0 then wI = v|v|−1; otherwise wI = u|u|−1]
wI c

• r = {r1} : {r2}.

w |≡c {r1} : {r2}
iff there exist x, y, z such that w = xyz and |y| = 1 and xy |≡c

r1 and
yz |≡c r2

⇒ [induction]
w = xyz and yz|yz|−1 c

⇒ [wI = yz|yz|−1]
wI c

• r = {r1} || {r2}.

w |≡c {r1} || {r2}
iff w |≡c

r1 or w |≡c
r2

⇒ [induction]
wI c or wI c

iff wI c

• r = {r1} && {r2}.
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w |≡c {r1} && {r2}
iff w |≡c

r1 and w |≡c
r2

⇒ [induction]
wI c and wI c

iff wI c

• r = [*0]. Since w is non-empty, w |�≡c [*0].

• r = r1[+].

w |≡c r1[+]
iff [Lemma 3.2]

there exist k > 0 and w1, . . . , wk such that w = w1 · · ·wk and wj |≡c
r1 for

all 1 ≤ j ≤ k
iff [throw away unnecessary empty wj and reindex]

there exist k > 0 and non-empty w1, . . . , wk such that w = w1 · · ·wk and
wj |≡c

r1 for all 1 ≤ j ≤ k
⇒ [induction]

there exist k > 0 and non-empty w1, . . . , wk such that w = w1 · · ·wk and
w

|wj |−1
j c all 1 ≤ j ≤ k

⇒ [wI = w
|wk|−1
k ]

wI c
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8 sere formulas

Let r be a sere. The strong promotion of r to a PSL formula is denoted {r}!, while
the weak promotion is denoted {r}. This section presents results on the formula
semantics of {r}! and {r}.

Lemma 8.1. Let w be a word over Σ, let c be a boolean expression, and let r be a
sere.

1. w |=c {r}! iff w |= {Rc(r)}!.

2. w |=c {r} iff w |= {Rc(r)}.

Proof. Immediate from Lemma 5.3 and the rewrite rules.

Lemma 8.2. Let w be a word over Σ, let c be a boolean expression, and let r be a
sere.

1. w |=c− {r}! iff w |=− {Rc(r)}!.

2. w |=c− {r} iff w |=− {Rc(r)}.

3. w |=c+ {r}! iff w |=+ {Rc(r)}!.

4. w |=c+ {r} iff w |=+ {Rc(r)}.

Proof. Immediate from Corollary 5.4 and the rewrite rules.

Lemma 8.3. Let w be a word over Σ, let c be a boolean expression, and let r be
an unclocked sere.

1. w |= {r}! iff w |= !({r} |-> false).

2. w |=c {r}! iff w |=c !({r} |-> false)

Proof.

1. w |= !({r} |-> false)
iff w̄ �|= {r} |-> false
iff ¬(for every 0 ≤ j < |w| such that w0..j |≡ r, w̄j.. |= false)
iff there exists 0 ≤ j < |w| such that w0..j |≡ r and w̄j.. �|= false
iff [if 0 ≤ j < |w|, then w̄j.. is non-empty]

there exists 0 ≤ j < |w| such that w0..j |≡ r and w̄j / false
iff there exists 0 ≤ j < |w| such that w0..j |≡ r and w̄j �= 	
iff there exists 0 ≤ j < |w| such that w0..j |≡ r and wj �= ⊥
iff [if w0..j |≡ r, then wj �= ⊥ by Lemma 7.2]

there exists 0 ≤ j < |w| such that w0..j |≡ r
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2. w |=c !({r} |-> false)
iff w̄ �|=c {r} |-> false
iff ¬(for every 0 ≤ j < |w| such that w0..j |≡c r, w̄j.. |=c false)
iff there exists 0 ≤ j < |w| such that w0..j |≡c

r and w̄j.. �|=c false
iff there exists 0 ≤ j < |w| such that w0..j |≡c

r and ¬(for all j ≤ k < |w|
such that wj..k is a clock tick of c, then w̄k false)

iff there exists 0 ≤ j < |w| such that w0..j |≡c
r and there exists j ≤ k < |w|

such that wj..k is a clock tick of c and w̄k / false

iff [if wj..k is a clock tick of c, then wk c, hence wk �= ⊥, hence w̄k �= 	,
hence w̄k / false]
there exists 0 ≤ j < |w| such that w0..j |≡c r and there exists j ≤ k < |w|
such that wj..k is a clock tick of c

iff [if w0..j |≡c
r, then, by Lemma 7.7, wj c, hence wj..j is a clock tick of

c]
there exists 0 ≤ j < |w| such that w0..j |≡c

r

Lemma 8.4. Let r be a sere, let c be a boolean expression, and let w be a word
over Σ. Then w |=c {r}! iff w |=c !({r} |-> false @true).

