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Abstract

Heterogeneous clusters and grid infrastructures are be-
coming increasingly popular. In these computing infras-
tructures, machines have different resources (e.g., memory
sizes, disk space, and installed software packages). These
differences give rise to a problem of over-provisioning, that
is, sub-optimal utilization of a cluster due to users request-
ing resource capacities greater than what their jobs actually
need. Our analysis of a real workload file (LANL CM5) re-
vealed differences of up to two orders of magnitude between
requested memory capacity and actual memory usage. The
problem of over-provisioning has received very little atten-
tion so far. We discuss different approaches for applying
machine learning methods to estimate the actual resource
capacities used by jobs. These approaches are indepen-
dent of the scheduling policies and the dynamic resource-
matching schemes used. Our simulations show that these
methods can yield an improvement of over 50% in utiliza-
tion (throughput) of heterogeneous clusters.

1 Introduction

1.1 Background

Heterogeneous clusters and grid infrastructures are be-
coming increasingly popular. In these computing infras-
tructures, the machines have different computing power and
resources (memory, networking, etc.). Also, machines can
dynamically join and leave the systems at any time. Job
schedulers provide a means of sending jobs for execution
on these computing clusters. A job is defined as a set of
processes that run, in parallel, on a single computer or on
multiple computers. Dynamic approaches to resource man-
agement play a significant role in the management and uti-
lization of these infrastructures. With these approaches, the
job is submitted together with a specification of the type
and capacity of resources required for successful execution
e.g., amount of memory and disk space, prerequisite soft-

ware packages. Upon scheduling a job, its job request is
matched with the available resources. If all the required re-
sources are found, they are allocated and the job is launched
for execution.

Dynamic resource matching between jobs and resources
has been extensively researched over the years, initially for
homogeneous clusters and more recently for heterogeneous
and grid computing environments [6]. However, one prob-
lem that has rarely been examined is over-provisioning.
That is, jobs are allocated more resources than what they
actually need due to users overestimating the job require-
ments. With over-provisioning, we specifically refer to re-
sources in a given computing machine that can affect the
completion of the job execution. That is, if the capac-
ity of these resources falls below a certain level, the job
cannot complete successfully. Examples of such resources
are memory size, disk space, and even prerequisite soft-
ware packages. We do not deal with the problem of over-
provisioning of the number of machines requested for par-
allel jobs. This is a complicated problem, which is heavily
dependent on the programming model used (i.e., whether
the number of machines is hard-coded in the job source pro-
gram). The over-provisioning problem is the focus of this
paper.

Over-provisioning affects machine utilization as best ex-
plained by the following scenario. Assume two machines,
M1 and M2, and two jobs, J1 and J2. Assume M1 has a
larger memory size than M2. Initially, J1 can run on ei-
ther M1 or M2. However, the resource allocation matches it
with machine M1 because the user requests a memory size
larger than that of M2, but which is possible for M1. Later,
J2 arrives. Due to its memory size request, the only machine
it can use is M1. Now J2 is blocked until J1 completes or
a new node with at least the same memory size as M1 is
added to the cluster.

Research of the over-provisioning problem is difficult
partly because there are few workload files that contain in-
formation on requested versus actual used resources per job.
One workload file we found useful is the LANL CM5 [20]
workload file. It contains a record of 122,055 jobs submit-



Figure 1. An histogram of the ratio between
requested memory size and actual memory
used, per job, in the LANL CM5 workload file.
The vertical axis is logarithmically scaled

ted to a Thinking Machines CM-5 cluster at the Los Alamos
National Lab (LANL) over approximately two years. We
used this workload file in our simulations for estimation of
memory capacity per job (see Section 3).

The over-provisioning problem is demonstrated in Fig-
ure 1. This figure shows a histogram of the ratio of re-
quested to used memory in the LANL CM5 log [20]. As
this figure demonstrates, there are approximately32.8% of
jobs for which there is a mismatch of twice or more between
requested memory and used memory. The regression line in
the figure shows the fit of the over-provisioning ratio to the
percentage of jobs. TheR2 coefficient1 for this regression
line is 0.69. This fitness shows that it is possible to estimate,
with high accuracy, the fraction of jobs with a given over-
provisioning ratio in future log files from similar systems.
This is an important design consideration in some learning
algorithms.

Throughout the rest of the paper, we use the terms ’re-
source estimation’ and ’estimation of resource capacity’ in-
terchangeability. The same holds for the pair of terms ’ac-
tual resources’ and ’actual job requirements’, and ’memory
used’ and ’size of memory used’.

