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Abstract

The problem of multiclass-to-binary reductions in the context of classification with kernel ma-
chines continues to attract considerable attention. Indeed, the current understanding of this prob-
lem is rather limited. Despite the multitude of proposed solutions no single method is known to be
consistently superior to others. We developed a new multi-class classification method that reduces
the multi-class problem to a single binary classifier (SBC). Our method constructs the binary prob-
lem by embedding smaller binary problems into a single space. We show that the construction of a
good embedding, which allows for large margin classification, can be reduced to the task of learn-
ing linear combinations of kernels. We observe that a known margin generalization error-bound for
standard binary classification applies to our construction. Our empirical examination of the new
method indicates that it can outperform one-vs-all, all-pairs and the error-correcting output coding
scheme.

Keywords: multiclass classification, support vector machines, multiple kernel learning

1. Introduction

The widespread practice of employing support vector machines (SVMs) in applications provides a
major incentive for the ongoing study of theulticlass-to-binary reductioproblem to enable the

use of binary classifiers for multiclass problems. However, despite numerous ideas on how SVMs
can be applied to multi-class classification, the understanding of multi-class reductions appears to
be somewhat limited, both theoretically and empirically. The confusion surrounding this problem
has only increased with the availability of increasingly clever and sophisticated solutions, whose
authors indicate that there is much to gain by using their approaches, but often without providing
sufficient comparisons to other available methods.

Currently, the simplest multiclass-to-binary reduction method is the ‘one-vs-all’, referred to
in this paper as OVA. Two other well-known reductions are the ‘all-pairs’ approach, based on
Friedman (1996) (a.k.a. ‘one-vs.-one’) and the ‘error-correcting output coding’ (ECOC) frame-
work pioneered by Sejnowski and Rosenberg (1987) and Dietterich and Bakiri (1995). One of the

1. OVA s also often called ‘one-vs-rest’.
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first comprehensive comparisons of multi-class reduction methods was performed by Hsu and Lin
(2002). They claimed that the all-pairs approach is superior to other methods. Rifkin and Klau-
tau’s prominent paper (Rifkin and Klautau, 2004) later presented an in-depth critical assessment of
many previous multi-class papers (including the Hsu and Lin paper). The authors stated that OVA
is not inferior to all-pairs and ECOC, provided that adequate efforts are devoted to hyper-parameter
tuning. Despite the compelling arguments made in the Rifkin and Klautau paper for OVA, there
remains an ongoing debate on the relative effectiveness of these three methods.

A lesser-known approach for solving multi-class problems via binary classification$irgke
Binary Classifierreduction (henceforth, SBC). From our point of view, any multi-class method
that relies on a single, standard binary (soft) classifier is an SBC method. SBC reductions can be
obtained by embedding the original problem in a higher-dimensional space consisting of the original
features, as well as several other dimensions determined by fixed vectors, termedtbeston
features This embedding is implemented by replicating the training set points so that each original
point is concatenated with each of the extension features’ vectordifiuegy labels of the replicated
points are set to maintain a particular structure in the extended space. This construction results in
an instance of an artificial binary problem, which is fed to a binary learning algorithm that outputs
a single soft binary classifier. To classify a new point, the point is replicated and extended similarly
and the resulting replicas are fed to the soft binary classifier that generates a nusigaatsf one
for each replica. The class is determined as a function of these signals.

The idea of SBC reductions through dimensionality expansion and replication has existed in
several rudimentary forms for quite some time. As far as we know, the first documented SBC
reduction is thekesler Constructior(see Duda and Hart, 1973, Sec. 5.12.1). A different type of
SBC reduction is theingle callmethod, presented by Allwein et al. (2000), where the embedding
is determined via an error correcting matrix as in ECOC. Anguita et al. (2004) reviewed a recent
SBC reduction based on orthogonal feature extensions, and concluded that its SBC method is not
inferior to OVA and all-pairs.

In this paper, we propose a new type of kernel SBC (henceforth SBENEL), where instead
of using explicit extensions in feature space, we utilize implicit kernel transformations in Hilbert
space. A different transformation is used for each class and these transformations are constructed to
increase the margin of the resulting binary problem where the entire multi-class problem is embed-
ded. This SBC-KRNEL method is posed and derived as a kernel optimization problem using the
SVM objective function.

We present a comparative study of the proposed SBE&NEL method, OVA, all-pairs, and
ECOC, as well as three previous SBC methods. These results demonstrate impressive performance
of SBC-KERNEL relative to the other algorithms, whose results are gained at a higher computational
cost. Additionally, we observe that the recent risk bound for kernel machines with learned kernels
(Srebro and Ben-David, 2006) can be extended to our setting, showing that $BSeK indeed
generalizes well in cases where both the number of classes and the empirical margin error are small.

