
H-0245 (H0611-006) November 12, 2006
Computer Science

IBM Research Report

 B-trees, Shadowing, and Clones

Ohad Rodeh
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

B-trees, Shadowing, and Clones

Ohad Rodeh, IBM Research

Abstract
B-trees are used by many file-systems to represent files
and directories. They provide guarantied logarithmic
time key-search, insert, and remove. Shadowing, or
copy-on-write, is used by other file-systems to im-
plement snapshots, crash-recovery, write-batching and
RAID. Serious difficulties arise when trying to use b-
trees and shadowing in a single system.

This paper is about a set of b-tree algorithms that re-
spects shadowing, achieves good concurrency, and im-
plements cloning (writeable-snapshots). Our cloning al-
gorithm is efficient and allows the creation of a, basically
unlimited, number of clones. These algorithms were
used in an experimental object-disk.

We believe that this work is applicable not only to
object-disks but also to other file-systems.

1 Introduction

B-trees [18] are used by several file systems [3, 20, 10, 9]
to represent files and directories. Compared to traditional
i-nodes [14] b-trees offer guaranteed logarithmic time
key-search, insert and remove. Furthermore, b-trees can
represent sparse files well.

Shadowing is a technique used by some file systems
to ensure atomic update to persistent data-structures [2,
6, 11, 15, 22]. It is a powerful mechanism that has
been used to implement snapshots, crash-recovery, write-
batching, and RAID. The basic scheme is to look at the
file system as a large tree made up of fixed-sized pages.
Shadowing means that to update an on-disk page, the en-
tire page is read into memory, modified, and later written
to disk at an alternate location. When a page is shad-
owed its location on disk changes, this creates a need to
update (and shadow) the immediate ancestor of the page
with the new address. Shadowing propagates up to the
file system root. Figure 1 shows an initial file system
with root A that contains seven nodes. After leaf nodeC

is modified a complete path to the root is shadowed cre-
ating a new tree rooted atA’ . NodesA, B, andCbecome
unreachable and will later on be deallocated.

Figure 1: Modifying a leaf requires shadowing up to the
root.

In order to support snapshots the file system allows
having more than a single root. Each root node points
to a tree that represents a valid image of the file system.
For example, if we were to decide to perform a snapshot
prior to modifyingC thenA would have been preserved
as the root of the snapshot. Only upon the deletion of
the snapshot would it be deallocated. The upshot is that
pages can be shared between many snapshots; indeed,
whole subtrees can be shared between snapshots.

This work was performed as part of research into
building an object-disk storage device (OSD) [21, 4].
Roughly speaking, an OSD is a primitive file system that
is exported through a network interface using a standard-
ized protocol. It was desirable to (1) use b-trees to imple-
ment the persistent OSD data-structures and (2) use shad-
owing for update and snapshots. This would combine
the good properties of both techniques: logarithmic ac-
cess data-structures coupled with simple logging, crash-
recovery, and snapshots. However, we ran into serious
difficulties when trying to use these techniques together.

The classic persistent recoverable b-tree, as described
in the literature [5, 8], is updated using a bottom-up pro-
cedure. Modifications are applied to leaf nodes. Rarely,

1

leaf-nodes split or merge in which case changes propa-
gate to the next level up. This can occur recursively and
changes can propagate high up into the tree. Leaves are
chained together to facilitate re-balancing operations and
range lookups. There are good concurrency schemes al-
lowing multiple threads to update a tree; the best one is
currently b-link trees [17].

The main issues when trying to apply shadowing to
the classic b-tree are:

Leaf chaining: In a regular b-tree leaves are chained to-
gether. This is used for tree rebalancing and range
lookups. In a b-tree that is updated using copy-on-
write leaves cannot be linked together. For exam-
ple, Figure 2 shows a tree whose right most leaf
node isC and where the leaves are linked from left
to right. If C is updated the entire tree needs to be
shadowed. Without leaf-pointers onlyC, B , andA
require shadowing.

Figure 2: A tree whose leaves are chained together. The
right most leaf isC andB is its immediate ancestor. IfC
is modified, the entire tree has to be shadowed.

Without links between leaves much of the b-tree lit-
erature becomes inapplicable.

