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Abstract
The problem of multiclass-to-binary reductions in the context of classification with kernel ma-

chines continues to attract considerable attention. Indeed, the current understanding of this prob-
lem is rather limited. Despite the multitude of proposed solutions no single method is known to be
consistently superior to others. We developed a new multi-class classification method that reduces
the multi-class problem to a single binary classifier (SBC). Our method constructs the binary prob-
lem by embedding smaller binary problems into a single space. We show that the construction of a
good embedding, which allows for large margin classification, can be reduced to the task of learn-
ing linear combinations of kernels. We observe that a known margin generalization error-bound for
standard binary classification applies to our construction. Our empirical examination of the new
method indicates that it can outperform one-vs-all, all-pairs and the error-correcting output coding
scheme.
Keywords: multiclass classification, support vector machines, multiple kernel learning

1. Introduction

The widespread practice of employing support vector machines (SVMs) in applications provides a
major incentive for the ongoing study of themulticlass-to-binary reductionproblem to enable the
use of binary classifiers for multiclass problems. However, despite numerous ideas on how SVMs
can be applied to multi-class classification, the understanding of multi-class reductions appears to
be somewhat limited, both theoretically and empirically. The confusion surrounding this problem
has only increased with the availability of increasingly clever and sophisticated solutions, whose
authors indicate that there is much to gain by using their approaches, but often without providing
sufficient comparisons to other available methods.

Currently, the simplest multiclass-to-binary reduction method is the ‘one-vs-all’, referred to
in this paper as OVA.1. Two other well-known reductions are the ‘all-pairs’ approach, based on
Friedman (1996) (a.k.a. ‘one-vs.-one’) and the ‘error-correcting output coding’ (ECOC) frame-
work pioneered by Sejnowski and Rosenberg (1987) and Dietterich and Bakiri (1995). One of the

1. OVA is also often called ‘one-vs-rest’.
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first comprehensive comparisons of multi-class reduction methods was performed by Hsu and Lin
(2002). They claimed that the all-pairs approach is superior to other methods. Rifkin and Klau-
tau’s prominent paper (Rifkin and Klautau, 2004) later presented an in-depth critical assessment of
many previous multi-class papers (including the Hsu and Lin paper). The authors stated that OVA
is not inferior to all-pairs and ECOC, provided that adequate efforts are devoted to hyper-parameter
tuning. Despite the compelling arguments made in the Rifkin and Klautau paper for OVA, there
remains an ongoing debate on the relative effectiveness of these three methods.

A lesser-known approach for solving multi-class problems via binary classification is theSingle
Binary Classifierreduction (henceforth, SBC). From our point of view, any multi-class method
that relies on a single, standard binary (soft) classifier is an SBC method. SBC reductions can be
obtained by embedding the original problem in a higher-dimensional space consisting of the original
features, as well as several other dimensions determined by fixed vectors, termed hereextension
features. This embedding is implemented by replicating the training set points so that each original
point is concatenated with each of the extension features’ vectors. Thebinary labels of the replicated
points are set to maintain a particular structure in the extended space. This construction results in
an instance of an artificial binary problem, which is fed to a binary learning algorithm that outputs
a single soft binary classifier. To classify a new point, the point is replicated and extended similarly
and the resulting replicas are fed to the soft binary classifier that generates a number ofsignals, one
for each replica. The class is determined as a function of these signals.

The idea of SBC reductions through dimensionality expansion and replication has existed in
several rudimentary forms for quite some time. As far as we know, the first documented SBC
reduction is theKesler Construction(see Duda and Hart, 1973, Sec. 5.12.1). A different type of
SBC reduction is thesingle callmethod, presented by Allwein et al. (2000), where the embedding
is determined via an error correcting matrix as in ECOC. Anguita et al. (2004) reviewed a recent
SBC reduction based on orthogonal feature extensions, and concluded that its SBC method is not
inferior to OVA and all-pairs.

In this paper, we propose a new type of kernel SBC (henceforth SBC-KERNEL), where instead
of using explicit extensions in feature space, we utilize implicit kernel transformations in Hilbert
space. A different transformation is used for each class and these transformations are constructed to
increase the margin of the resulting binary problem where the entire multi-class problem is embed-
ded. This SBC-KERNEL method is posed and derived as a kernel optimization problem using the
SVM objective function.

We present a comparative study of the proposed SBC-KERNEL method, OVA, all-pairs, and
ECOC, as well as three previous SBC methods. These results demonstrate impressive performance
of SBC-KERNEL relative to the other algorithms, whose results are gained at a higher computational
cost. Additionally, we observe that the recent risk bound for kernel machines with learned kernels
(Srebro and Ben-David, 2006) can be extended to our setting, showing that SBC-KERNEL indeed
generalizes well in cases where both the number of classes and the empirical margin error are small.