1.2 Related Work

Resource management, including monitoring, matching,
and allocation, is a well documented area of research. Basic

1R2 is a measure of fitness between the points on the graph and the
regression line [19]. It represents the percentage of the data variance ex-
plained by the regression line. A highR2 (i.e., closer to 1) represents a
better fit.

dynamic resource matching is already implemented by all
common scheduler systems (e.g., LoadLeveler [11], Con-
dor [13], PBS [9], and LSF [21]) for mostly homogeneous
clusters. Condor [2] suggest a declarative language (called
ClassAd) and system infrastructure to match job requests
for resources with resource owners. Jobs and resources de-
clare their capabilities, constraints, and preferences using
ClassAds. Each job is matched with a single machine to
run the job; that is, two ClassAds are matched against each
other. The basic match-making process deals only with a
single resource, hence, one-to-one matching. Also, success-
ful matching occurs when the available resource capacity is
equal to or greater than the job request [16].

Several works already extend and optimize dynamic re-
source allocation specifically for heterogeneous comput-
ing environments. An extension for optimal one-to-many
matching between a single job and multiple heterogeneous
resources is described in [14]. The optimal co-matching of
resources is based on application-specific global and aggre-
gation constraints (e.g., total memory size, running all ap-
plication tasks in the same grid domain). Still, in its essence,
it follows the basic matching where on every machine, the
amount of resources is equal to or greater than the job re-
quest. A similar problem is also solved by [17].

A linear programming approach for the resource-
matching problem in a grid is described in [15]. This ap-
proach deals with sharing (not necessarily dedicated) re-
sources and many-to-many matching between all jobs in the
queue and available resources. Using linear programming
instead of a user-specified mechanism as in [14], match-
ing is optimized for different global objectives such as load
balancing, throughput (matching as many jobs as possible),
and minimizing the number of grid resources used.

A fuzzy resource management framework is proposed in
[12]. In this framework, resource allocation is based on a
quantitative model as opposed to a binary model. Every
resource (e.g., machine) is given a fuzzy value between 0
and 1, which indicates its capabilities (e.g., high/low mem-
ory, high/low MFLOPS). Every job is also assigned a fuzzy
value, which indicates its nature (e.g., IO intensive, CPU-
bound). The matching process tries to maximize the match-
ing of different resource capabilities with the job’s nature.
Depending on the categorization of job and resource capa-
bilities, this approach can solve the under-utilization sce-
nario, described in Section 1.1, in a completely different
approach from ours.

Another approach from a different perspective replaces
the user’s runtime estimate with automatic learning of the
job runtimes needed to optimize the backfilling scheduling
algorithms [18]. While this is not a resource-matching prob-
lem per se, it is an example of using a learning method to
optimize over-estimation of the user’s input in scheduling
systems, which is very similar in spirit to the approach sug-



gested in this paper.

1.3 Our Approach

All known approaches for dynamic matching between
jobs and resources select resources whose available capac-
ity is greater than or equal to the users’ specifications. We
propose an approach that can select resources whose capac-
ity might also be lower than the job request.

Our approach is based on using automatic learning tech-
niques to estimate the actual job requirements, which assist
the job scheduler in matching the jobs to computers with
lower resource capacity than that specified by the job re-
quests. These jobs have a high probability of successful
termination even though they are assigned fewer resources
(e.g., memory capacity) or even no resources at all (e.g.,
ignore some software packages that are defined as prereq-
uisites), based on experience learned from earlier submitted
jobs e.g., how many actual resources they used. As such,
our approach deals efficiently with the basic scenario de-
scribed in Section 1.1.

In principle, we envision a resource estimation phase
prior to resource allocation (see Figure 2). When a job is
submitted to the scheduler, its actual job requirements are
estimated, based on past experience with previously sub-
mitted jobs. Then, the resource allocator matches these es-
timated job requirements with available resources instead
of matching with the original job requirements. Once a job
completes (either successfully or unsuccessfully) the esti-
mator gathers feedback information to improve its resource
approximation for future job submissions e.g., actual re-
sources used.