Proof.

w |=c !({r} |-> false @true)
iff w̄ �|=c {r} |-> false @true
iff ¬(for every 0 ≤ j < |w| such that w0..j |≡c

r, w̄j.. |=c false @true)
iff ¬(for every 0 ≤ j < |w| such that w0..j |≡c

r, w̄j.. |=true false)
iff there exists 0 ≤ j < |w| such that w0..j |≡c

r and ¬(w̄j.. |=true false)
iff there exists 0 ≤ j < |w| such that w0..j |≡c

r and ¬(for all j ≤ k < |w|
such that wj..k is a clock tick of true, w̄k false)

iff there exists 0 ≤ j < |w| such that w0..j |≡c r and there exists j ≤ k < |w|
such that wj..k is a clock tick of true and w̄k / false

iff [if wj..k is a clock tick of true, then wk true, hence wk �= ⊥, hence
w̄k �= 	, hence w̄k / false]
there exists 0 ≤ j < |w| such that w0..j |≡c

r and there exists j ≤ k < |w|
such that wj..k is a clock tick of true

iff [if w0..j |≡c
r, then wj �= ⊥, so wj..j is a clock tick of true]

there exists 0 ≤ j < |w| such that w0..j |≡c r

Lemma 8.5. Let w be a word over Σ, and let r be an unclocked sere. The follow-
ing are equivalent:

1. w |= {r}.

2. For every non-empty finite u � w, u |=− {r}!.

3. |w| = 0 or for every finite u � w, u |=− {r}!.
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Proof.

w |= {r}
iff for all 0 ≤ j < |w|, w0..j	ω |= {r}!
iff for every non-empty finite u � w, u |=− {r}!

w |= {r}
iff for all 0 ≤ j < |w|, w0..j	ω |= {r}!
iff |w| = 0 or (|w| > 0 and for all 0 ≤ j < |w|, w0..j	ω |= {r}!)
iff [by Lemma 7.4, if w0..0	ω |= {r}!, then 	ω |= {r}!]

|w| = 0 or (|w| > 0 and for every finite u � w, u	ω |= {r}!)
iff |w| = 0 or for every finite u � w, u |=− {r}!

Lemma 8.6. Let w be a word over Σ, let c be a boolean expression, and let r be a
sere. The following are equivalent:

1. w |=c {r}.

2. For every non-empty finite u � w, u |=c− {r}!.

3. |w| = 0 or for every finite u � w, u |=c− {r}!.

Proof. Follows from Lemma 8.5 using Lemma 8.1 and Lemma 8.2.

Lemma 8.7. Let w be a word over Σ, and let r be an unclocked sere. If w |= {r}!,
then w |= {r}.

Proof. Assume w |= {r}!. Then there exists 0 ≤ k < |w| such that w0..k |≡ r. In
particular, |w| > 0. Let u be any finite prefix of w. By Lemma 7.4, (u	ω)0..k |≡ r.
Therefore u	ω |= {r}!. By Lemma 8.5, this proves that w |= {r}.

Lemma 8.8. Let w be a word over Σ, let c be a boolean expression, and let r be a
sere. If w |=c {r}!, then w |=c {r}.

Proof. Follows from Lemma 8.7 using Lemma 8.1.

Lemma 8.9. Let w be a finite word over Σ, and let r be an unclocked sere.

1. The following are equivalent:

• w |=− {r}.

• w |=− {r}!.

• For every finite u � w, u |=− {r}!.

2. The following are equivalent:

• w |=+ {r}

• w |=+ {r}!
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• w |= {r}!

Proof.

1. Note that

w |=− {r}
iff w	ω |= {r}
iff [Lemma 8.5; |w	ω| > 0]

for every finite u � w	ω , u	ω |= {r}!
iff for every finite u � w, u	ω |= {r}!
iff for every finite u � w, u |=− {r}!

Then

w |=− {r}
⇒ [since w is finite, let u = w]

w |=− {r}!

and

w |=− {r}!
iff w	ω |= {r}!
iff there exists j ≥ 0 such that (w	ω)0..j |≡ r
⇒ [Lemma 7.4]

there exists j ≥ 0 such that for every finite u � w, (u	ω)0..j |≡ r
⇒ for every finite u � w, u	ω |= {r}!
iff for every finite u � w, u |=− {r}!
⇒ [Lemma 8.5]

w |=− {r}

2. Note that

w |=+ {r}!
iff w⊥ω |= {r}!
iff there exists j ≥ 0 such that (w⊥ω)0..j |≡ r
iff [Lemma 7.2]

there exists 0 ≤ j < |w| such that w0..j |≡ r
iff w |= {r}!

By Lemma 8.7, w |=+ {r}! implies w |=+ {r}.

It now suffices to show that w |=+ {r} implies w |= {r}!. Assume w |=+ {r}.
Then w⊥ω |= {r}. Since |w⊥ω | > 0, Lemma 8.5 implies that for every finite
u � w⊥ω , u	ω |= {r}! Since w is finite, we can take u = w⊥ to get

w⊥	ω |= {r}!

so there exists j ≥ 0 such that

(w⊥	ω)0..j |≡ r

By Lemma 7.2, j < |w|, so w |= {r}!.
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Corollary 8.10. Let w be a non-empty finite word over Σ, and let r be an unclocked
sere. The following are equivalent:

• w |=− {r}.