2. On Some Known Multi-Class to Binary Reductions

Let S = {(xi, yi)}mi=1 be a training set ofm examples, wherexi are points in somed-dimensional
spaceX and eachyi is a label inY = {1, . . . , c}. A multi-class classifierh is any functionh : X →
Y. Our goal in multi-class classification is to generate a good multi-class classifier, based on the
training set. We measure performance via the standard 0/1-loss function and are interested in a low
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average error over out-of-sample examples. We are concerned withmulticlass-to-binary reductions,
which are methods that solve multi-class classification through the use of binary classifiers such as
SVMs. The following sections describe several such reductions.

2.1 One-Vs-All

The OVA is one of the simplest methods for multi-class to binary reduction. It uses the original data
relabeled in a binary form to trainc soft classifiers. Each classifier is trained to distinguish one of
the classes from the rest. The multi-class label of a new data point is predicted by first having each
of the binary classifiers classify the point. The index of the classifier with the maximal response is
chosen as the predicted label. It is hard to trace the exact origin of OVA, but early references date
back to Duda and Hart (1973).

2.2 All-Pairs

In this method (Friedman, 1996), we train one binary classifier for each pair of classes. To classify
a new instance, we run a majority vote among all binary classifiers. The advantage of the all-pairs
method is that it generates the easiest and most natural binary problems of all known methods. How-
ever, a weakness of this method is that there are often irrelevant binary classifiers that participate in
the votes.

2.3 Error-Correcting Output Coding

In the error-correcting output coding (ECOC) framework, each of thec given classes is assigned
a unique binary vector (called acodeword) over{±1} of length`. This collection ofc codewords
forms ac× ` coding matrixM , whosè columns definè binary partitions of thec classes. Given a
training setS = {(xi, yi)}, ` binary classifiers are trained. Thejth classifierfj is assigned a unique
binary partition defined by thejth column ofM and is trained using a training set{(xi,M(i, j))}.
After the learning process is complete, whenever an unseen pointx is given, it is classified by all
binary classifiers. This results in a vectorf(x) = (f1(x), . . . , f`(x)) with fj(x) being the (binary)
response of thejth classifier. The pointx is assigned to the class whose matrix row is “closest”
to f(x). This class assignment mechanism is calleddecoding. The basic ECOC scheme uses a
Hamming-based decoding, where the distance betweenf(x) and the rows ofM is computed using
the Hamming distance. The ECOC technique was pioneered by Sejnowski and Rosenberg (1987)
and Dietterich and Bakiri (1995) and was further developed by Allwein et al. (2000).

2.4 Single Binary Classifier (SBC) Reductions

A large family of SBC reductions can be described as follows: LetM be ac × ` matrix of feature
extensions; theith row ofM is denoted byMi. In the preprocessing stage, we constructc different
copies of each training examplexi, where therth copy of xi is zi,r = xi ◦ Mr, which is the
extension of the row vectorxi with the row vectorMr. The resulting set of new instances{zi,r},
i = 1, . . . ,m, r = 1, . . . , c, are assigned binary labels as follows: for eachi andr, the instance
zi,r is labeled byyi,r = +1 iff yi = r (i.e., the original labelyi of xi is r). Otherwise,zi,r is
labeled byyi,r = −1. The resulting binary-labeled setS′ = {(zi,r, yi,r)} is of sizecm and each
instance (excluding the label) hasd+` dimensions. In the second stage of binary learning, we apply
a standard learning algorithm (e.g., SVM) on the training setS′ and the outcome is a soft binary
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classifierh2. To determine a label (inY) of a new instancex, we generatec copies ofx, where the
rth copy iszr = x ◦Mr. The label we predict isargmaxr h2(zr).

A special case of this construction is the SBC reduction proposed in Anguita et al. (2004), where
the matrixM is taken to be thec× c identity matrix. We refer to this reduction as SBC-IDENTITY.
Another special case is the SBC-SINGLE method, obtained by taking the column(1, 2, . . . , c)T

as the feature extensions matrix. In other words, a single feature is concatenated to the data such
that therth “replication” of xi, is zi,r = xi ◦ r. Binary labels are assigned to this data exactly as
described above.

For example, suppose thatY = {1, 2, 3} and the training set consists of the following three
labeled examples:{(x1, 1), (x2, 2), (x3, 3), (x4, 2)}. Then, in the case of SBC-IDENTITY, the
feature extension matrix is

M =

 1 0 0
0 1 0
0 0 1

 ,

the resulting labeled training set for the binary SBC-IDENTITY problem is

z1,1 = x1 ◦ (1, 0, 0) y1,1 = +1
z1,2 = x1 ◦ (0, 1, 0) y1,2 = −1
z1,3 = x1 ◦ (0, 0, 1) y1,3 = −1
z2,1 = x2 ◦ (1, 0, 0) y2,1 = −1
z2,2 = x2 ◦ (0, 1, 0) y2,2 = +1
z2,3 = x2 ◦ (0, 0, 1) y2,3 = −1
z3,1 = x3 ◦ (1, 0, 0) y3,1 = −1
z3,2 = x3 ◦ (0, 1, 0) y3,2 = −1
z3,3 = x3 ◦ (0, 0, 1) y3,3 = +1
z4,1 = x4 ◦ (1, 0, 0) y3,1 = −1
z4,2 = x4 ◦ (0, 1, 0) y3,2 = +1
z4,3 = x4 ◦ (0, 0, 1) y3,3 = −1