Concurrency: In a regular b-tree, in order to add a key
to a leafL, in most cases, onlyL needs to be locked
and updated. When using shadowing, every change
propagates up to the root. This requires exclu-
sive locking of top-nodes making them contention
points. Shadowing also excludes b-link trees be-
cause b-link trees rely on in-place modification of
nodes as a means to delay split operations.

Modifying a single path: Regular b-trees shuffle keys
between neighboring leaf nodes for re-balancing
purposes after a remove-key operation. When using
copy-on-write this habit could be expensive. For
example, in Figure 3 a tree with leaf nodeA and
neighboring nodesR andL is shown. A key is re-
moved from nodeA and the modified path includes
3 nodes (shadowed in the figure). If keys from node
L were moved intoA then an additional tree-path

would need to be shadowed. It is better to shuffle
keys fromR.

Figure 3: Removing a key and effects of re-balancing
and shadowing.

This work describes the first b-tree construction that
can coexist with shadowing while providing good con-
currency. This is a fundamental result because b-trees
and shadowing are basic file system techniques.

Our cloning algorithm improves upon the state of the
art. We support a large number of clones and allow good
concurrency when accessing multiple clones that share
blocks. Cloning is a fundamental user requirement; sup-
porting it efficiently is important in today’s file systems.

The rest of this paper is organized as follows: Sec-
tion 2 is about related work, Section 3 described the ex-
perimental object-disk, Section 4 discusses recoverabil-
ity, Section 5 describes the basic algorithms, Section 6
describes cloning, Section 7 describes the run-time sys-
tem, Section 8 shows performance, Section 9 discusses
future work, and Section 10 summarizes.

2 Related work

There is an alternate style of copy-on-write used in some
databases [12] that is beyond the scope of this paper. The
only form of shadowing discussed here is the one de-
scribed in Section 1.

There are few papers that discuss concurrency together
with recoverability of b-trees, see [5, 8]. The challenge
in constructing an algorithm that achieves both goals is
that recoverability severely constrains concurrency. Fur-
thermore, we found no published papers on concurrency,
recoverability, and b-trees with the added constraint of
shadowing.

This work makes use of top-down b-trees; these were
first described in [13], [25], and [23].

Some file-systems use b-trees to represent directo-
ries [3, 20, 9]. One of the difficulties in handling direc-
tory entries is that, unlike b-tree values in the OSD, they
are variable size. We believe that the b-trees described
here can be adapted to handle variable size values.

2

It is possible to use disk-extents instead of fixed-sized
blocks [3, 20, 9]. We have experimented with using ex-
tents in the OSD. The resulting algorithms are similar in
flavor to those reported here and we do not describe them
for brevity.

The WAFL system [6] has a cloning algorithm that is
closest to ours. Although the basic WAFL paper dis-
cusses read-only snapshots the same ideas can be used
to create clones. WAFL has two main limitations which
we improve upon:

1. WAFL is limited to 32 snapshots.

2. In WAFL the free-space bits of all blocks that be-
long to a newly created snapshot need to be set to 1
as part of snapshot creation.

In our algorithm

1. The limit is232−1 for the same space cost as WAFL

2. Only the children of the root of the clone are in-
volved in snapshot creation. Free-space map oper-
ations are performed gradually through the lifetime
of the clone.

There is a long standing debate whether it is better to
shadow or to write-in-place. The wider discussion is be-
yond the scope of this paper. This work is about a b-tree
technique that works well with shadowing.

3 Object-disk (OSD)

An object-disk, according to the SNIA/T10 specifica-
tion [21, 4], is essentially a primitive file system that is
exported through a network interface using a standard-
ized protocol. The OSD contains objects, which have
64-bit names, and an object-catalog that indexes them.
There are no directories in an OSD. Objects are much
like files in a regular file system except that they are
likely to be sparse. The important commands are: cre-
ate, delete, read, and write object. Snapshots are also
supported. There is a command that creates a writeable
snapshot of the OSD object-system.

Our group built an experimental object-disk. The two
main types of persistent data-structures in our OSD are
objects and the object-catalog. B-trees were a natural fit
for these two data structures.