• w |=− {r}!.

• w |= {r}.

Remark: The hypothesis that w be non-empty cannot be dropped from Corol-
lary 8.10. If |w| = 0, then w |= {r} holds vacuously for any unclocked sere r.
However, if

r = {[*0]} && {true}

then w �|=− {r}!.

Lemma 8.11. Let w be a finite word over Σ, let c be a boolean expression, and let
r be a sere.

1. The following are equivalent:

• w |=c− {r}.

• w |=c− {r}!.

• For every finite u � w, u |=c− {r}!.

2. The following are equivalent:

• w |=c+ {r}

• w |=c+ {r}!

• w |=c {r}!

Proof. Follows from Lemma 8.9 using Lemma 8.1 and Lemma 8.2.

Corollary 8.12. Let w be a non-empty finite word over Σ, let c be a boolean ex-
pression, and let r be a sere. The following are equivalent:

• w |=c− {r}.

• w |=c− {r}!.

• w |=c {r}.
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Remark: The hypothesis that w be non-empty cannot be dropped from Corol-
lary 8.12. If |w| = 0, then w |=c {r} holds vacuously for any sere r. However,
if

r = {[*0]} && {true}

then w �|=c− {r}!.

Lemma 8.13. Let w be a word over Σ, and let r be an unclocked sere.

1. w |= {r}! iff w |=+ {r}!.

2. If w |=− {r}, then w |= {r}. If |w| > 0 and w |= {r}, then w |=− {r}.

Proof. For w infinite, the results are immediate, since w |= f , w |=+ f and
w |=− f are all equivalent. Assume w is finite. Part 1 follows from Lemma 8.9. By
Lemma 8.7, w |= {r} iff

|w| = 0 or for every finite u � w, u |=− {r}! .

By Lemma 8.9, w |=− {r} iff

for every finite u � w, u |=− {r}! .

Hence Part 2.

Lemma 8.14. Let w be a word over Σ, let c be a boolean expression, and let r be
a sere.

1. w |=c {r}! iff w |=c+ {r}!.

2. If w |=c− {r}, then w |=c {r}. If |w| > 0 and w |=c {r}, then w |=c− {r}.

Proof. Follows from Lemma 8.13 using Lemma 8.1 and Lemma 8.2.
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9 Prefix/Extension theorem

This section proves that the Prefix/Extension Theorem of [4] holds for PSL, both
in unclocked and clocked forms.

Theorem 9.1 (Unclocked Prefix/Extension). Let u, v, w denote words over
Σ, and let f be an unclocked PSL formula.

1. v |=− f iff for all u � v, u |=− f .

2. v |=+ f iff for all w  v, w |=+ f .

Proof. Clearly the (⇐) direction holds in both cases. We prove the (⇒) direction
by induction over the structure of f .

• f = b!.

1. v	ω |= b!

iff |v| = 0 or v0 b

⇒ for all u � v, |u| = 0 or u0 b
iff for all u � v, u	ω |= b!

2. v⊥ω |= b!

iff |v| > 0 and v0 b

⇒ for all w  v, |w| > 0 and w0 b
iff for all w  v, w⊥ω |= b!

• f = (g).

1. v	ω |= (g)
iff v	ω |= g
⇒ [induction]

for all u � v, u	ω |= g
iff for all u � v, u	ω |= (g)

2. v⊥ω |= (g)
iff v⊥ω |= g
⇒ [induction]

for all w  v, w⊥ω |= g
iff for all w  v, w⊥ω |= (g)

• f = !g.

1. ¬(for all u � v, u	ω |= !g)
iff there exists u � v such that ¬(u	ω |= !g)
iff there exists u � v such that ū⊥ω |= g
⇒ [induction]

v̄⊥ω |= g
iff ¬(v	ω |= !g)
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2. ¬(for all w  v, w⊥ω |= !g)
iff there exists w  v such that ¬(w⊥ω |= !g)
iff there exists w  v such that w̄	ω |= g
⇒ [induction]

v̄	ω |= g
iff ¬(v⊥ω |= !g)

• f = g && h.

1. v	ω |= g && h
iff v	ω |= g and v	ω |= h
⇒ [induction]

for all u � v, u	ω |= g and u	ω |= h
iff for all u � v, u	ω |= g && h

2. v⊥ω |= g && h
iff v⊥ω |= g and v⊥ω |= h
⇒ [induction]

for all w  v, w⊥ω |= g and w⊥ω |= h
iff for all w  v, w⊥ω |= g && h

• f = {r}!.

1. Assume v	ω |= {r}!. Then there exists k ≥ 0 such that (v	ω)0..k |≡ r. If
u � v, then

(u	ω)0..k = (v0..|u|−1	ω)0..k .

By Lemma 7.4, (u	ω)0..k |≡ r, hence u	ω |= {r}!.