SBC-SINGLE is also a special case of the general ‘single-call’ SBC reduction of Allwein et al.
(2000). Here, given ac× ` (ECOC) coding matrixM , each training example(xi, yi) is replicated̀
times to creatè new training examples of the form((xi, s),M(yi, s)), whereM(yi, s) is a binary
label. Using this training set, one induces a binary classifier denoted byh2. For classifying a
new pointx, we similarly replicate it̀ times, zi = x ◦ i, i = 1, . . . , `, and applyh2 on each
of the` instances. As in ECOC, the resulting vector of (soft) classifications(h2(z1), . . . , h2(z`)) is
matched to the closest codeword (row) inM to determine the label. The matching can be done using
a Euclidian norm (ifh2 is a soft classifier) or a Hamming distance (ifh2 is a hard classifier). We
term this SBC reduction SBC-ECOC. Notice that SBC-SINGLE is a special case of SBC-ECOC
applied with a matrixM that is thec × c identity matrix. The SBC-ECOC construction adds a
single attribute to each example and replicates it` times. This is in contrast to the family of SBC
reductions we describe above, which also use a (feature extension) matrix, extend each example by
` additional binary features, and replicate each examplec times.

2.5 Single-Machine SVM Constructions

Unlike the SBC approach,single-machineconstructions typically modify the standard SVM op-
timization problem to includec separate soft classifiers simultaneously, one for each class. Each
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example is labeled according to the classifier giving maximal soft classification. See Section 3.1
in (Rifkin and Klautau, 2004) for a detailed survey of early approaches to single-machine SVM
construction.

We note here that recent approaches to learning with structured outputs (e.g., see Tsochantaridis
et al. (2005)) and an exponential family formalism of Canu and Smola (2006) also fall into the
category of single machine SVM constructions. While these papers do not include any in-depth
treatment of the multi-class to binary problem, the instantiations of their approaches have some
similarities to our developments. We discuss this issue further in Section 3 (Remarks 1 and 2).

3. Learning SBC Kernel Reductions

Instead of using explicit feature extensions in SBC reductions, as described in Section 2, we propose
a general approach that utilizes arbitrary class mappings instead of feature extensions. Similar to
’standard’ SBC reductions, each training examplexi is replicatedc times and therth copy ofxi

is zi,r = φr(xi), whereφr(·) is an arbitrary transformation corresponding to therth class. The
resulting set of new instances{zi,r}, i = 1, . . . ,m, r = 1, . . . , c, are assigned binary labels as in
standard SBC reductions (see Section 2.4) and a binary soft classifierh2(·) is trained. To predict the
label (inY) of a new instancex, we generatec copies ofx, where therth copy iszr = φr(x). The
label we predict isargmaxr h2(zr).

In general, the transformations{φr}cr=1 can have any form. High quality transformations should
generate an easy-to-learn binary problem such that the resulting binary classifierh2 allows for accu-
rate multi-class predictions. Relying on kernel methods, we can considerimplicit transformations
given in terms of inner productsφr(xi) · φs(xj), between the transformed instances. These inner
products can be specified as entries of an appropriate kernel matrix of sizecm× cm.

Our realization of this scheme is derived as follows: LetM be ac× ` feature extension matrix
as described in Section 2 and denote itsrth row byMr. Let {zi,r} be the replicated (and feature

extended) training set. Using an RBF kernel,KRBF (a, b) = exp
(
−‖a−b‖22

2σ2

)
, we have

KRBF (zi,r, zj,s) = KRBF (xi, xj) · exp
(
−‖Mr −Ms‖22

2σ2

)
. (1)

The resulting dual formulation of the (standard) SVM optimization problem is as follows:

max
α∈Rcm

2αTe−αT G(K)α (2)

such that αTy = 0 (3)

0 ≤ α ≤ C

m
. (4)

whereG(K) is acm×cm matrix whose((i−1)·c+r, (j−1)·c+s)th entry isyi,ryj,sKRBF (zi,r, zj,s).
We thus have a largercm×cm kernel matrixK = K(M) whose(u, v) entry, whereu = (i−1)·c+r
andv = (j − 1) · c + s, is KRBF (zi,r, zj,s).