In this work we assume that job requirements are always
equal to or greater than the actual used resources. We do
not attempt to approximate actual job requirements in cases
where the original job requested resources are insufficient
for successful execution of the job. Also, the proposed es-
timator is independent and can be integrated with different
scheduling policies e.g., FCFS, shortest-first-job, backfill-
ing) and different resource allocation schemes. Finally, the
primary goal of the estimator is to free unused resources
which otherwise would have been allocated to jobs. As
such, it is oriented toward heterogeneous cluster environ-
ments in which high throughput (and derived measurements
such as slowdown) are the primary goals.

To the best of our knowledge, this is the first work to
discuss the over-provisioning problem and suggest the in-
tegration of machine learning techniques as part of the so-
lution. We found this interdisciplinary problem a real re-
search challenge. We initially decided to experiment with
simple resource estimation approaches to understand dif-
ferent tradeoffs (e.g., offline versus online modes of oper-
ations) and requirements (e.g., feedback mechanisms) that

Jobs - Resource
estimation

- Resource
matching

- Scheduling - Execution

?
Feedback

Figure 2. Schematic diagram of the schedul-
ing process with estimation of job require-
ments

are imposed on scheduling systems. This paper reports the
results of our work and provides a roadmap for future re-
search.

The rest of this paper is structured as follows. In Sec-
tion 2 we describe how resource capacity estimation can
be achieved using similarity of jobs. We discuss how to
measure such similarity and how it can be used to estimate
resource capacities. In Section 3 we demonstrate the use
of one resource capacity estimation algorithm on a real job
workload file. Finally, Section 4 discusses future directions
for this work.

2 Estimation of Actual Job Requirements

2.1 Prerequisites for Resource Estimation

In this section we present a resource estimation approach
that is dependent upon requested resource capacities for the
jobs and on the experience gathered with similar jobs previ-
ously submitted to the cluster. We discuss other approaches
in Section 4. The similar jobs aredisjoint groups of jobs
submissions that use similar amount of resource capacities
(hence similarity groups). Resources, in this context, are
all the system resources handled by the estimator and are
available to running jobs. If a job does not use a specific
resource, we consider it to consume zero capacity of this
resource.

By “similar amount of resource capacity” we refer to ca-
pacity values that are all within a specific range (hence sim-
ilarity range) for example, 10%. This range value is a qual-
itative measurement for similarity of jobs within a group
(i.e., there isn’t a criterion for non-similar jobs). The lower
the value, the more similar the jobs. It is beneficial to iden-
tify similarity groups with very low ranges. This improves
the effectiveness of the resource estimator as described in
Section 2.3.

The estimator maintains experience information for each
similarity group to estimate the resources for future job sub-
missions that belong to (i.e., are associated with) this simi-
larity group. The experience maintains the current resource
estimation determined so far for the similarity group. In
addition, depending on the resource estimation algorithm



used, it might also include the requested resource capacities
of the previously submitted jobs and the actual resource ca-
pacities that were available (allocated) to these jobs during
execution.

The experience information is updated by feedback gath-
ered per job execution. Feedback can range from implicit
to explicit. Implicit feedback refers to a Boolean value
indicating whether the job completed successfully or not.
This is a basic indication supported by every cluster and
scheduling system.Explicit feedback also includes the ac-
tual amount of resources used by a job upon its termination.
It depends on the availability of a cluster infrastructure to
gather and report this information. The feedback informa-
tion is used to refine the approximation and get closer to
the actual job requirements. Hence the larger the similarity
group, the more feedback is collected and closer approxi-
mation can be determined. Also, the larger the group, the
more jobs that can benefit from accurate approximation val-
ues for their actual resources.

In practice, some balance between explicit and implicit
feedback can probably be expected, that is, explicit feed-
back will be available for some resources, but not all of
them. Explicit feedback is more informative, and so it is
expected that resource estimation will achieve better per-
formance compared to cases where only implicit feedback
is given. An additional drawback of resource estimation
using implicit feedback is that it is more prone to false pos-
itive cases. These cases are, for example, job failures due to
faulty programming (e.g., a job generating an exception) or
faulty machines. These failures might confuse the estima-
tor to assume that the job failed due to too low (insufficient)
estimated resources. In the case of explicit feedback, how-
ever, such confusions can be avoided by comparing the re-
source capacities allocated to the job and the actual resource
capacities used.