2. Assume v⊥ω |= {r}!. Then there exists k ≥ 0 such that (v⊥ω)0..k |≡ r. By
Lemma 7.2, k < |v|, hence v0..k |≡ r. Therefore, if w  v, then (w⊥ω)0..k =
v0..k |≡ r, hence w⊥ω |= {r}!.

• f = {r}.

1. Assume v	ω |= {r}. Let u � v. If u is infinite, then v must be infinite, in
which case

u	ω = v	ω |= {r}

Otherwise, u is finite. Since |v	ω| > 0, Lemma 8.5 gives u	ω |= {r}!, so by
Lemma 8.9, u	ω |= {r}.

2. Assume v⊥ω |= {r}. Let w  v. If v is infinite, then

w⊥ω = v⊥ω |= {r}

Otherwise, v is finite. By Lemma 8.9, v |= {r}!, so there exists 0 ≤ j < |v|
such that v0..j |≡ r. Since v0..j � w⊥ω, w⊥ω |= {r}!, and so by Lemma 8.7,
w⊥ω |= {r}.

• f = X! g.
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1. v	ω |= X! g
iff (v	ω)1.. |= g
iff v1..	ω |= g
⇒ [induction; if u � v, then u1.. � v1..]

for all u � v, u1..	ω |= g
iff for all u � v, u	ω |= X! g

2. v⊥ω |= X! g
iff (v⊥ω)1.. |= g
iff v1..⊥ω |= g
⇒ [induction; if w  v, then w1..  v1..]

for all w  v, w1..	ω |= g
iff for all w  v, w	ω |= X! g

• f = [g U h].

1. v	ω |= [g U h]
iff there exists k ≥ 0 such that (v	ω)k.. |= h and for all 0 ≤ j < k,

(v	ω)j.. |= g
iff there exists k ≥ 0 such that vk..	ω |= h and for all 0 ≤ j < k, vj..	ω |= g
⇒ [induction; u � v implies ui.. � vi..]

for all u � v, there exists k ≥ 0 such that uk..	ω |= h and for all
0 ≤ j < k, uj..	ω |= g

iff for all u � v, u	ω |= [g U h]

2. v⊥ω |= [g U h]
iff there exists k ≥ 0 such that (v⊥ω)k.. |= h and for all 0 ≤ j < k,

(v⊥ω)j.. |= g
iff there exists k ≥ 0 such that vk..⊥ω |= h and for all 0 ≤ j < k, vj..⊥ω |= g
⇒ [induction; w  v implies wi..  vi..]

for all w  v, there exists k ≥ 0 such that wk..	ω |= h and for all
0 ≤ j < k, wj..	ω |= g

iff for all w  v, w⊥ω |= [g U h]

• f = g abort b.

1. v	ω |= g abort b

iff v	ω |= g or there exists k ≥ 0 such that (v	ω)k b and
(v	ω)0..k−1	ω |= g

iff v	ω |= g or there exists k ≥ 0 such that (v	ω)k b and v0..k−1	ω |= g
⇒ [induction; if u � v, then u0..k−1 � v0..k−1 and either (u	ω)k = (v	ω)k or

(u	ω)k = 	]
for all u � v, u	ω |= g or there exists k ≥ 0 such that (u	ω)k b and
u0..k−1	ω |= g

iff for all u � v, u	ω |= g or there exists k ≥ 0 such that (u	ω)k b and
(u	ω)0..k−1	ω |= g

iff for all u � v, u	ω |= g abort b

2. v⊥ω |= g abort b

iff v⊥ω |= g or there exists k ≥ 0 such that (v⊥ω)k b and
(v⊥ω)0..k−1	ω |= g
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iff v	ω |= g or there exists 0 ≤ k < |v| such that vk b and v0..k−1	ω |= g
⇒ [induction; if w  v, then w0..k−1  v0..k−1 and if 0 ≤ k < |v|, then

wk = vk and w0..k−1 = v0..k−1]
for all w  v, w⊥ω |= g or there exists 0 ≤ k < |v| such that wk b
and w0..k−1	ω |= g

iff for all w  v, w⊥ω |= g or there exists 0 ≤ k < |v| such that (w⊥ω)k b
and (w⊥ω)0..k−1	ω |= g

⇒ for all w  v, w⊥ω |= g or there exists k ≥ 0 such that (w⊥ω)k b and
(w⊥ω)0..k−1	ω |= g

iff for all w  v, w⊥ω |= g abort b

• f = {r} |-> g.

1. First note that for any word w,

w	ω |= {r} |-> g
iff for all j ≥ 0 such that (w̄⊥ω)0..j |≡ r, (w	ω)j.. |= g
iff [Lemma 7.2]

for all 0 ≤ j < |w| such that w̄0..j |≡ r, wj..	ω |= g

Assume v	ω |= {r} |-> g and let u � v. Then for all 0 ≤ j < |v| such that
v̄0..j |≡ r, vj..	ω |= g. It follows that for all 0 ≤ j < |u| such that ū0..j |≡ r,
uj..	ω |= g, and so u	ω |= {r} |-> g.