The binary classifierh2(·), resulting from the optimization program (2)-(4) has the following
form. For any examplex the soft classification of itsrth copyzr is

h2(zr)
M=

m∑
j=1

c∑
s=1

yj,sα(j−1)·c+sKRBF (zj,s, zr) + b. (5)

5
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The value of the parameterb is determined using some standard technique from SVM (see Vapnik
(1998)).2

The matrixK(M) can be represented as a Kronecker product of two smaller matrices. For any
matricesA andB of sizesm× n andp× q, respectively, theirKronecker product, denotedA⊗B,
is the followingmp× nq matrix (Eves, 1980):

A⊗B M=


a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . . . . . . . .

am1B am2B . . . amnB

 . (6)

For matricesA, B, C and a scalark, we use the following elementary properties of the Kronecker
product:

A⊗B + A⊗C = A⊗ (B + C) , (7)

k(A⊗B) = A⊗ (kB) . (8)

LetKx be anm×m kernel matrix whose(i, j) entry isKRBF (xi, xj). LetKM be ac×c kernel
matrix whose(r, s) entry isKRBF (Mr,Ms). From the definition ofK(M) and the definition of
the Kronecker product it follows that

K(M) = Kx ⊗KM . (9)

Our strategy is to take a numbern of fixed feature extension matricesM (1), . . . ,M (n) and to
search for the best linear combinationKµ =

∑n
i=1 µiK(M (i)) that optimizes the SVM objective

function. By applying (9) and using properties (7) and (8) of the Kronecker product, we obtain

Kµ =
n∑

i=1

µiK(M (i)) = Kx ⊗

(
n∑

i=1

µiKM(i)

)
M= Kx ⊗KMµ , (10)

whereKMµ

M=
∑n

i=1 µiKM(i) is anc×c kernel matrix implicitly representing the feature extension
matrix that optimizes the SVM objective function. By substituting the value of kernel, defined by
(10), to (5) we obtain that the binary classifierh2(·) has the following form. For any examplex the
soft classification of itsrth copyzr is

h2(zr)
M=

m∑
j=1

c∑
s=1

yj,sα(j−1)·c+s

n∑
i=1

µiKRBF (xj , x) exp

(
−‖M (i)

r −M
(i)
s ‖22

2σ2

)
+ b. (11)

Clearly, different sets of matrices{M (i)}ni=1 may lead to different realizations. In Section 5,
we focus on a particular choice of such matrices that conceptually corresponds to embedding allc
one-vs-all binary problems in a single space. The optimization problem we thus face is related to
extensive literature on learning the kernel matrix and in particular, to learning linear combinations of
matrices. Our derivation of this optimization problem, shown below, is similar to the one presented
in Bousquet and Herrmann (2003).

2. One example of settingb is as follows. LetB = {(i, r) | α(i−1)·c+r > 0}. Let bi,r
M
= yi,r −∑m

j=1

∑c
s=1 yj,sα(j−1)·c+sKRBF (zi,r, zj,s) if (i, r) ∈ B and zero otherwise. The value ofb is set to∑m

i=1

∑c
r=1 bi,r/|B|.
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Remark 1 Tsochantaridis et al (Tsochantaridis et al., 2005, see Equation (7) and Propositions 4
and 5) proposed a kernel-based optimization program for multi-class SVM that is similar to the one
we introduce in (2)-(4). LetG′(K) be acm× cm matrix whose((i− 1) · c+ r, (j− 1) · c+ s) entry
is

KRBF (zi,r∗(i), zj,s∗(j))−KRBF (zi,r∗(i), zj,s)−KRBF (zi,r, zj,s∗(j)) + KRBF (zi,r, zj,s) , (12)

wherer∗(i) (respectively,s∗(j)) is the value ofr (respectively,s) such thatyi,r = +1 (yj,s = +1).
Tsochantaridis et al. (2005) introduced a combined feature representationΨ(x, y) of inputsx and
outputsy. In an instantiation ofΨ(x, y), defined using a matrixM of feature extensions (see
Section 2.4), the optimization problem proposed by Tsochantaridis et al. (2005) becomes

max
α∈Rcm

2αTe−αT G′(K)α (13)

such that 0 ≤ α (14)∑
(i,r) such that r 6=r∗(i) α(i−1)·c+r ≤ C

m . (15)

While the optimization problem (13)-(15) can be considered as a realization of our method, the pro-
gram (2)-(4) that we utilize (corresponding to standard SVM) is more standard and better explored.
In particular, there is a large variety of both exact and approximate algorithmic solutions for the
optimization problem (2)-(4).

Remark 2 The (SVM) single machine construction proposed by Canu and Smola (2006) can also
be applied with the kernel (1). In particular, the resulting optimization program is

min
α∈Rm

αT K̂α +
m∑

i=1

max (0, 1− `(xi)) , (16)

where

`(xi)
M= min

r:r 6=r∗(i)

 m∑
j=1

αi

(
KRBF (zi,r∗(i), zj,s∗(j))−KRBF (zi,r, zj,s∗(j))

)
andK̂ is anm ×m matrix whose(i, j)th entry equalsKRBF (zi,r∗(i), zj,s∗(j)). This optimization
problem (16) can be viewed as a multi-class extension of the Primal SVM formulation by Chapelle
(2006).