2.2 Job Similarity

The most simple case of similar jobs is repeated job sub-
missions. Assume every job is assigned a unique identifier
(ID), which can be used to recognize repeated submissions
of the exact same job (i.e., same program, input data, and
input parameters). In this case, a similarity group would in-
clude all the repeated submissions of a specific job and the
resource estimator would use the experience gathered from
previous submissions of that job to estimate the actual job
requirements. Unfortunately, in many cases, such job IDs
are not available. For example, most of the workload files
in [20] do not include jobs IDs. Also, jobs IDs (assigned
by users) may be a restrictive approach, narrowing the job
space in which similar jobs are detected.

A more general method is to determine a set of parame-
ters of job requests by which similarity groups can be iden-

tified. In this case, every similarity group has job submis-
sions with the same value for all these parameters. As an
example, we experimented with the LANL CM5 workload
file. Since it does not have job IDs, we decided to identify
similar jobs for the LANL CM5 by finding jobs with the
same user ID, application number, and requested memory
size. This resulted in 9885 disjoint sets of similar jobs from
a total of 122,055 jobs.

There is no formal method to determine the best set of
job request parameters for job similarity. In practice, it is
made through trial-and-error search and measurements (see
below). By default, this process will be done offline (i.e.,
not as part of the resource matching process itself), using
traces of explicit feedback from previous job submissions,
as part of the training (customization) phase of the estima-
tor.

Two main measurements that can qualitatively indicate
a successful selection of job request parameters for simi-
larity groups are shown in Figures 3 and 4. Each point of
the histogram in Figure 3 represents all similarity groups of
the same size. The horizontal axis shows sizes of similarity
groups. The vertical axis shows the fraction of jobs from
groups with this size and the total number of jobs in the
workload file. As mentioned earlier, the larger the group,
the more job submissions that would benefit from estima-
tion of the actual resources required (see also Section 2.3).
Thus, ideally, we would expect few larger similar groups
which span across most of the jobs. This is not the case at
hand. As shown by the histogram, there are many similar-
ity groups and in general, the larger the group, the smaller
fraction of jobs spanned. From this perspective, the set of
job request parameters we choose for similar jobs may not
be the best one possible.

Another measurement is shown by the graph in Figure
4. This graph indicates the quality of the job request pa-
rameters for similarity groups in the LANL CM5 workload
file and the potential effectiveness of the resource estimator.
For each group containing ten or more jobs (19.4% of sets,
or 83% of the total jobs in the workload file)2 we plotted
the ratio between the requested memory and the maximum
used memory in each group (the vertical axis) as a func-
tion of the ratio between the maximum used memory and
the minimum used memory in the group (in the horizon-
tal axis). The latter are actually the similarity ranges. As
shown, a large fraction of the similarity groups are at the
lower end of the similarity range values. This indicates the
quality of our criterion for similar jobs.

This graph shows another interesting observation. Nat-
urally, the largest gain in applying estimation would likely
be obtained for jobs where the ratio of requested memory
to maximal used memory is the highest. These are the op-

2The limit of ten jobs was set so as not to clutter the figure and since
the largest gain in estimation is obtained from the largest groups.



Figure 3. The distribution of jobs according
to group size for the LANL CM5 workload file.
The vertical axis is logarithmically scaled

portunities where the largest unused resource capacity can
be saved. The graph in Figure 4 indicates that there are jobs
with a very high (above one order of magnitude) ratio be-
tween requested memory and maximal used memory and
that these jobs are also very similar. Qualitatively, this is a
good starting point for effective resource estimation.

2.3 The Resource Estimation Algorithm

In this section, we present an algorithm for resource es-
timation based on the notion of similar groups. If explicit
feedback is available, the resource estimation can be per-
formed by simply using the actual resources used by the
previous job submission as the estimated resources for the
next job submission in the same similarity group.

The more interesting case is with implicit feedback.
Here we propose using a successive approximation algo-
rithm [8]. For reasons of clarity, we present an algorithm to
deal with only one type of resource.

The pseudo-code of the algorithm is shown in Algorithm
1. Following is a description of the algorithm steps. The
numbers in parentheses refer to line numbers of the pseudo-
code. For every new job submission (2), the algorithm at-
tempts to find its similarity group. If none exists, a new
group is defined. Every groupi maintains the current esti-
mated resource capacity (Ei), initialized with the value of
the requested resource capacity of the first job in the group
(R), and a learning rateαi initialized with the default learn-
ing rate ofα (4). The cluster may not have nodes with the
exact resource capacityEi. Thus, the estimated resource
capacity for the job (E′) is rounded (denoted byd·e) to the
lowest resource capacity within the cluster, greater thanEi