2. On Some Known Multi-Class to Binary Reductions

Let S = {(zi,v:)}I", be atraining set ofn examples, where; are points in somé-dimensional
spaceX and eachy; is alabeliny = {1,...,c}. A multi-class classifiet is any functionh : X —

Y. Our goal in multi-class classification is to generate a good multi-class classifier, based on the
training set. We measure performance via the standard 0/1-loss function and are interested in a low
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average error over out-of-sample examples. We are concernethuliiclass-to-binary reductions
which are methods that solve multi-class classification through the use of binary classifiers such as
SVMs. The following sections describe several such reductions.

2.1 One-Vs-All

The OVA is one of the simplest methods for multi-class to binary reduction. It uses the original data
relabeled in a binary form to trainsoft classifiers. Each classifier is trained to distinguish one of
the classes from the rest. The multi-class label of a new data point is predicted by first having each
of the binary classifiers classify the point. The index of the classifier with the maximal response is
chosen as the predicted label. It is hard to trace the exact origin of OVA, but early references date
back to Duda and Hart (1973).

2.2 All-Pairs

In this method (Friedman, 1996), we train one binary classifier for each pair of classes. To classify

a new instance, we run a majority vote among all binary classifiers. The advantage of the all-pairs

method is that it generates the easiest and most natural binary problems of all known methods. How-
ever, a weakness of this method is that there are often irrelevant binary classifiers that participate in
the votes.

2.3 Error-Correcting Output Coding

In the error-correcting output coding (ECOC) framework, each ofcthen classes is assigned
a unique binary vector (calleda@deword over {£1} of length/. This collection ofc codewords
forms ac x £ coding matrixM, whose/ columns definé binary partitions of the classes. Given a
training setS = {(x;, y;)}, ¢ binary classifiers are trained. Thith classifierf; is assigned a unique
binary partition defined by thg¢th column of M and is trained using a training sgte;, M (i, 7))}.
After the learning process is complete, whenever an unseenpasngiven, it is classified by all
binary classifiers. This results in a vectf(r) = (f1(z), ..., fo(x)) with f;(x) being the (binary)
response of thgth classifier. The point is assigned to the class whose matrix row is “closest”
to f(x). This class assignment mechanism is catledoding The basic ECOC scheme uses a
Hamming-based decoding, where the distance betyiéenand the rows of/ is computed using
the Hamming distance. The ECOC technique was pioneered by Sejnowski and Rosenberg (1987)
and Dietterich and Bakiri (1995) and was further developed by Allwein et al. (2000).

2.4 Single Binary Classifier (SBC) Reductions

A large family of SBC reductions can be described as follows: Mebe ac x £ matrix of feature
extensionstheith row of M is denoted byV/;. In the preprocessing stage, we construdifferent
copies of each training examplg, where therth copy ofz; is z;, = z; o M,, which is the
extension of the row vectar; with the row vectorM,.. The resulting set of new instancés, , },

i=1,....,m,r = 1,...,c, are assigned binary labels as follows: for eaemnd, the instance
zir Is labeled byy; , = +1iff y; = r (i.e., the original label; of x; is r). Otherwise,z; , is
labeled byy; , = —1. The resulting binary-labeled sét = {(z;,, i)} is of sizecm and each

instance (excluding the label) hds- ¢ dimensions. In the second stage of binary learning, we apply
a standard learning algorithm (e.g., SVM) on the training$ednd the outcome is a soft binary
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classifierhy. To determine a label (iiY) of a new instance, we generate copies ofz, where the
rth copy isz, = x o M,.. The label we predict isrgmax, ha(z;).

A special case of this construction is the SBC reduction proposed in Anguita et al. (2004), where
the matrix) is taken to be the x c identity matrix. We refer to this reduction as SBGENTITY.
Another special case is the SBGNSLE method, obtained by taking the colunin, 2, ..., c)”
as the feature extensions matrix. In other words, a single feature is concatenated to the data such
that therth “replication” of x;, is z;, = z; o r. Binary labels are assigned to this data exactly as
described above.