The design point for the OSD was that it would be
part of a storage controller. Such systems typically have
severe limits on memory and CPU cycles. Therefore, It
was important to try to maintain a small footprint. Using
a generic database with full fledged transactions was not
possible.

Figure 4: An object-catalog that points to objectsA and
B.

Space is managed in 4KB blocks, also called pages.
Disk addresses are represented by 64-bits to accommo-
date large disks. An object contains data blocks that are
aggregated using a b-tree. The b-tree maps offsets in the
object to data pages on disk. The object-catalog (OCAT)
maps an object-id to the root-page of the b-tree for that
object; the OCAT is also a b-tree. Figure 4 shows an ex-
ample where the catalog points to two objects:A andB.
The b-tree index nodes are laid out on 4KB meta-data
pages.

The b-trees representing objects and the catalog both
map 64-bit keys to 64-bit values. More generally, fixed-
sized keys to fixed-sized values.

Section 5 describes the b-tree algorithms for create,
delete, lookup-key, remove-key, and insert-key. Here, we
show how several object-disk commands are mapped to
these operations.

A create-object(B) command is implemented by:

* B-root = lookup-key(OCAT-root, B)
* if (B-root != 0)

- return obj-already-exists
else

- B-root = create-tree()
- insert-key(OCAT, B, B-root)

A delete-object(B) command is implemented by:

* B-root = lookup-key(OCAT-root, B)
* if (B-root == 0)

- return obj-does-not-exist
else

- remove-key(OCAT-root, B)
- delete-tree(B-root)

3

A read(B, ofs, len=4KB) command, when the offset is
4KB aligned, is implemented by:

* B-root = lookup-key(OCAT-root, B)
* if (B-root == 0)

- return obj-does-not-exist
else

- addr = lookup-key(B-root, ofs)
- if (addr == 0) data=zeros
- otherwise, read data from addr
- send data to client

A write(B, ofs, len=4KB, data) command, when the
offset is 4KB aligned, is implemented by:

* B-root = Lookup-key(OCAT-root, B)
* if (B-root == 0)

- return obj-does-not-exist
else

- addr = allocate 4KB on disk
- write data to disk at addr
- insert-key(B-root, ofs, addr)

In order to support writable snapshots on the OSD we
chose to support cloning at the b-tree level. Toclonea
b-tree means to create a writable copy of it that allows
all operations: lookup, insert, remove, and delete. This
is described in Section 6.

The expected workload is mostly read/write com-
mands; create/delete commands are less frequent. Clone
commands are assumed to be infrequent. In terms of b-
tree operations this translates into a high frequency of
lookup-key/insert-key and a low frequency of remove-
key/create/delete.

The OSD handles multiple commands concurrently.
When a command arrives, the runtime system checks if
there are enough resources to execute it. If so, the re-
sources are reserved and the command is logged and ex-
ecuted; otherwise, the command is rejected. In order to
simplify the runtime system we chose not to abort nor
roll back commands. Therefore, it is crucial to com-
pute in advance a worst-case estimate on the command’s
resource-usage and to practice deadlock avoidance. The
two important resources are memory-pages and disk-
pages. The amount of memory, depending on configu-
ration, can be very low, so memory-usage of each com-
mand should be low.

This design means that the b-tree implementation has
to:

1. Have good concurrency

2. Work well with shadowing

3. Use deadlock avoidance

4. Have guarantied bounds on disk-space and number
of memory-pages required per each b-tree operation

Section 5 goes into how such a b-tree is constructed.

4 Recoverability

Shadowing file systems ensure recoverability by tak-
ing periodic checkpoints, and logging commands in-
between. A checkpoint includes the entire file system
tree; once a checkpoint is successfully written to disk the
previous one can be deleted. If a crash occurs the file
system goes back to the last complete checkpoint and re-
plays the log.

For example, Figure 5(a) shows an initial tree. Fig-
ure 5(b) shows a set of modifications marked in gray.
Figure 5(c) shows the situation after the checkpoint has
been committed and unreferenced pages have been deal-
located.

(a) Initial file system tree

(b) Modifications

(c) New checkpoint

Figure 5: Checkpoints.