2. Assume v⊥ω |= {r} |-> g and w  v. Then for all j ≥ 0 such that
(v̄	ω)0..j |≡ r, vj..⊥ω |= g. Suppose j ≥ 0 is such that (w̄	ω)0..j |≡ r. Then
by Lemma 7.4, it follows that (v̄	ω)0..j |≡ r, and so vj..⊥ω |= g. By induction,
wj..⊥ω |= g. This proves that w⊥ω |= {r} |-> g.

Theorem 9.2 (Clocked Prefix/Extension). Let u, v, w denote words over Σ,
let c be a boolean expression, and let f be an unclocked PSL formula.

1. v |=c− f iff for all u � v, u |=c− f .

2. v |=c+ f iff for all w  v, w |=c+ f .

Proof. Follows from Theorem 9.1 using Corollary 5.4.
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10 Boolean formulas

This section discusses the promotion of boolean expressions to formulas and their
relation to sere formulas.

Lemma 10.1. Let w be a word over Σ, and let b be a boolean expression.

1. w |= b! iff w |= {b}! iff w |= !({b} |-> false).

2. w |= b iff w |= {b} iff w |= {!b} |-> false.

Proof.

1. By Lemma 8.3, w |= {b}! iff w |= !({b} |-> false).

w |= {b}!
iff there exists 0 ≤ j < |w| such that w0..j |≡ b
iff [w0..j |≡ b only if j = 0]

|w| > 0 and w0..0 |≡ b

iff |w| > 0 and w0 b
iff w |= b!

2. w |= {!b} |-> false
iff w̄ �|= !({!b} |-> false)
iff [part 1]

w̄ �|= {!b}!

iff ¬(|w̄| > 0 and w̄0 !b)
iff |w| = 0 or w̄0 / !b
iff [Lemma 3.5]

|w| = 0 or w0 b
iff w |= b

w |= {b}
iff for all 0 ≤ j < |w|, w0..j	ω |= {b}!
iff for all 0 ≤ j < |w|, there exists 0 ≤ k such that (w0..j	ω)0..k |≡ b
iff [(w0..j	ω)0..k |≡ b only if k = 0]

for all 0 ≤ j < |w|, (w0..j	ω)0..0 |≡ b
iff |w| = 0 or w0..0 |≡ b

iff |w| = 0 or (|w| > 0 and w0 b)
iff |w| = 0 or w0 b
iff w |= b

Lemma 10.2. Let w be a word over Σ, and let b, c be boolean expressions. Then

1. w |=c b! iff w |=c {b}! iff w |=c !({b} |-> false).

2. w |=c b iff w |=c {b} iff w |=c {!b} |-> false.
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Proof. By Lemma 8.3, w |=c {b}! iff w |=c !({b} |-> false).

w |=c {b}!
iff there exists 0 ≤ j < |w| such that w0..j |≡c

b

iff there exists 0 ≤ j < |w| such that w0..j is a clock tick of c and wj b
iff w |=c b!

This proves 1.

w |=c {!b} |-> false
iff w̄ �|=c !({!b} |-> false)
iff [part 1, Notation 3.6]

w̄ �|=c s(!b)
iff ¬(there exists 0 ≤ j < |w| such that w̄0..j is a clock tick of c and w̄j !b)
iff for all 0 ≤ j < |w| such that w̄0..j is a clock tick of c, w̄j / !b
iff [Lemma 3.5]

for all 0 ≤ j < |w| such that w̄0..j is a clock tick of c, wj b
iff w |=c b

Also

w |=c {b}
iff for all 0 ≤ j < |w|, w0..j	ω |=c {b}!
iff for all 0 ≤ j < |w|, there exists 0 ≤ k such that (w0..j	ω)0..k |≡c

b
iff

(A):
for all 0 ≤ j < |w|, there exists 0 ≤ k such that (w0..j	ω)0..k is a clock tick
of c and (w0..j	ω)k b

and

w |=c b
iff

(B):
for all 0 ≤ j < |w| such that w̄0..j is a clock tick of c, wj b

Assume (A). Let 0 ≤ j < |w| be such that w̄0..j is a clock tick of c. By (A),
there exists 0 ≤ k such that (w0..j	ω)0..k is a clock tick of c and (w0..j	ω)k b.
In order to prove (B), it suffices to show that k = j, since then it follows that
wj = (w0..j	ω)k b. Suppose that k < j. Then (w0..j	ω)0..k = w0..k is a clock
tick of c, and so wk c. Since w̄0..j is a clock tick of c, w̄k !c, so by Lemma 3.5,
wk / c, a contradiction. Suppose that k > j. Then (w0..j	ω)0..k = w0..j	k−j is a
clock tick of c. Therefore, wj !c. Since w̄0..j is a clock tick of c, w̄j c, so by
Lemma 3.5, wj / !c, a contradiction.

Now assume (B). Let

I = {0 ≤ i < |w| : wi �∈ 2P or wi c} .