For example, suppose that = {1,2,3} and the training set consists of the following three
labeled examplesy{(z1,1), (z2,2), (z3,3), (z4,2)}. Then, in the case of SBAENTITY, the
feature extension matrix is

1 00
M=\|010 |,
0 01
the resulting labeled training set for the binary SBRENTITY problem is

z11 =210 (1,0,0) y11=+1
212 =10 (O, 1,0) Y1,2 = -1
z13=1210(0,0,1) y13=—1
221 =220 (1,0,0) Y2,1 = -1
222 =1220(0,1,0) yoo=+1
223 =120 (0, O, 1) Y23 = -1
231 = X3 0 (1,0,0) Y31 = -1
z32 =230 (0,1,0) y32=—1
233 =30 (O, O, 1) Y33 = +1
z41 = 240 (1,0,0) y31 = —1
242 =240(0,1,0) yz2=+1
z43 =240 (0,0,1) y33=—1

SBC-3NGLE is also a special case of the general ‘single-call’ SBC reduction of Allwein et al.
(2000). Here, given a x ¢ (ECOC) coding matrix\/, each training examplex;, y;) is replicated
times to creaté new training examples of the forfitz;, s), M (y;, s)), whereM (y;, s) is a binary
label. Using this training set, one induces a binary classifier denotdd, byFor classifying a
new pointz, we similarly replicate it/ times,z; = x o4, ¢ = 1,...,¢, and applyh, on each
of theZ instances. As in ECOC, the resulting vector of (soft) classificatibnézy), . . ., ha(z¢)) is
matched to the closest codeword (row)lihto determine the label. The matching can be done using
a Euclidian norm (ifh, is a soft classifier) or a Hamming distance/if is a hard classifier). We
term this SBC reduction SBC-ECOC. Notice that SBGHS.E is a special case of SBC-ECOC
applied with a matrix)/ that is thec x ¢ identity matrix. The SBC-ECOC construction adds a
single attribute to each example and replicatestitnes. This is in contrast to the family of SBC
reductions we describe above, which also use a (feature extension) matrix, extend each example by
¢ additional binary features, and replicate each examfplaes.

2.5 Single-Machine SVM Constructions

Unlike the SBC approactsingle-machineconstructions typically modify the standard SVM op-
timization problem to include separate soft classifiers simultaneously, one for each class. Each
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example is labeled according to the classifier giving maximal soft classification. See Section 3.1
in (Rifkin and Klautau, 2004) for a detailed survey of early approaches to single-machine SVM
construction.

We note here that recent approaches to learning with structured outputs (e.g., see Tsochantaridis
et al. (2005)) and an exponential family formalism of Canu and Smola (2006) also fall into the
category of single machine SVM constructions. While these papers do not include any in-depth
treatment of the multi-class to binary problem, the instantiations of their approaches have some
similarities to our developments. We discuss this issue further in Section 3 (Remarks 1 and 2).

3. Learning SBC Kernel Reductions

Instead of using explicit feature extensions in SBC reductions, as described in Section 2, we propose
a general approach that utilizes arbitrary class mappings instead of feature extensions. Similar to
'standard’ SBC reductions, each training exampjds replicatedec times and the'th copy ofx;
is zir = ¢r(z;), Whereg,(-) is an arbitrary transformation corresponding to tiie class. The
resulting set of new instancgs; .}, i = 1,...,m, r = 1,...,¢, are assigned binary labels as in
standard SBC reductions (see Section 2.4) and a binary soft classifigis trained. To predict the
label (in)) of a new instance;, we generate copies ofz, where the'th copy isz, = ¢,(x). The
label we predict isrgmax, ha(z;).

In general, the transformatiok®, }¢_, can have any form. High quality transformations should
generate an easy-to-learn binary problem such that the resulting binary classifilenws for accu-
rate multi-class predictions. Relying on kernel methods, we can corigigédicit transformations
given in terms of inner producis, (z;) - ¢s(x;), between the transformed instances. These inner
products can be specified as entries of an appropriate kernel matrix ehsizecm.

Our realization of this scheme is derived as follows: Léte ac x ¢ feature extension matrix
as described in Section 2 and denoterttsrow by M,. Let{z;,} be the replicated (and feature

extended) training set. Using an RBF kern€kpr(a,b) = exp (_ Ha;;\\%), we have
_ Mr _ Ms 2
Krpr(zip, 2js) = Krpr(2i, ;) - exp (’202H2> )

The resulting dual formulation of the (standard) SVM optimization problem is as follows:

max 2a’e — o’ G(K)a (2)
acRem
suchthat aly =0 (3)
0<a< ¢ . 4)
m

whereG(K) is acm xcm matrix whosg (i—1)-c+r, (j—1)-c+s)thentry isy; ,y; s Krpr (i, 2j,s)-
We thus have a largern x cm kernel matrixK = K (M) whose(u, v) entry, wherew = (i—1)-c+r
andv = (j — 1) -c+s,is KRBF(Zi,ra Zjﬁ).