The process of writing a checkpoint is efficient be-
cause modifications can be batched and written sequen-
tially to disk. If the system crashes while writing a check-
point no harm is done, the previous checkpoint remains
intact.

Command logging is attractive because it combines
into a single log-entry a set of possibly complex modi-
fications to the file system.

This combination of checkpointing and logging allows

4

an important optimization for the shadow-page primitive.
When a page belonging to a checkpoint is first shadowed
a cached copy of it is created and held in memory. All
modifications to the page can be performed on the cached
shadow copy. Assuming there is enough memory, the
dirty page can be held until the next checkpoint. Even
if the page needs to be swapped out, it can be written to
the shadow location and then paged to/from disk. This
means that additional shadows need not be created.

The OSD implements cloning. Checkpoints are sim-
ply clones that users cannot access. Clones are described
in Section 6.

5 Base algorithms

The variant of b-trees that is used here is known asb+-
trees. In a b+-tree leaf nodes contain key-data pairs,
index nodes contain mappings between keys and child
nodes; see Figure 6. The tree is composed of individual
nodes where a node takes up 4KB of disk-space. The in-
ternal structure of a node is based on [7]. There are no
links between leaves.

Figure 6: Three types of nodes in a tree;A is a root node,
B is an index node, andC is a leaf node. Leaves are not
linked together.

Shadowing a page can cause the allocation of a page
on disk. When a leaf is modified all the nodes on the path
to the root need to be shadowed. If trees are unbalanced
then the depth can vary depending on the leaf. One leaf
might cause the modification of 10 nodes, another, only
2. Here, all tree operations maintain a perfectly balanced
tree; the distance from all leaves to the root is the same.

The b-trees use a minimum key rule. If nodeN1 has
a child nodeN2 then the key inN1 pointing toN2 is
smaller or equal to the minimum of(N2). For example,
figure 7 shows an example where integers are the keys.
In this diagram and throughout this document data val-
ues that should appear at the leaf-nodes are omitted for
simplicity.

B-trees are normally described as having betweenb
and2b − 1 entries per node. Here, these constraints are
relaxed and nodes may contain betweenb and 2b + 1

Figure 7: A b-tree with two levels.

entries whereb ≥ 2. For performance reasons it is desir-
able to increase the upper bound to3b; however, in this
Section we limit ourselves to the range[b . . . 2b + 1].

A pro-active approach to rebalancing is used. When a
node with2b + 1 entries is encountered during an insert-
key operation, it is split. When a node withb entries
is found during a remove-key operation it isfixed. Fix-
ing means either moving keys into it or merging it with
a neighbor node so it will have more thanb keys. Pro-
active fix/split simplifies tree-modification algorithms as
well as locking protocols because it prevents modifica-
tions from propagating up the tree. However, care should
be taken to avoid excessive split/fix activity. If the tree
constraints wereb and2b − 1 then a node with2b − 1
entries could never be split into two legal nodes. Further-
more, even if the constraints wereb and2b a node with2b
entries would split into two nodes of sizeb which would
immediately need to be merged back together. Therefore,
the constrains are set further away enlarging the legal set
of values. In all the examples in this sectionb = 2 and
the set of legal values is[2 . . . 5].

During the descent through the treelock-coupling[19]
is used. Lock coupling (or crabbing) is locking children
before unlocking the parent. This ensures the validity of
a tree-path that a task is traversing without pre-locking
the entire path. Crabbing is deadlock free.

When performing modifying operations, such as in-
sert/remove key, each node on the path to the leaf is shad-
owed during the descent through the tree. This combines
locking, preparatory operations, and shadowing into one
downward traversal.

5.1 Create

In order to create a new b-tree a root page is allocated
and formatted. The root page is special, it can contain
zero to2b + 1 entries. All other nodes have to contain
at leastb entries. Figure 8 presents a tree that contains a
root node with 2 entries.

Figure 8: A b-tree containing only a root.

5

5.2 Delete

In order to erase a tree it is traversed and all the nodes and
data are deallocated. A recursive post-order traversal is
used.

An example for the post-order delete pass is shown in
Figure 9. A tree with eight nodes is deleted.

(a) Tree to be deleted

(b) A post-order traversal

Figure 9: Deleting a tree.