Suppose I is empty. Then, for all 0 ≤ i < |w|, wi ∈ 2P and wi !c. Let
0 ≤ j < |w|. Then w0..j	 is a clock tick of c and (w0..j	)j+1 = 	 b. This
proves (A) when I is empty. Suppose now that I is non-empty. Let m = min I.
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Then m < |w| and for all 0 ≤ i < m, wi ∈ 2P and wi !c. The following are the
possible cases for wm:

• wm = ⊥. Then w̄0..m is a clock tick of c, so by (B) wm b, a contradiction.

• wm = 	. Then w0..m is a clock tick of c and wm b.

• wm ∈ 2P and wm c. Then w0..m is a clock tick of c and w̄0..m = w0..m. By
(B), wm b.

Therefore, w0..m is a clock tick of c and wm b. Let 0 ≤ j < |w|. If j ≥ m, then
(w0..j	ω)0..m = w0..m. If j < m, then (w0..j	ω)0..j+1 = w0..j	, which is a clock
tick of c, and (w0..j	ω)j+1 = 	 b. This proves (A) when I is non-empty and
completes the proof of 2.

Lemma 10.3. Let b, c be boolean expressions, and let w be a non-empty word over
Σ such that w̄0 c. Then w |=c b iff w |=c b!.

Proof. Assume that w |=c b. Since w̄0 c, w̄0..0 is a clock tick of c, hence w0 b.
Then w̄0 �= ⊥ and w0 �= ⊥, hence w0 ∈ 2P. Therefore, w0..0 is a clock tick of c, and
so w |=c b!.

Assume now that w |=c b!. Then there exists 0 ≤ j < |w| such that w0..j is a clock
tick of c and wj b. Since w̄0 c, Lemma 3.5 gives w0 / !c. Therefore, j = 0
and so w0 c and w0 b. Let 0 ≤ i < |w| be such that w̄0..i is a clock tick of c.
Suppose that 0 < i. Then w̄0 !c, so, by Lemma 3.5, w0 / c, a contradiction.
Therefore i = 0. Since w0 b, this proves that w |=c b.

Lemma 10.4. Let b, c be boolean expressions, and let w be a non-empty word over
Σ.

1. If w0 = 	, then w |=c b and w |=c b!.

2. If w0 = ⊥, then w �|=c b and w �|=c b!.

3. If w0 ∈ 2P and w0 c, then w |=c b iff w |=c b! iff w0 b.

Proof. Assume w0 = 	. Then w0..0 is a clock tick of c and w0 b, so w |=c b!.
Also, w̄0 = ⊥, so there does not exist 0 ≤ i < |w| such that w̄0..i is a clock tick of
c. Therefore, w |=c b holds vacuously. This proves 1.

Assume now that w0 = ⊥. Then there does not exist 0 ≤ i < |w| such that w0..i

is a clock tick of c, so w �|=c b!. Also, w̄0 = 	, so w̄0..0 is a clock tick of c. Since
w0 / b, w �|=c b. This proves 2.

Assume now that w0 ∈ 2P and w0 c. Then w0 = w̄0, so by Lemma 10.3, w |=c b
iff w |=c b!.
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w |=c b!

iff there exists 0 ≤ i < |w| such that w0..i is a clock tick of c and wi b

iff [since w0 ∈ 2P and w0 c, w0..0 is a clock tick of c and w0..i is not a
clock tick of c if i > 0]
w0 b

This proves 3.
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11 Semantics of formulas over proper words

This brief section shows that inductive definitions of the unclocked and clocked
PSL formula satisfaction relations can be given for the set of proper words over Σ
without relying on the definitions of formula satisfaction for non-proper words over
Σ. Only minor changes to the definitions of unclocked and clocked satisfaction of
a weak sere formula are needed.
First note that if w is a proper word, then so are w̄ and wk.. for any k. Also, if v

is a word over 2P, then vw is a proper word. Therefore, from Appendix B of [1], the
only inductive references to formula satisfaction that require further scrutiny are
in the definitions for the weak sere form “{r}” and the abort form “f abort b”.
For each of these forms, the definition of satisfaction by a proper word w involves
an inductive reference to satisfaction by words of the form u	ω, where u is a finite
prefix of w.
In the abort form, u = w0..j−1 and the inductive reference to w0..j−1	ω is guarded

by wj b. Therefore wj cannot be ⊥, hence none of the letters of w0..j−1 can be
⊥, and so w0..j−1	ω is proper.
In the weak sere form, u = w0..j and the inductive reference is to w0..j	ω |= {r}!

in the unclocked case. In other words, the inductive reference requires that some
non-empty prefix of w0..j	ω tightly satisfy r. By Lemma 7.2, no word that tightly
satisfies an unclocked sere can have ⊥ as a letter. If some letter of w0..j is ⊥, then
any non-empty prefix of w0..j	ω that tightly satisfies r must be a prefix of w0..j ,
hence also of w0..j⊥ω. Therefore, the definition of unclocked satisfaction of a weak
sere formula can be changed to

w |= {r}
iff for all 0 ≤ j < |w|, either

1. some letter of w0..j is ⊥ and w0..j⊥ω |= {r}!
or
2. no letter of w0..j is ⊥ and w0..j	ω |= {r}!