The binary classifiehs(-), resulting from the optimization program (2)-(4) has the following
form. For any example the soft classification of itsth copyz, is

ha(2) 230 yiso1yers Krpr(zjs z) +b. (5)
j=1 s=1
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The value of the parametéiis determined using some standard technique from SVM (see Vapnik
(1998))?

The matrixK (M) can be represented as a Kronecker product of two smaller matrices. For any
matricesA andB of sizesm x n andp x ¢, respectively, theiKronecker productdenotedA ® B,
is the followingmp x ng matrix (Eves, 1980):

(I11B a12B e alnB
e ®
amlB am2B ... am,B

For matricesA, B, C and a scalak, we use the following elementary properties of the Kronecker
product:

AB+A®C = A®(B+0C), (7)
EA®B) = A®(kB) . (8)

LetK, be anm xm kernel matrix whoséi, j) entry isKgpr(zi, ;). LetK,s be acx ckernel
matrix whose(r, s) entry is Krpr(M,, Ms). From the definition ofK()/) and the definition of
the Kronecker product it follows that

KM)=K, 2K . 9)

Our strategy is to take a numberof fixed feature extension matricag™, ..., M and to
search for the best linear combinatibf), = > , 1, K(M®) that optimizes the SVM objective
function. By applying (9) and using properties (7) and (8) of the Kronecker product, we obtain

K, = Z K -K,® <Z uZKMm) =K, ® K, (10)

=1

whereKyy, £ o 1K) is ane x ¢ kernel matrix implicitly representing the feature extension
matrix that optimizes the SVM objective function. By substituting the value of kernel, defined by
(10), to (5) we obtain that the binary classifiex(-) has the following form. For any exampiethe

soft classification of itgth copyz, is

53 2 — )3
;Z%SO‘J ) c+s;MzKRBF(% )exp< 552 +b (11

Clearly, different sets of matricegh/(*) »_, may lead to different realizations. In Section 5,
we focus on a particular choice of such matrices that conceptually corresponds to embedsing all
one-vs-all binary problems in a single space. The optimization problem we thus face is related to
extensive literature on learning the kernel matrix and in particular, to learning linear combinations of
matrices. Our derivation of this optimization problem, shown below, is similar to the one presented
in Bousquet and Herrmann (2003).

2. One example of setting is as follows. LetB = {(i,r) | ag_1).cyr > 0}. Let b, £ yir —
DTy Y e YisQ(i—1)-c+s KrBF (200, 25,) 1f (i,7) € B and zero otherwise. The value ofis set to

S S bir/| Bl
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Remark 1 Tsochantaridis et al (Tsochantaridis et al., 2005, see Equation (7) and Propositions 4
and 5) proposed a kernel-based optimization program for multi-class SVM that is similar to the one
we introduce in (2)-(4). Let’(K) be acm x em matrix whos€ (i — 1) -c+r, (j — 1) - ¢+ s) entry

is

KRrBr(2ip i), Zj.s(j)) — KRBF(Zi 3+ (i)s 2j,5) — KRBF(Zirs 2j,5+(j)) + KrBF(2i0rs 2j,5) 5 (12)

wherer* (i) (respectivelys*(j)) is the value of- (respectivelys) such thaty; , = +1 (y; s = +1).
Tsochantaridis et al. (2005) introduced a combined feature representétiony) of inputsz and
outputsy. In an instantiation of¥(x,y), defined using a matrid/ of feature extensions (see
Section 2.4), the optimization problem proposed by Tsochantaridis et al. (2005) becomes

max 2a’e — a’'G'(K)a (13)
acRem
such that < (14)

Z(i,r) such that r#r*(3) X(i—1)-c+r < % : (15)

While the optimization problem (13)-(15) can be considered as a realization of our method, the pro-
gram (2)-(4) that we utilize (corresponding to standard SVM) is more standard and better explored.
In particular, there is a large variety of both exact and approximate algorithmic solutions for the
optimization problem (2)-(4).

Remark 2 The (SVM) single machine construction proposed by Canu and Smola (2006) can also
be applied with the kernel (1). In particular, the resulting optimization program is

m

m[iRn afKa+ Y max (0,1 —£(z)), (16)
acR™
i=1

where

Z(l‘z) é . I;llg() Z (671 (KRBF(Zi,r*(i)v Zj,s*(j)) — KRBF(Zi,T7 Zj75*(j)))

rFETrT(2 j:1
andK is anm x m matrix whoseg(i, j)th entry equalsK rr(z; = (i), 2,5+ (j))- This optimization
problem (16) can be viewed as a multi-class extension of the Primal SVM formulation by Chapelle
(2006).