Figure 4. Measuring the possible gain from
resource estimation versus group similarity
in the LANL CM5 workload file. The possi-
ble gain is measured by the ratio of requested
memory to maximal used memory. Similarity
is computed by the ratio of maximum used
memory to the minimum used memory. Each
point in this graph represents a similarity
group

(6). Then, the resource allocator is called with the estimated
resource capacity as the required resource capacity (7) and
the algorithm waits for implicit feedback. If the job termi-
nated successfully, the estimated resource of the similarity
group,Ei, decreases by the corresponding learning param-
eterαi (9). This is to get closer to the actual resources for
future job submissions, if any (9). Otherwise, the algorithm
assumes that the job did not have sufficient resources to
complete successfully. Consequently, it restores the simi-
larity group,Ei, to its previous value (11) and decreases the
learning factor,αi using a global factorβ (12). We take
care not to lowerαi below the value of one. Otherwise,
the estimated resource in (9) would increase instead of de-
crease. Finally, a new value ofEi is defined for subsequent
job submissions (13). These last three steps enable more
fine-grained approximation of the actual resource through
smaller reductions of the estimation resource value.

The initial setting of the estimator parameters,α andβ,
can affect the effectiveness of the algorithm (i.e., gain in
cluster throughput due to more free resources). Settingα
to a large value will require more jobs from each similarity
group to reach good estimation accuracy, since such values
cause inferior initial approximation of actual resources (be-
fore β reducesα and achieves finer approximation). This
will reduce the amount of unused resources that can be
saved and affect the number of jobs that can be co-matched



Algorithm 1 The successive approximation algorithm for
resource estimation.J denotes a job,Ei denotes the esti-
mated resource capacity of the similarity groupi, R is the
value requested by the user,α (αi) andβ are the algorithm
parameters

1: Initialize α > 1 , 0 < β < 1
2: for each submitted jobJ do
3: if a similarity group for the jobJ is not found:then
4: Initialize a new group i, and for this group set

Ei ← R; αi = α
5: end if
6: E′ ← dEie
7: Submit job to scheduler usingE′ as required re-

source capacity
8: if J terminated successfullythen
9: Ei ← E′/αi

10: else
11: Ei ← E′ · αi

12: αi ← max
(
αβ

i , 1
)

13: Ei ← E′/αi

14: end if
15: end for

successfully.
On the other hand, settingα to a value which is too low

will cause the algorithm to be too conservative in trying to
reduce estimated resource capacities (see Section 3.2 for a
demonstration of this phenomenon). For example, consider
a similarity class where jobs request 32MB memory while
using 4MB of memory, submitted to a cluster where ma-
chines have either 32MB, 24MB, or 4MB of memory. As-
sumeα = 2 andβ = 0. When the first job of this class
is submitted, it will be run on the 32MB machines (with an
estimated memory of 32MB). The next submission might
run on the 24MB machines with an estimated memory of
16MB. However, a third iteration will not take place be-
cause the next step in estimation is 8MB, which is greater
than the 4MB of the smallest memory machines. If, how-
ever,α is set to a higher value, for example,α = 10, the
iteration steps would be execution on the 32MB machines
and then on the 4MB machines. This, however, will be
problematic if the actual memory used was 5MB instead
of 4MB, because the estimation will revert back to 32MB,
instead of 24MB, as in the previous example.

Finally, the expected variance of the similarity ranges
i.e., the difference between the minimal and maximal re-
source capacity used inside a similarity group affects the
selection of the value for the estimator parameters. This
variance can be determined during the process of determin-
ing similarity groups (see Section 2.2). Thus, when this
difference is large,α should be set to a low value to reach
fine-grained approximation.

The setting ofβ requires a balance between two goals.
Settingβ to a large value (closer to 1) will cause a very
gradual decrease in the number of steps required for the re-
source capacity estimation. Thus, a more accurate estima-
tion can be attained. However, this can also result in many
jobs failing repeatedly until their correct resources are esti-
mated.