3.1 Learning Linear Combinations of Basis Kernels

As mentioned in the previous section, our goal is to take a numbern of fixed feature extension
matricesM (1), . . . ,M (n) and then search for the best linear combinationKµ =

∑n
i=1 µiK(Mi)

that optimizes the SVM objective function. This approach is motivated by the following analysis.
Let G(K) be anm×m matrix whose(i, j)th entry isyiyjk(xi,xj). Consider the dual formu-

lation of an 1-norm SVM. The optimal dual ‘cost’ is

gd(K) , max
α∈Rm

2αTe−αT G(K)α (17)

such that αTy = 0 (18)

0 ≤ α ≤ C
m . (19)
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The corresponding kernelized primal formulation is (Rifkin, 2002)

gp(K) , min
c∈Rm,ξ∈Rm,b∈R

2C
∑m

i=1 ξi + cTKc (20)

such that yi (
∑m

i=1 ciK(xi, xj) + b) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

Our goal is to find a kernel matrixK that minimizesgp(K). Since the strong duality property
holds for the optimization problems (17) and (20),gp(K) = gd(K) and consequently,minK{gp(K)} =
minK{gd(K)}. As proved by Lanckriet et al. (2004, see Proposition 15), the functiongd(K) with
the constraints (18) and (19) is convex inK. If we restrictK to be in a convex closed domain
and optimize with respect toK, we can find the global minimum ofgd(K) using gradient descent
methods.

However, a direct optimization overK can be computationally expensive, since it involves solv-
ing semi-definite (SDP) optimization problems. We therefore restrict our attention to kernel matrices
that are linear combinations of some fixed set ofbasis kernels, {K(j)}nj=1. Thus, the desired kernel

matrix isKµ =
∑n

j=1 µjK(j), where the variables to be optimized areµ = (µ1, . . . , µn). Note
that the propertygp(Kµ) = gd(Kµ) is preserved when usingKµ instead ofK. To ensure that
the matrixKµ is a valid kernel, namely thatKµ is a positive semi-definite matrix, we assume that
µi ≥ 0 for all 1 ≤ i ≤ n. We also impose the constraint

∑n
j=1 µj ≤ R, for some (arbitrary)R to

ensure that the feasible set of kernels lies in a convex closed domain.
The gradient ofgd(K) is anm× 1 vector and itsjth entry is

∂gd(Kµ)
∂µi

= −αT G(K(i))α.

SinceK(i) is a kernel matrix, it is positive semidefinite. It can be easily verified that the matrix
G(K(i)) is also positive semi-definite. Hence, for any1 ≤ j ≤ n, ∂gd(Kµ)

∂µi
≤ 0. Therefore, the

functiongp(Kµ) is monotonically decreasing withµ. Thus, if we start from positiveµi’s and pro-
ceed in the direction opposite to the direction of the gradient, they will remain positive throughout
the optimization procedure. Hence, we can drop out the constraintµi ≥ 0 for all 1 ≤ i ≤ n. Fol-
lowing Bousquet and Herrmann (2003), who proposed a similar routine, we use a simple gradient
descent procedure for finding the optimalK∗:

1. Let µ = µ0 be an initial guess of kernel coefficients.

2. Findgd(Kµ) by solving (17). Letα∗ be the maximizer of (17).

3. Make a gradient step: for all1 ≤ j ≤ n, µj = µj + (α∗)T G(K(j))α∗.

4. Enforce the constraint
∑n

j=1 µj ≤ R.3

5. Return to Step 2 unless a termination criterion is reached.

3. If
∑

j µj > R then we normalizeµ such that
∑

j µj = R.

8
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4. Error Bound for Large Margin SBC Kernel Reductions

This section shows a large margin error bound for our SBC reductions. This bound is obtained as a
simple corollary of the risk bound of Srebro and Ben-David (2006) for kernel machines with learned
kernels.

We consider the following setting. Let{k1(·, ·), . . . , kn(·, ·)} be a set ofn kernel functions,

such thatkj(x, x) ≤ 1 for anyx and1 ≤ j ≤ n. Let α
M= {αi}mi=1, µ

M= {µj}nj=1 and consider a
soft classification of a pointx via the hypothesis

hα,µ(x) M=
m∑

i=1

yiαi

n∑
j=1

µjkj(xi, x). (21)

As usual it is assumed that examples〈x, y〉 are distributed according to some unknown distribu-
tion D. The overall0/1 loss of hα,µ is `0(α,µ) = Pr〈x,y〉∼D {x · hα,µ(x) ≤ 0}. Let S =

{〈xi, yi〉}ti=1 be a training set oft examples. The empirical margin error ofhα,µ is ˆ̀
γ(α,µ) M=

|{i | yihα,µ(xi)<γ,〈xi,yi〉∈S}|
t .