3.1 Learning Linear Combinations of Basis Kernels

As mentioned in the previous section, our goal is to take a numbgrfixed feature extension

matricesM (", ..., M™ and then search for the best linear combinaliop = "7, 1, K(M;)

that optimizes the SVM objective function. This approach is motivated by the following analysis.
Let G(K) be anm x m matrix whose(z, j)th entry isy;y;k(x;, x;). Consider the dual formu-

lation of an 1-norm SVM. The optimal dual ‘cost’ is

gi(K) = max 2ale - alG(K)a (17)
acR™

such that aly=0 (18)

0<a<@. (19)
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The corresponding kernelized primal formulation is (Rifkin, 2002)

& (K) = cengeiﬂ%wbeR 20356 + c'Ke (20)

such that y; (ZﬁlciK(xi,xj)—i—b) >1-¢& 1=1,....m
& >0 i=1,...,m

Our goal is to find a kernel matriK that minimizesg,(K). Since the strong duality property
holds for the optimization problems (17) and (28)(K) = g4(K) and consequentlyhink {g,(K)} =
mink {g4(K)}. As proved by Lanckriet et al. (2004, see Proposition 15), the fungioK) with
the constraints (18) and (19) is convexhh If we restrictK to be in a convex closed domain
and optimize with respect tK, we can find the global minimum @f;(K) using gradient descent
methods.

However, a direct optimization ové can be computationally expensive, since it involves solv-
ing semi-definite (SDP) optimization problems. We therefore restrict our attention to kernel matrices
that are linear combinations of some fixed seba$is kernel,s{K(j)};?zl. Thus, the desired kernel
matrix isK,, = 7, ;K" where the variables to be optimized are= (1, ..., un). Note
that the propertys,(K,,) = gq4(K,) is preserved when using,, instead ofK. To ensure that
the matrixK,, is a valid kernel, namely thd,, is a positive semi-definite matrix, we assume that
u; > 0forall1 <i < n. We also impose the constra@?:1 w; < R, for some (arbitrary)? to
ensure that the feasible set of kernels lies in a convex closed domain.

The gradient of;(K) is anm x 1 vector and itgjith entry is

Oga(Ky) = —a"G(KY)a.

Opi
SinceK () is a kernel matrix, it is positive semidefinite. It can be easily verified that the matrix

G(K®) is also positive semi-definite. Hence, for ahy< j < n, %ﬂl_{“) < 0. Therefore, the

functiong,(K,,) is monotonically decreasing witl.. Thus, if we start from positive;’s and pro-

ceed in the direction opposite to the direction of the gradient, they will remain positive throughout

the optimization procedure. Hence, we can drop out the consgraint0 for all 1 < i < n. Fol-

lowing Bousquet and Herrmann (2003), who proposed a similar routine, we use a simple gradient

descent procedure for finding the optink&f:

1. Let u = pg be an initial guess of kernel coefficients.

2. Findg,4(K,,) by solving (17). Lela* be the maximizer of (17).

3. Make a gradient step: for all < j < n, p; = p; + (o*)TG(KU))a*.
4. Enforce the constraift_, u; < R.2

5. Return to Step 2 unless a termination criterion is reached.

3.1f 32, u; > Rthen we normalizgs such thaby ~, p; = R.

8
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4. Error Bound for Large Margin SBC Kernel Reductions

This section shows a large margin error bound for our SBC reductions. This bound is obtained as a
simple corollary of the risk bound of Srebro and Ben-David (2006) for kernel machines with learned
kernels.

We consider the following setting. Ldt(-,-),. o) kn(-,-)} be a set ofn kernel functions,
such thatt;(z,z) < 1foranyz andl < j < n. Leta = {az}l 1 M {u] _, and consider a
soft classmcatlon of a point via the hypothesis

ZyzazZu] (@i, (21)

As usual it is assumed that examplasy) are distributed according to some unknown distribu-
tion D. The overall0/1 loss of ha,y is bo(a, ) = Prigyyop {2 hau(r) <0} LetS

{(zs,y;) }i_, be a training set of examples. The empirical margin error b, ,, is l@(a, w)
{i | yiho,u (i) <v,{zi,yi) €S}
; .