5.3 Insert key

Insert-key is implemented with a pro-active split policy.
On the way down to a leaf each full index node is split.
This ensures that inserting into a leaf will, at most, split
the leaf. During the descent lock-coupling is used. Locks
are taken in exclusive mode. This ensures the validity of
a tree-path that a task is traversing.

Figure 10 shows an example where key 8 is added
to a tree. Node[3, 6, 9, 15, 20] is split into [3, 6, 9] and
[15, 20] on the way down to leaf[6, 7]. Gray nodes have
been shadowed.

5.4 Lookup key

Lookup for a key is performed by an iterative descent
through the tree using lock-coupling. Locks are taken in
shared-mode.

5.5 Remove key

Remove-key is implemented with a pro-active merge
policy. On the way down to a leaf each node with a min-
imal amount of keys is fixed, making sure it will have

Figure 10: Inserting key8 into a tree. Gray nodes have
been shadowed. The root node has been split and a level
was added to the tree.

at leastb + 1 keys. This guaranties that removing a key
from the leaf will, at worst, effect its immediate ances-
tor. During the descent in the tree lock-coupling is used.
Locks are taken in exclusive mode.

For example, Figure 11 shows a remove-key operation
that fixes index-node[3, 6] by merging it with its sibling
[15, 20].

Figure 11: Removing key10 from a tree. Gray nodes
have been shadowed. The two children of the root were
merged and the root node was replaced.

5.6 Resource analysis

This section analyzes the requirements of each operation
in terms of memory and disk-pages.

For insert/remove key three memory pages are needed
in the worst case; this happens if a node needs to be split
or fixed during the downward traversal. The number of
modified disk-pages can be 2× tree-depth. Since the tree

6

is balanced the tree depth is, in the worst case, equal to
logb(N); whereN is the number of keys in the tree. In
practice, a tree of depth 6 is more than enough to cover
huge objects and object-catalogs.

For lookup-key two memory-pages are needed. For
lookup-range three memory-pages are needed.

5.7 Comparison to standard b-tree

A top-down b-tree with bounds[b, 2b + 1] is no worse
than a bottom-up b-tree with bounds[b + 1, 2b]. The
intuition is that a more aggressive top-down algorithm
would never allow nodes withb or 2b + 1 entries; such
nodes would be immediately split or fixed. This means
that each node would contain betweenb + 1 and2b en-
tries. This is, more or less, equivalent to a bottom-up
b-tree withb′ = b + 1.

In practice, the bounds of the number of entries in a
node are expanded to[b, 3b]. This improves performance
because it means that there are few spurious cases of
split/merge. The average capacity of a node is around
2b.

6 Clones

This section builds upon Section 5 and adds the neces-
sary modifications so that clones will work.

There are several desirable properties in a cloning al-
gorithm. AssumeTp is a b-tree andTq is a clone ofTp,
then:

• Space efficiency:Tp andTq should, as much as pos-
sible, share common pages.

• Speed: creatingTq from Tp should take little time
and overhead.

• Number of clones: it should be possible to cloneTp

many times.

• Clones as first class citizens: it should be possible
to cloneTq.

A trivial algorithm for cloning a tree is copying
it wholesale. However, this does not provide space-
efficiency nor speed. The method proposed here does
not copy the entire tree and has the desired properties.

The main idea is to use a free space maps that main-
tains a reference count (ref-count) per block. The ref-
count records how many times a page is pointed to. A
zero ref-count means that a block is free. Essentially, in-
stead of copying a tree, the ref-counts of all its nodes are
incremented by one. This means that all nodes belong
to two trees instead of one; they are all shared. However,

instead of making a pass on the entire tree and increment-
ing the counters during the clone operation, this is done
in a lazy fashion.

Throughout the examples in this section treesTp and
Tq are used. TreeTp has rootP and treeTq has root node
Q. Nodes whose ref-count has changed are marked with
diagonals, modified nodes are colored in light gray. In or-
der to better visualize the algorithms reference counters
are drawn inside nodes. This can be misleading, the ref-
counters are physically located in the free-space maps.