The algorithm above has a few interesting characteristics
to note. First it is very memory space efficient. It only saves
two parameters,Ei andαi, in memory, per every similarity
group. Second, as noted earlier, the larger the similarity
group, the more attempts will be made to reduce and reach
a closer estimation of the actual resources used by the jobs.
Third, this algorithm implicitly assumes that all jobs in a
given similarity group use the same actual resource capac-
ities. This works fine for small similarity ranges. How-
ever, for larger ranges, it impacts the approximation of the
actual resources. Assume, for example, two jobs J1 and
J2, within the same similarity group, with actual resources
of 12MB and 18MB, respectively. Also, assume 64MB as
requested memory for both jobs,α=2 andβ=0, and that
machines in the cluster have memory capacities of 64MB,
32MB, 16MB, and 8MB. If J2 is submitted after J1, the fi-
nal estimated resources would be 32MB since an attempt to
match 16MB for J2 will fail. However, 16MB would be a
better estimate for J2. This problem can be solved using a
class of robust line search algorithms [1]. This extension is
outside the scope of this paper. Finally as mentioned earlier,
this algorithm is designed for a single resource instance. If
one would attempt to use this algorithm for simultaneous
estimation of several resources, modifying several of them
at each step, it would be difficult to know which of these
resources causes the algorithm to terminate. The algorithm
can be generalized for multiple resources using methods of
multidimensional optimization [3].

3 Experiments and Results

3.1 The Simulation Environment

In this section we used the LANL CM5 [20] as a real
workload file to simulate a scheduling process with estima-
tion of memory capacity per job. The CM-5 cluster had
1024 nodes, each with 32MB physical memory. For our ex-
periments, we needed to run this workload file on an hetero-
geneous cluster. Thus, we had to change the workload file.
We found that the minimum change would be to remove
six entries for jobs that required the full 1024 nodes of the
original CM5 cluster. This removal enabled us to rerun the
workload file for a heterogeneous cluster with 512 original
machines (32MB memory) and another 512 machines with
lower memory sizes.

We assumed implicit feedback, which is the general case



for the estimator. We also used the algorithm in Section 2
and similarity of jobs based on the user ID, application num-
ber, and requested memory3 (as discussed in Section 2) for
estimation of actual memory capacity for jobs. The algo-
rithm parameters were set toα = 2, β = 0. Based on
our experiments, these values represent best the tradeoff be-
tween larger and lower values ofα andβ as discussed in
Section 2.3.

In the simulation we used first-come-first-served (FCFS)
as the scheduling policy. We expect that the results of clus-
ter utilization with more aggressive scheduling policies like
backfilling will be correlated with those for FCFS. How-
ever, these experiments are left for future work. We as-
sumed no job pre-emption. Moreover, when a job is sched-
uled for execution, but not enough resources are allocated
for it, it fails after a random time, drawn uniformly between
zero and the execution run-time of that job. Once it fails,
the job returns to the head of the queue.

3.2 Simulation Results

In our first experiment, we measured the effect of re-
source estimation on the cluster utilization [5]. We exper-
imented with a cluster of 512 machines each with 32MB
memory, and an additional 512 machines each with 24MB
memory. Figure 5 shows a comparison of the utilization [5]
with and without resource estimation. With the latter, the
resource matching used the resources specified in the user
requests. As shown, utilization with resource estimation im-
proved by 58%4.

The reason for the improvement in utilization with re-
source estimation is as follows. At low effective loads, most
of the jobs are likely to have sufficient resources as defined
by the corresponding user requests. However, as the load
increases, fewer jobs are likely to have available resources
that match the job requests. Resource estimation increases
the number of these jobs; once scheduled, it enables them to
run on the cluster instead of waiting in the queue for more
resources that they don’t actually need.

Figure 6 shows the effect of resource estimation on slow-
down [5]5. It shows the ratio between the slowdown with-
out resource estimation and the slowdown with resource es-
timation for several loads. As shown, resource estimation
never causes slowdown to increase. Moreover, slowdown
decreases dramatically at a load of 60%. The reason for

3The reader should not be confused. In the previous section we used
the LANL CM5 file just to measure the quality of our general criterion
for similar jobs, not to determine the best criterion possible for this work-
load file. Thus, this does not interfere with using this workload file for
simulation of job scheduling in this section.

4In each case, we used the utilization values at the saturation points
where the linear growth of utilization stops [7].

5The average of the job’s wait time in the queue and its execution time
divided by the execution time. One possible analogy of slowdown is la-
tency in a network.

Figure 5. The effect of resource estimation on
cluster utilization for the LANL CM5 workload
and an heterogeneous cluster of 512 nodes
with 32MB memory and an additional 512 ma-
chines with 24MB memory each

this peak in performance can be explained by the fact that a
FCFS scheduling policy is used. The higher the loads, the
longer the job queue, and the relative decrease in slowdown
is less prominent. The 60% load is a point at which the job
queue is still not extremely long and resource estimation
is already useful for reducing the wait-time of jobs in the
queue.