[l 1]

Theorem 3 (Srebro and Ben-David (2006))Suppose that the vectqr satisfiesZ?:1 ni < R.
Then with probability at least — § over the random draw of the training set,

A~

€0<047H) S €7<a7l~l’) +

2 + nlog 71283?3 + 256% log 'zji log 128tR —logé
8 2 - . (22

The binary classifiehs(-), defined in (11), has the form (24)Therefore, we can utilize Theo-
rem 3 to bound th@/1 loss of the classifier (11). In what follows we relate the multiclsssloss
of the SBC reduction to the/1 loss of the underlying binary classifier.

Leta £ {ai}1¢. We denote by, ut) the hypothesis (11) operated with vectorsind . Let
Oy (e, ), (z,y)) be the multi-clas®/1 loss of the SBC classifier, using the hypothésis.) for
its binary decisions, over an example y), wherey is a multi-class label. Lef(z,, y,)}¢_, be the
c replications ofr wherez, = z,.(x) is therth extension ofr andy, is its appropriate binary label.
Denote by/s((a, ), (-, y,)) the binary0/1 loss ofw on the replicaz,,y,). Itis easy to see,
from the SBC construction, that

¥ (2,y), (e p), (2,9) <Y p((a i), (2, 9) - (23)
r=1

Indeed, if the SBC classifier errs dm, y) (in the multi-class problem), then there is some replica
(2r;,yr;), With .. = —1, which achieves larger soft classification than the single positive replica
of z (i.e., the replic&z,, , yr, ), With y,, = 1). In this case(a, p) incurs a 0/1 binary loss (of

1) on eitherz,; or 2, . Let P(z,y) be the (unknown) underlying distribution of the data. Let
‘i (a, ) be the true average 0/1 multi-class error of the SBC classifier. Défife, ) as the

true average binary 0/1 loss of, ), (o, p) = [13°_ (5((o, w), (2, yr))dP(z,y). This

4. This is under assumption that paramétar (11) equals zero. This assumption is also used in Srebro and Ben-David
(2006) and other papers deriving risk bounds for kernel machines.
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definition makes sense because for each test example always construct all thereplicas ofx.
Using (23) we have

g]W(avu) = /KM((Q,;L),<:L‘,y>)dP(:U,y) < /ZKB((O@“)v<Zr7yr>)dp(xay) (24)
r=1

= C'/iZeB((a,N)7<Zr7yr>)dp(xay) =c-{p(a, p). (25)
r=1

Applying the bound (22) witlf 5 instead offy and witht = mc, we obtain

2+ nlog 12865#% + 256% log g‘i’/%c log 12877"2”}2 —logé (26)

EM(OQM) < C'&y(aa “)+C \/8

mc

While this bound is certainly not tight in general, it is useful when the number of classes and the
empirical margin binary error are small (in particular, in the realizable case). Note also that the
slack term in this bound increases with However, with a largeR the search space for optimal

also increases. Thus the parameRaexpresses a tradeoff between the size of the search space and
the value of the slack term in the risk bound.

5. Experiments

As discussed in Section 3, to implement our SBERKEL approach we need to select a set of
feature extension matrices. We tooknatrices, each of size x ¢, where M (") was taken to be
an all-zeros matrix except for a single unit enthy(") (r,r) = 1,7 = 1,...,c. Such a choice of
matricesM (") has the following interpretation.

An SBC reduction witle classes encompassdsinary problems. Theth problemA,. is defined
by therth set of training replicas and aims at separating claBsm the other classes. This is
also therth binary problem solved by OVA. The SBC reduction solves all binary problefs
simultaneously, in a single joint space, using a single classifier. The success of SBC depends on the
relative placement of the problenfsl, } in the joint space. The matriX/, and the coefficient,
“separate” the-th problem from the others, by moving thth problem away from other problems.
By optimizing 1, we attempt to find a good placement of all the problems that increases the overall
margin.

5.1 Experimental Procedure

We used five datasets, all from the UCI repository. Their characteristics are summarized in Table 1.
Due to the considerable computational load associated with SBC reductions (due to replication), we
restricted our experiment to datasets that have a small number of classes. Nominal attributes with
t possible values were substitutedblginary features, where thigh binary feature was set to 1 iff
the corresponding nominal attribute took thie possible value. For each feature, its average and
standard deviation over the training set was computed, and these were used to normalize the data
(training and testing) by subtracting the average and dividing by the standard deviation.