Theorem 3 (Srebro and Ben-David (2006))Suppose that the vectorµ satisfies
∑n

j=1 µj ≤ R.
Then with probability at least1− δ over the random draw of the training set,

`0(α,µ) ≤ ˆ̀
γ(α,µ) +

√
8
2 + n log 128et3R

γ2n
+ 256R

γ log γet

8
√

R
log 128tR

γ2 − log δ

t
. (22)

The binary classifierh2(·), defined in (11), has the form (21).4 Therefore, we can utilize Theo-
rem 3 to bound the0/1 loss of the classifier (11). In what follows we relate the multiclass0/1 loss
of the SBC reduction to the0/1 loss of the underlying binary classifier.

Let α
M= {αi}m·c

i=1. We denote by(α,µ) the hypothesis (11) operated with vectorsα andµ. Let
`M ((α,µ), 〈x, y〉) be the multi-class0/1 loss of the SBC classifier, using the hypothesis(α,µ) for
its binary decisions, over an example〈x, y〉, wherey is a multi-class label. Let{〈zr, yr〉}cr=1 be the
c replications ofx wherezr = zr(x) is therth extension ofx andyr is its appropriate binary label.
Denote by`B((α,µ), 〈zr, yr〉) the binary0/1 loss ofw on the replica〈zr, yr〉. It is easy to see,
from the SBC construction, that

∀ 〈x, y〉, `M ((α,µ), 〈x, y〉) ≤
c∑

r=1

`B((α,µ), 〈zr, yr〉) . (23)

Indeed, if the SBC classifier errs on〈x, y〉 (in the multi-class problem), then there is some replica
〈zrj , yrj 〉, with yrj = −1, which achieves larger soft classification than the single positive replica
of x (i.e., the replica〈zrk

, yrk
〉, with yrk

= 1). In this case,(α,µ) incurs a 0/1 binary loss (of
1) on eitherzrj or zrk

. Let P (x, y) be the (unknown) underlying distribution of the data. Let
`M (α,µ) be the true average 0/1 multi-class error of the SBC classifier. Define`B(α,µ) as the
true average binary 0/1 loss of(α,µ), `B(α,µ) =

∫
1
c

∑c
r=1 `B((α,µ), 〈zr, yr〉)dP (x, y). This

4. This is under assumption that parameterb in (11) equals zero. This assumption is also used in Srebro and Ben-David
(2006) and other papers deriving risk bounds for kernel machines.
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definition makes sense because for each test examplex, we always construct all thec replicas ofx.
Using (23) we have

`M (α,µ) =
∫

`M ((α,µ), 〈x, y〉)dP (x, y) ≤
∫ c∑

r=1

`B((α,µ), 〈zr, yr〉)dP (x, y) (24)

= c ·
∫

1
c

c∑
r=1

`B((α,µ), 〈zr, yr〉)dP (x, y) = c · `B(α,µ). (25)

Applying the bound (22) with̀B instead of̀ 0 and witht = mc, we obtain

`M (α,µ) ≤ c ·`γ(α,µ)+c ·

√
8
2 + n log 128e(mc)3R

γ2n
+ 256R

γ log γemc

8
√

R
log 128mcR

γ2 − log δ

mc
. (26)

While this bound is certainly not tight in general, it is useful when the number of classes and the
empirical margin binary error are small (in particular, in the realizable case). Note also that the
slack term in this bound increases withR. However, with a largerR the search space for optimalµ
also increases. Thus the parameterR expresses a tradeoff between the size of the search space and
the value of the slack term in the risk bound.

5. Experiments

As discussed in Section 3, to implement our SBC-KERNEL approach we need to select a set of
feature extension matrices. We tookc matrices, each of sizec × c, whereM (r) was taken to be
an all-zeros matrix except for a single unit entry,M (r)(r, r) = 1, r = 1, . . . , c. Such a choice of
matricesM (r) has the following interpretation.

An SBC reduction withc classes encompassesc binary problems. Therth problemAr is defined
by therth set of training replicas and aims at separating classr from the other classes. This is
also therth binary problem solved by OVA. The SBC reduction solves all binary problems{Ar}
simultaneously, in a single joint space, using a single classifier. The success of SBC depends on the
relative placement of the problems{Ar} in the joint space. The matrixMr and the coefficientµr

“separate” therth problem from the others, by moving therth problem away from other problems.
By optimizingµr we attempt to find a good placement of all the problems that increases the overall
margin.

5.1 Experimental Procedure

We used five datasets, all from the UCI repository. Their characteristics are summarized in Table 1.
Due to the considerable computational load associated with SBC reductions (due to replication), we
restricted our experiment to datasets that have a small number of classes. Nominal attributes with
t possible values were substituted byt binary features, where theith binary feature was set to 1 iff
the corresponding nominal attribute took theith possible value. For each feature, its average and
standard deviation over the training set was computed, and these were used to normalize the data
(training and testing) by subtracting the average and dividing by the standard deviation.