The advance of memory estimation per job is shown in
Figure 7. It refers to a particular set of similar jobs whose
requested memory was 32MB and the actual memory was
slightly more than 5MB. As shown, the estimated memory
decreased by a factor of two until it dropped below the ac-
tual memory used. This caused the job to terminate abnor-
mally. Consequently, the final estimated memory was 8MB.
For these jobs, a four-fold reduction in memory resources
was found.

All the above experiments were done with one partic-
ular heterogeneous cluster. In the following experiment,
we measured the cluster utilization with and without re-
source estimation for different clusters in which we used
512 machines with 32MB of memory and an additional 512
machines with different memory sizes between 1MB and
32MB. All other simulation parameters remained as in the
previous experiments.

Figure 8 shows the ratio of utilization when using mem-
ory estimation, compared to using user requirements. The
greatest improvement in utilization was obtained for clus-
ters with the 512 machines whose memory size was modi-
fied to between 16MB and 28MB. There is no improvement
for clusters where machine had memory below 15MB and



Figure 6. The effect of resource estimation
on slowdown for the LANL CM5 workload
and an heterogeneous cluster of 512 nodes
with 32MB memory and an additional 512 ma-
chines with 24MB memory each

for the cluster in which all machines had 32MB memory.
Our explanation of this behavior is that the improvement

in utilization through resource estimation is dependent on
only a fraction of jobs for whom estimation was beneficial
and the number of machines they requested. Such jobs have
two relevant characteristics.

First is a cluster issue. That is, the job has more candi-
date machines to run on using the actual resource capacities
compared to when using the requested resource capacities.
One such case is when the requested memory is greater than
the minimal memory size of the cluster machines, while
its actual used memory is lower than this minimal memory
size. Consider, for example, a job which requests 20MB
of memory, while requiring only 10MB to run. If the clus-
ter has machines with 30MB and 15MB of memory, this
job could only be executed on the 30MB machines, if re-
source estimation is not used. However, if the estimation is
successful (for example, ifα = 2), this job could also be
run on the machines with the 15MB memory (see also the
scenario in Section 1.1). In this example, jobs with actual
used memory above 15MB will not benefit from resource
estimation.

Second is an estimation algorithm issue. The estimated
resource capacities should enable running the job on ma-
chines with lower resource capacities which would other-
wise be impossible using the requested resource capacities.
In the case of Algorithm 1, the factorα should be such
that the requested capacity of these jobs will be reduced so
as to enable utilizing cluster machines with lower resource
capacities than originally required. For example, consider

Figure 7. Estimated memory for a single simi-
larity group across several estimation cycles.
The requested memory is 32MB and the job’s
actual memory usage is slightly more than
5MB

the job described above again, but assumeα = 1.2. The
job will not be sent for execution on the lower capacity
machines that have 15MB available, because the requested
memory (20MB) divided byα is equal to 16.7MB, which
is larger than 15MB. This forces the allocation of machines
with 30MB of memory (See Algorithm 1, step 6). However,
this is not the case ifα = 2, as described above.

Thus, only jobs with the above-mentioned characteristics
would benefit from resource estimation. This explains the
two regions in Figure 8 for which there is no improvement
in utilization. First, when all the machines in the cluster
have a memory of 32MB there are no jobs which answer the
first condition above. When the cluster nodes have either
32MB memory or a memory capacity in the the 1-15MB
range there are few jobs for which estimation was effective
due to the second condition. The small benefit to utiliza-
tion was offset by job failures due to under-estimation of
the Algorithm 1.

Moreover, when the number of requested nodes of the
jobs for which estimation is effective are counted and com-
pared to the ratio of utilization with and without resource
estimation (as shown in Figure 8), an even more interesting
observation emerges. In the range of 16-28MB there is a
linear fit (R2 = 0.991) between the node count of the jobs
described above and the improvement in utilization.

This realization of which jobs benefit from resource es-
timation and the almost perfect fit between the node count
of these jobs and the improvement in utilization has one
very advantageous outcome. Given the distribution of re-
quested and actual resource capacities, possibly derived



Figure 8. Ratio of utilization with estimation
to utilization without estimation

from a scheduler log, and a resource estimation algorithm,
it is possible to design a cluster (that is, to choose the ma-
chines constituting it) so as to increase the cluster utiliza-
tion. This can be done by choosing the resource capacities
of the cluster machines to maximize the number of jobs for
which estimation is advantageous, as described above.