Ten-fold cross-validation (10xCV) was used; namely, in each fold, the union of nine out of ten
equally-sized random subsets were used for training, and the tenth for testing. In all our experiments,
we used th&&VMTorchmplementation of a binary SVM inducer (Collobert and Bengio, 2001) and
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# Examples| # Features| # Classes
Car 1728 6 4
Page blocks 5473 10 5
Iris 150 4 3
Wine 178 13 3
Vehicle 846 18 3

Table 1: Summary of datasets

applied it with a radial-basis function (RBF) kernel. To optimize the RBF kernel parametarsi(
C) we followed Rifkin and Klautau (2004) and used a simple greedy search via 10x€the
training setas follows. Initial values o andC were set to 1. The value of was then increased
or decreased by a factor of 2 until no improvements were observed for three consecutive attempts.
Then,o was fixed at the best value found and an identical optimization was performed'Gver

In addition to our SBC-IKkRNEL method, we experimented with three other SBC reductions:
SBC-SNGLE, SBC-IDENTITY, and SBC-ECOC (using a BCH coding matrix). We also tested
the three “classical” reductions: OVALL -PAIRSand ECOC (applied with the same BCH coding
matrix). Overall, we tested seven algorithms. Precise descriptions of the known methods appear in
Section 2. For all the algorithms tested, we used the same parameter tuning strategy to search for
a single best pair of parametersgndC) for all the binary classifiers involved in each multi-class
application. While this method may favor reductions that utilize a smaller number of binary prob-
lems, we believe this is a fair comparison that allocates similar search resources to each algorithm
while searching for effective hyper-parameters.

Car Page Iris Wine | Vehicle AVERAGE

blocks RANK

STANDARD OVA 1.10 3.33 21.33| 5.88 25.48 4.8
REDUCTIONS ALL -PAIRS 0.76 4.64 24.00| 4.71 25.00 5.0
ECOC 4.36 3.20 6.00 | 1.76 20.48 3.1

SBC-ECOC 3.90 3.42 4.00 | 3.53 20.48 3.4

SBC SBC-SNGLE 5.64 3.51 66.67 | 65.29 76.55 6.8
REDUCTIONS | SBC-IDENTITY | 4.36 3.18 6.00 | 2.35 20.95 3.5
SBC-KERNEL | 0.70 2.96 4.00 | 2.35 15.48 1.4

Table 2: 10xCV average test errors rates (%) of seven algorithms on five datasets. Best results for
the dataset appear in boldface. Average ranks of the algorithms appear in the last row

We operated SBC-ERNEL with R (arbitrarily) set to square root of the training set size. The
termination criterion of the algorithm was chosen t ' ﬁ:l’:“'ew”? < 0.001, whereptoq andpepew

olg|

2
are the values g at the previous and at the current iteration, respectively.

5. One can consider various ways to improve the optimization routine suggested by Rifkin and Klautau. For example,
it is potentially better to jointly optimize over' ando, but computationally, this would be rather expensive.
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5.2 Results

Table 2 presents the errors (%) obtained for each of the seven methods. The best results (lowest
errors) in each row appear in boldface. The averagésof the various algorithms appear in the

last row of the table. These ranks were computed as averages of rowPriihksbest performer in

terms of ranks is SBC-KRNEL. The worst performer is SBC+SGLE. Comparing our results to

Rifkin and Klautau (2004) (over the two common datasgas andPage blocks ), we see that

our results for OVA are slightly better, and our results4at -PAIRS are similar.

To systematically identify potentially interesting differences between the methods with respect
to individual datasets, we followed Rifkin and Klautau (2004) and calculated a 90% bootstrap con-
fidence interval for the differences in performance betweairs of algorithmswith respect to in-
dividual datasets For a dataset with a given train/test partition and two given classifieesd
co (induced on the train set), we drew 10,000 bootstrap samples from the test set. Each bootstrap
sample consisted of 10% of the points in the dataset, drawn with equal probability from each of the
ten folds. For each sample, we calculated the performance difference of the two classifiers. This
difference is a number ip-100, 100], where a negative difference reflects an advantage ahd a
positive difference reflects an advantagepfZero means that the classifiers performed identically
over the test set. For a desired confidence lévid.g., 90%), we output the confidence interval
[a, b] wherea is the(l—g‘S)-quantile of the 10,000 differences ahds the(l—gd)-quantile of these
differences’

Car Page Iris Wine Vehicle
blocks
OVA [-1.7,05] — | [~1.3,04] — | [-3,0] — | [-11.8,5.9] — | [-20.2, —4.8] —
ALL -PAIRS [-1.2,0] — [-2.9,-0.6] — | [-40,0] — | [-11.8,5.9] — | [-20.2,—3.6] —
ECOC [—6.4,—1.7] — | [<0.9,0.4] — | [-6.7,6.7] [-5.9,5.9] | [-14.3,-1.2] —
SBC-ECOC [-5.8,-1.2] — | [-1.3,0.2] — | [-6.7,6.7] [—5.9,5.9] [—14.9,-1.2] —
SBC-IDENTITY | [-6.4,-1.7] — | [-0.9,0.4] — | [-6.7,6.7] [—5.9,5.9] [-14.3,-1.2] —