Ten-fold cross-validation (10xCV) was used; namely, in each fold, the union of nine out of ten
equally-sized random subsets were used for training, and the tenth for testing. In all our experiments,
we used theSVMTorchimplementation of a binary SVM inducer (Collobert and Bengio, 2001) and

10
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# Examples # Features # Classes
Car 1728 6 4

Page blocks 5473 10 5
Iris 150 4 3
Wine 178 13 3

Vehicle 846 18 3

Table 1: Summary of datasets

applied it with a radial-basis function (RBF) kernel. To optimize the RBF kernel parameters (σ and
C) we followed Rifkin and Klautau (2004) and used a simple greedy search via 10xCVover the
training setas follows. Initial values ofσ andC were set to 1. The value ofσ was then increased
or decreased by a factor of 2 until no improvements were observed for three consecutive attempts.
Then,σ was fixed at the best value found and an identical optimization was performed overC.5

In addition to our SBC-KERNEL method, we experimented with three other SBC reductions:
SBC-SINGLE, SBC-IDENTITY, and SBC-ECOC (using a BCH coding matrix). We also tested
the three “classical” reductions: OVA,ALL -PAIRS and ECOC (applied with the same BCH coding
matrix). Overall, we tested seven algorithms. Precise descriptions of the known methods appear in
Section 2. For all the algorithms tested, we used the same parameter tuning strategy to search for
a single best pair of parameters (σ andC) for all the binary classifiers involved in each multi-class
application. While this method may favor reductions that utilize a smaller number of binary prob-
lems, we believe this is a fair comparison that allocates similar search resources to each algorithm
while searching for effective hyper-parameters.

Car Page Iris Wine Vehicle AVERAGE

blocks RANK

STANDARD

REDUCTIONS

OVA 1.10 3.33 21.33 5.88 25.48 4.8
ALL -PAIRS 0.76 4.64 24.00 4.71 25.00 5.0
ECOC 4.36 3.20 6.00 1.76 20.48 3.1

SBC
REDUCTIONS

SBC-ECOC 3.90 3.42 4.00 3.53 20.48 3.4
SBC-SINGLE 5.64 3.51 66.67 65.29 76.55 6.8
SBC-IDENTITY 4.36 3.18 6.00 2.35 20.95 3.5
SBC-KERNEL 0.70 2.96 4.00 2.35 15.48 1.4

Table 2: 10xCV average test errors rates (%) of seven algorithms on five datasets. Best results for
the dataset appear in boldface. Average ranks of the algorithms appear in the last row

We operated SBC-KERNEL with R (arbitrarily) set to square root of the training set size. The
termination criterion of the algorithm was chosen to be‖µold−µnew‖2

‖µold‖2 ≤ 0.001, whereµold andµnew

are the values ofµ at the previous and at the current iteration, respectively.

5. One can consider various ways to improve the optimization routine suggested by Rifkin and Klautau. For example,
it is potentially better to jointly optimize overC andσ, but computationally, this would be rather expensive.
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5.2 Results

Table 2 presents the errors (%) obtained for each of the seven methods. The best results (lowest
errors) in each row appear in boldface. The averageranksof the various algorithms appear in the
last row of the table. These ranks were computed as averages of row ranks.6 The best performer in
terms of ranks is SBC-KERNEL. The worst performer is SBC-SINGLE. Comparing our results to
Rifkin and Klautau (2004) (over the two common datasetsCar andPage blocks ), we see that
our results for OVA are slightly better, and our results forALL -PAIRS are similar.

To systematically identify potentially interesting differences between the methods with respect
to individual datasets, we followed Rifkin and Klautau (2004) and calculated a 90% bootstrap con-
fidence interval for the differences in performance betweenpairs of algorithmswith respect to in-
dividual datasets. For a dataset with a given train/test partition and two given classifiersc1 and
c2 (induced on the train set), we drew 10,000 bootstrap samples from the test set. Each bootstrap
sample consisted of 10% of the points in the dataset, drawn with equal probability from each of the
ten folds. For each sample, we calculated the performance difference of the two classifiers. This
difference is a number in[−100, 100], where a negative difference reflects an advantage ofc1 and a
positive difference reflects an advantage ofc2. Zero means that the classifiers performed identically
over the test set. For a desired confidence levelδ (e.g., 90%), we output the confidence interval
[a, b] wherea is the(1−δ