Finally, based on our simulations, we conclude that the
algorithm was extremely conservative in its action. For all
the different cluster configuration we tried, at most only
0.01% of job executions resulted in failure due to insuffi-
cient resources, while 15%-40% of jobs were successfully
submitted for execution with lower estimated resources than
the job requests.

4 Summary and Future Work

Heterogeneous clusters and grid infrastructures are be-
coming increasingly popular. One of the differences be-
tween these computing infrastructures and more traditional
homogeneous clusters is that machines have different re-
source capacities, e.g., memory sizes, disk space and in-
stalled software packages. In this article, we demonstrate
that these differences, together with the difficulty users en-
counter when trying to assess job requirements, result in a
problem of over-provisioning of resources. To the best of
our knowledge, this paper is the first to highlight this prob-
lem and to attempt to solve it.

We suggest the idea of estimation of actual resource ca-
pacity to cope with over-provisioning resources. We focus
on resource estimation using the concept of job similarity.
However, this is by no means the only method for resource
estimation. Table 1 suggests four possible algorithms for es-
timation of resource capacity, based on the type of feedback
available and whether it is possible to identify similar jobs

Feedback type
Implicit Explicit

Identification Yes Successive Last instance
of similar approximation identification
jobs No Reinforcement Regression

learning modeling

Table 1. Algorithms for resource estimation

(i.e., similarity groups with small similarity ranges). Note
that the algorithms in the first row of this table are those
discussed in this paper.

The estimation of actual job requirements without job
similarity is best approached using reinforcement learning
(RL) [10], which is a class of learning algorithms where an
agent learns a behavior policy by exploring a state-space.
The agent can take actions for which it receives rewards for
good actions, or penalties for poor actions. The goal of the
agent is to maximize its cumulative reward by modifying its
behavior policy. In the context of resource estimation, the
policy that the RL agent (the resource estimator) would at-
tempt to find, is whether at each time step, a job can be sub-
mitted for execution. The policy is learned on-line, based on
the system state, i.e.; the status of each node (idle or busy,
and if busy, for how long) and the resources of each ma-
chine as well as the requested resource capacities of the jobs
in the queue. A reward would be an improvement in utiliza-
tion or slowdown whereas a penalty would be a decrease
in these parameters. The RL policy is initially random, but
converges to a stable policy over time, via a process of trial
and error. The main difference with methods that use simi-
larity groups is that in RL, the policy is global and applied
to all jobs. For example, if all users over-estimated their re-
source capacities by 100%, the global policy to which RL
will converge is that it is sufficient to send jobs for exe-
cution with only 50% of their requested resources. RL is
general enough to be applied with either explicit or implicit
feedback. Explicit feedback will help to reach a more fine-
grained policy i.e., better estimation of the average actual
resource capacities.

If explicit feedback is available, it is also possible to use
regression models [4] to estimate required resources. Re-
gression models (either linear or non-linear) can be used
to learn a mapping from the request file parameters to the
actual resource capacities used (which is why explicit feed-
back is required for regression models). For example, in
the case of linear models, the regression model estimates
the actual resources as a weighted sum of the requested
resources. Unlike the RL approach, in regression models
a mapping is determined by training using workload files
of previously submitted jobs, each with its requested re-
source capacities and the actual resource capacities used.



This mapping is then used to estimate resource capacities
upon job scheduling. Considering the example above, re-
gression models would learn a mapping which would be to
divide each requested resource capacity by 2. The end result
of regression models might be similar to that of RL with ex-
plicit feedback, but the methods by which these results are
reached is very different. While regression models learn a
mapping from input parameters (the request file) to output
parameters (the used resource capacities), RL learns by trial
and error.

The above is by no means a detailed description of alter-
native approaches. It is our research roadmap and plans for
future work. This is in addition to other open research chal-
lenges derived by this paper. For example, online identifi-
cation of similarity groups (unlike the offline approach dis-
cussed in this paper), dealing with side-effects of jobs fail-
ures due to under-provisioning of resource capacities (be-
cause of too low estimation), and more formal ways to ini-
tialize the learning algorithm’s parameters (e.g.,α andβ).
In this paper, we aimed at defining the foundation and iden-
tifying the issues and tradeoff that need to be addressed for
further research of over-provisioning with learning meth-
ods.
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