Since w is proper, if some letter of w0..j is ⊥, then w0..j⊥ω is proper, and if no
letter of w0..j is ⊥, then w0..j	ω is proper.
Similar reasoning applies in the clocked case. The definition of clocked satisfaction

of a weak sere formula can be changed to

w |=c {r}
iff for all 0 ≤ j < |w|, either

1. some letter of w0..j is ⊥ and w0..j⊥ω |=c {r}!
or
2. no letter of w0..j is ⊥ and w0..j	ω |=c {r}!
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12 Miscellaneous lemmas on formulas

This section presents some miscellaneous lemmas on formulas, primarily from the
work on mapping from SVA 3.1 to PSL 1.1.

Lemma 12.1. Let f be a PSL formula, let c be a boolean expression, and let w be
a proper word over Σ. Then the following are equivalent:

1. w |=true (always f) @c

2. for all 0 ≤ i < |w| such that w̄i c, wi.. |=c f

Proof.

w |=true (always f) @c
iff w |=c always f
iff [Lemma 4.7]

for all 0 ≤ k < |w| such that w̄k c, wk.. |=c f

Lemma 12.2. Let f be a PSL formula, let b and c be boolean expressions, and let
w be a word over Σ. Then the following are equivalent:

1. w |=c (b! @true) -> f

2. if |w| > 0 and w̄0 b, then w |=c f

If |w| > 0 and w̄0 c, then 1 and 2 are equivalent to

3. w |=c b! -> f

4. w |=c b -> f

Proof.

w |=c (b! @true) -> f
iff w |=c !((b! @true) && !f)
iff w̄ �|=c (b! @true) && !f
iff w̄ �|=c b! @true or w̄ �|=c !f
iff w̄ �|=true b! or w |=c f
iff if w̄ |=true b!, then w |=c f
iff

(A):
if there exists 0 ≤ j < |w| such that w̄0..j is a clock tick of true and
w̄j b, then w |=c f

[(A) implies 2]: Assume (A). Assume |w| > 0 and w̄0 b. Then w̄0..0 is a clock
tick of true, so the precondition of (A) is satisfied with j = 0. Therefore w |=c f .
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[2 implies (A)]. Assume 2. Assume that there exists 0 ≤ j < |w| such that w̄0..j

is a clock tick of true and w̄j b. Then |w| > 0. If j = 0, then w̄0 b. If
j > 0, then by Lemma 6.1, w̄0 = 	, hence w̄0 b. Therefore the precondition
of 2 is satisfied, and so w |=c f .

This proves that 1 and 2 are equivalent. Suppose now that |w| > 0 and w̄0 c.

w |=c b -> f
iff w |=c !((b!) && !f)
iff w̄ �|=c (b!) && !f
iff w̄ �|=c b! or w̄ �|=c !f
iff w̄ �|=c b! or w |=c f
iff if w̄ |=c b!, then w |=c f
iff

(B):
if (there exists 0 ≤ j < |w| such that w̄0..j is a clock tick of c and w̄j b),
then w |=c f

[(B) implies 2]: Assume (B). Assume |w| > 0 and w̄0 b. Since w̄0 c, w̄0..0

is a clock tick of c, so by (B), w |=c f .

[2 implies (B)]. Assume 2. Suppose that 0 ≤ j < |w| is such that w̄0..j is a clock
tick of c and w̄j b. Then |w| > 0. If j = 0, then w̄0 b. If j > 0, then
w̄0 !c. Since w̄0 c, w̄0 = 	, and so w̄0 b. Therefore the precondition of
2 is satisfied, and so w |=c f .

This proves that 2 and 3 are equivalent if |w| > 0 and w̄0 c.

w |=c b -> f
iff w |=c !(b && !f)
iff w̄ �|=c b && !f
iff w̄ �|=c b or w̄ �|=c !f
iff w̄ �|=c b or w |=c f

iff [Lemma 10.4, using |w| > 0 and w̄0 c]
w̄ �|=c b! or w |=c f

iff [proof of equivalence of 2 and 3]
(B)

Since (B) was shown equivalent to 2 when |w| > 0 and w̄0 c, this proves that 2
and 4 are equivalent when |w| > 0 and w̄0 c.

Lemma 12.3. Let f be a PSL formula, let b and c be boolean expressions, and let
w be a proper word over Σ. Then the following are equivalent:

1. for all 0 ≤ j < |w| such that w̄j c and w̄j b, wj.. |=c f

2. w |=true (always (b! -> f)) @c

50



3. w |=true (always (b -> f)) @c

Proof.

w |=true (always (b! -> f)) @c
iff [Lemma 12.1]

for all 0 ≤ j < |w| such that w̄j c, wj.. |=c b! -> f
iff [Lemma 12.2]

for all 0 ≤ j < |w| such that w̄j c, if w̄j b, then wj.. |=c f

iff for all 0 ≤ j < |w| such that w̄j c and w̄j b, wj.. |=c f

This proves the equivalence of 1 and 2. A similar argument proves the equivalence
of 1 and 3.
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A Appendix

For reference, the definitions from Appendix B of [1] of tight satisfaction of seres
and of satisfaction of PSL formulas are copied here. The notations are adapted to
the conventions of this report.