Table 3: 90% bootstrap confidence intervals (in %) for the difference in performance between SBC-
KERNEL and (from left to right) OVA,ALL-PAIRS, ECOC, SBC-ECOC, and SBC-
IDENTITY

Table 3 shows confidence intervals corresponding te 90% for pairwise comparisons of
SBC-KERNELWith OVA, ALL -PAIRS, ECOC, SBC-ECOC, and SB@ENTITY. (A comparison
with SBC-SNGLE is not provided due to its poor performance.) An entry where bahdb are
negative reflects a statistically significant advantage of the first algorithm (which is SIBEGHK
in both columns of the table). Specifically, such an entry indicates a probability of over 90% that the
first algorithm is better (note thats a 95%-quantile). Entries of the forji 0], whereb is negative,
suggest a probability of less than 5% that the second algorithm is better. The symmetrically reversed
statements (for entries of the forff, a]) hold as well. If0 is properly included in the interval,

6. For each row, if the errors of all algorithms are distinct, they are assigned the rafiks in, 5}. When algorithms
share exactly the same error, they are all assigned the same average rank.

7. This test was proposed by Rifkin and Klautau (2004) as an alternative to McNemar’s test that accounts for the size of
the differences between the algorithms’ errors (which is ignored by McNemar’s test).
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then no algorithm is significantly better than another, but the magnitudesantlb can indicate

which algorithm has an advantage. Note that this statistical procedure does not account for the
Bonferroni correction for multiple testing. Nevertheless, the statistics presented are based on the
actual classifications of individual test points, and therefore provide another useful perspective.

We interpret the results of Table 3 as follows. We consider a confidence intervpas inter-
esting if]|a\ — \bH > 0.5 (i.e., the skew in the advantage of one algorithm is greater @ti#);
or (i) a < b < 0; or (iii) 0 < a < b. Other cases are considered not interesting. Interesting
cases marked with-’ indicate where SBC-IKRNEL is significantly better than the other algo-
rithm (OVA, ALL-PAIRS, ECOC, SBC-ECOC, or SBCBENTITY). Entries marked with<’
indicate cases where the other algorithm is better. Unmarked entries do not exhibit a statistically
significant interesting event. We see that in all cases, SB®NEL is better than both OVA and
ALL-PAIRS. Itis also better than SBC-ECOC, and SBEENTITY on three of the five datasets,
and insignificantly different on the other two.

These results show that SBC, with learning a linear combination of the basic kernels, improves
performance as compared to the performance of SBENTITY and SBC-ECOC. Moreover, we
see that SBC without a learned kernel (the SBIENTITY algorithm) is better than OVA. Thus,
these results indicate that the sources of the observed improvements are both the SBC reduction and
the kernel learning.

During the course of our experiments with the SBERNEL method, we observed a significant
correlation in most cases between the class distribution of the training data and the Visddhts
reached after the optimization. These correlations indicate that the computational overhead might
be reduced by directly using these class distributions as the/fjriarnel weights, thus solving a
single SVM problem. We leave this direction for future work.

6. Concluding Remarks

We introduced a powerful family of SBC reductions based on large margin optimization. For a small
number of classes, this approach is well motivated by a generalization bound, which is obtained as
a corollary of a known generalization bound for binary classification. We tested our method and
compared it to six other known methods over UCI datasets with a small number of classes. These
tests indicate that the proposed approach can yield superior performance when the number of classes
is small.

Many avenues remain open for future research. It would be very interesting to explore other
types of feature extension matrices. A direct optimization of these matrices can also be considered
but, as discussed in Section 3.1, the resulting optimization problem will no longer be easy to solve.
It would also be interesting to reverse-engineer the resulting kernel transformations and identify
a single diagonal extension matrix with good performance. While we believe that such a matrix
exists, finding it using the RBF kernel and our optimization procedure is difficult since the objective
function becomes non-convex.

The main bottleneck in all SBC methods is the data replication, which poses a true bottleneck
when considering large problems. For small problems, this computational load is affordable, and
as we show, beneficial. To handle large problems, this bottleneck can be alleviated by using fast
approximation to SVM optimization (see (Bordes et al., 2005), (Tsang et al., 2005), (Keerthi et al.,
2006)).
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