2 )-quantile of the 10,000 differences andb is the(1+δ
2 )-quantile of these

differences.7

Car Page Iris Wine Vehicle
blocks

OVA [−1.7, 0.5]→ [−1.3, 0.4]→ [−3, 0]→ [−11.8, 5.9]→ [−20.2,−4.8]→
ALL -PAIRS [−1.2, 0]→ [−2.9,−0.6]→ [−40, 0]→ [−11.8, 5.9]→ [−20.2,−3.6]→
ECOC [−6.4,−1.7]→ [−0.9, 0.4]→ [−6.7, 6.7] [−5.9, 5.9] [−14.3,−1.2]→
SBC-ECOC [−5.8,−1.2]→ [−1.3, 0.2]→ [−6.7, 6.7] [−5.9, 5.9] [−14.9,−1.2]→
SBC-IDENTITY [−6.4,−1.7]→ [−0.9, 0.4]→ [−6.7, 6.7] [−5.9, 5.9] [−14.3,−1.2]→

Table 3: 90% bootstrap confidence intervals (in %) for the difference in performance between SBC-
KERNEL and (from left to right) OVA,ALL -PAIRS, ECOC, SBC-ECOC, and SBC-
IDENTITY

Table 3 shows confidence intervals corresponding toδ = 90% for pairwise comparisons of
SBC-KERNEL with OVA, ALL -PAIRS, ECOC, SBC-ECOC, and SBC-IDENTITY. (A comparison
with SBC-SINGLE is not provided due to its poor performance.) An entry where botha andb are
negative reflects a statistically significant advantage of the first algorithm (which is SBC-KERNEL

in both columns of the table). Specifically, such an entry indicates a probability of over 90% that the
first algorithm is better (note thatb is a 95%-quantile). Entries of the form[b, 0], whereb is negative,
suggest a probability of less than 5% that the second algorithm is better. The symmetrically reversed
statements (for entries of the form[0, a]) hold as well. If0 is properly included in the interval,

6. For each row, if the errors of all algorithms are distinct, they are assigned the ranks in{1, . . . , 5}. When algorithms
share exactly the same error, they are all assigned the same average rank.

7. This test was proposed by Rifkin and Klautau (2004) as an alternative to McNemar’s test that accounts for the size of
the differences between the algorithms’ errors (which is ignored by McNemar’s test).
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then no algorithm is significantly better than another, but the magnitudes ofa andb can indicate
which algorithm has an advantage. Note that this statistical procedure does not account for the
Bonferroni correction for multiple testing. Nevertheless, the statistics presented are based on the
actual classifications of individual test points, and therefore provide another useful perspective.

We interpret the results of Table 3 as follows. We consider a confidence interval[a, b] as inter-
esting if

∣∣|a| − |b|∣∣ > 0.5 (i.e., the skew in the advantage of one algorithm is greater than0.5%);
or (ii) a < b < 0; or (iii) 0 < a < b. Other cases are considered not interesting. Interesting
cases marked with ‘→’ indicate where SBC-KERNEL is significantly better than the other algo-
rithm (OVA, ALL -PAIRS, ECOC, SBC-ECOC, or SBC-IDENTITY). Entries marked with ‘←’
indicate cases where the other algorithm is better. Unmarked entries do not exhibit a statistically
significant interesting event. We see that in all cases, SBC-KERNEL is better than both OVA and
ALL -PAIRS. It is also better than SBC-ECOC, and SBC-IDENTITY on three of the five datasets,
and insignificantly different on the other two.

These results show that SBC, with learning a linear combination of the basic kernels, improves
performance as compared to the performance of SBC-IDENTITY and SBC-ECOC. Moreover, we
see that SBC without a learned kernel (the SBC-IDENTITY algorithm) is better than OVA. Thus,
these results indicate that the sources of the observed improvements are both the SBC reduction and
the kernel learning.

During the course of our experiments with the SBC-KERNEL method, we observed a significant
correlation in most cases between the class distribution of the training data and the finalµi weights
reached after the optimization. These correlations indicate that the computational overhead might
be reduced by directly using these class distributions as the finalµi kernel weights, thus solving a
single SVM problem. We leave this direction for future work.

6. Concluding Remarks

We introduced a powerful family of SBC reductions based on large margin optimization. For a small
number of classes, this approach is well motivated by a generalization bound, which is obtained as
a corollary of a known generalization bound for binary classification. We tested our method and
compared it to six other known methods over UCI datasets with a small number of classes. These
tests indicate that the proposed approach can yield superior performance when the number of classes
is small.

Many avenues remain open for future research. It would be very interesting to explore other
types of feature extension matrices. A direct optimization of these matrices can also be considered
but, as discussed in Section 3.1, the resulting optimization problem will no longer be easy to solve.
It would also be interesting to reverse-engineer the resulting kernel transformations and identify
a single diagonal extension matrix with good performance. While we believe that such a matrix
exists, finding it using the RBF kernel and our optimization procedure is difficult since the objective
function becomes non-convex.

The main bottleneck in all SBC methods is the data replication, which poses a true bottleneck
when considering large problems. For small problems, this computational load is affordable, and
as we show, beneficial. To handle large problems, this bottleneck can be alleviated by using fast
approximation to SVM optimization (see (Bordes et al., 2005), (Tsang et al., 2005), (Keerthi et al.,
2006)).
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