A.1 Semantics of unclocked seres

Let w, v1, v2 be finite words over Σ, let � be a letter in Σ, let b be a boolean
expression, and let r, r1, r2 be unclocked seres.

• w |≡ {r} iff w |≡ r

• w |≡ b iff |w| = 1 and w0 b

• w |≡ r1 ; r2 iff there exist v1, v2 such that w = v1v2, v1 |≡ r1, and v2 |≡ r2

• w |≡ {r1} : {r2} iff there exist v1, v2, � such that w = v1�v2, v1� |≡ r1, and
�v2 |≡ r2

• w |≡ {r1} || {r2} iff w |≡ r1 or w |≡ r2

• w |≡ {r1} && {r2} iff w |≡ r1 and w |≡ r2

• w |≡ [*0] iff |w| = 0

• w |≡ r[*] iff either w |≡ [*0] or there exist v1, v2 such that |v1| > 0, w = v1v2,
v1 |≡ r, and v2 |≡ r[*]

A.2 Semantics of unclocked formulas

Let w be a word over Σ, let b be a boolean expression, let r be an unclocked sere,
and let f, g be unclocked PSL formulas.

• w |= (f) iff w |= f

• w |= !f iff w̄ �|= f

• w |= f && g iff w |= f and w |= g

• w |= b! iff |w| > 0 and w0 b

• w |= b iff |w| = 0 or w0 b

• w |= {r}! iff there exists 0 ≤ j < |w| such that w0..j |≡ r

• w |= {r} iff for all 0 ≤ j < |w|, w0..j	ω |= {r}!

• w |= X! f iff |w| > 1 and w1.. |= f

• w |= [f U g] iff there exists 0 ≤ k < |w| such that wk.. |= g and for all 0 ≤ j < k,
wj.. |= f

• w |= f abort b iff either w |= f or there exists 0 ≤ j < |w| such that wj b and
w0..j−1	ω |= f

• w |= {r} |-> f iff for all 0 ≤ j < |w| such that w̄0..j |≡ r, wj.. |= f
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A.3 Semantics of clocked seres

Let w, v1, v2 be finite words over Σ, let � be a letter in Σ, let b, c, d be boolean
expressions, and let r, r1, r2 be seres. w is a clock tick of c iff |w| > 0, w|w|−1 c,
and for all 0 ≤ j < |w| − 1, wj !c.

• w |≡c {r} iff w |≡c
r

• w |≡c
b iff w is a clock tick of c and w|w|−1 b

• w |≡c r1 ; r2 iff there exist v1, v2 such that w = v1v2, v1 |≡c r1, and v2 |≡c r2

• w |≡c {r1} : {r2} iff there exist v1, v2, � such that w = v1�v2, v1� |≡c r1, and
�v2 |≡c

r2

• w |≡c {r1} || {r2} iff w |≡c
r1 or w |≡c

r2

• w |≡c {r1} && {r2} iff w |≡c r1 and w |≡c r2

• w |≡c [*0] iff |w| = 0

• w |≡c
r[*] iff either w |≡c [*0] or there exist v1, v2 such that |v1| > 0, w = v1v2,

v1 |≡c r, and v2 |≡c r[*]

• w |≡c
r @d iff w |≡d

r

A.4 Semantics of clocked formulas

Let w be a word over Σ, let b, c, d be boolean expressions, let r be a sere, and let
f, g be PSL formulas.

• w |=c (f) iff w |=c f

• w |=c !f iff w̄ �|=c f

• w |=c f && g iff w |=c f and w |=c g

• w |=c b! iff there exists 0 ≤ j < |w| such that w0..j is a clock tick of c and wj b

• w |=c b iff for all 0 ≤ j < |w| such that w̄0..j is a clock tick of c, wj b

• w |=c {r}! iff there exists 0 ≤ j < |w| such that w0..j |≡c
r

• w |=c {r} iff for all 0 ≤ j < |w|, w0..j	ω |=c {r}!

• w |=c X! f iff there exist 0 ≤ j < k < |w| such that w0..j and wj+1..k are clock
ticks of c and wk.. |=c f

• w |=c [f U g] iff there exists 0 ≤ k < |w| such that wk c, wk.. |=c g, and for
all 0 ≤ j < k such that w̄j c, wj.. |=c f

• w |=c f abort b iff either w |=c f or there exists 0 ≤ j < |w| such that wj b
and w0..j−1	ω |=c f

• w |=c {r} |-> f iff for all 0 ≤ j < |w| such that w̄0..j |≡c
r, wj.. |=c f

• w |=c f @d iff w |≡d f
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