6.1 Create

The algorithm for cloning a treeTp is:

1. Copy the root-node ofTp into a new root.

2. Increment the free-space counters for each of the
children of the root by one.

An example for cloning is shown in Figure 12. Tree
Tp contains seven nodes andTq is created as a clone of
Tp by copying the rootP to Q. Both roots point to the
shared children:B andC. The reference counters forB
andC are incremented to 2.

Notice that in Figure 12(II) nodesD, E, G andH have
a ref-count of one although they belong to two trees. This
is an example of lazy reference counting.

6.2 Lookup

The lookup-key and lookup-range algorithms are unaf-
fected by the modification to the free-space maps.

6.3 Insert-key and Remove-key

Changing the way the free-space works impacts the
insert-key and remove-key algorithms. It turns out that a
subtle change is sufficient to get them to work well with
free-space ref-counts.

Before modifying a page, it is “marked-dirty”. This
lets the run-time system know that the page is about to
be modified and gives it a chance to shadow the page if
necessary.

Without clones, the only requirement for the mark-
dirty operation is to check if the page does not belong
to the previous checkpoint; if so, the page must be shad-
owed. Otherwise, it can be modified in place. With
clones, this is more subtle. The following procedure is
followed when marking-dirty a clean pageN :

1. If the reference count is 1 nothing special is needed.
This is no different than without cloning.

7

(I) Initial treeTp (II) Creating a cloneTq

Figure 12: Cloning a b-tree.

2. If the ref-count is greater than 1 and pageN is relo-
cated from addressL1 to addressL2, the ref-count
for L1 is decremented and the ref-count forL2 is
made 1. The ref-count ofN ’s children is incre-
mented by 1.

For example, Figure 13 shows an example of a two
trees,Tp and Tq, that start out sharing all their nodes
except the root. Initially, all nodes are clean. A key is
inserted into leaf nodeH. This means that a downward
traversal is performed and nodesQ,C andH are shad-
owed. In stage (II) nodeQ is shadowed. Its ref-count is
one, so nothing special is needed. In stage (III) nodeC
is shadowed, this splitsC into two versions, one belong-
ing toTp the other toTq each with a ref-count of 1. The
children ofC are nodesH andG, their ref-count is incre-
mented to two. In stage (IV) nodeH is shadowed, this
splits H into two separate versions each with ref-count
1.

Performing the mark-dirty in this fashion allows de-
laying the ref-count operations. For example, in Fig-
ure 13(I) nodeC starts out with a ref-count of two. At
the end of the insert operation there are two versions of
C each with a ref-count of 1. NodeG starts out with a
ref-count of 1, because it is shared indirectly betweenTp

andTq. At the end of the operation, it has a ref-count
of two because it is pointed-to directly from nodes inTp

andTq.
This modification to the mark-dirty primitive gets the

insert-key and remove-key algorithms to work.

6.4 Delete

The delete algorithm is also affected by the free-space
ref-counts. Without cloning, a post-order traversal is
made on the tree and all nodes are deallocated. In or-
der to take ref-counts into account a modification has to
be made. Assume treeTp is being deleted and that during
the downward part of the post-order traversal nodeN is
reached:

1. If the ref-count ofN is greater than 1 then decre-
ment the ref-count and stop downward traversal.
The node is shared with other trees.

2. If the ref-count ofN is one then it belongs only to
Tp. Continue downward traversal and on the way
back up deallocateN .

Figure 14 shows an example whereTq andTp are two
trees that share some of their nodes. TreeTq is deleted.
This frees nodesQ,X, andZ and reduces the ref-count
on nodesC andY to 1.

6.5 Resource and performance analysis

The modifications made to the basic algorithms do not
add b-tree node accesses. This means that the worst-case
estimate on the number of memory-pages and number of
disk-blocks used per operation remains unchanged. The
number of free-space accesses increases. This has a po-
tential of significantly impacting performance.

Several observations make this unlikely:

• Once sharing is broken for a page and it belong to
a single tree, there are no additional ref-count costs
associated with it.

• If a page is dirty and remains in-memory, no addi-
tional checking is needed.

• The vast majority of b-tree pages are leaves. Leaves
have no children and therefore do not incur addi-
tional overhead.

A major cost to free-space counters is the increased
size of free-space map. Instead of keeping a bit per block
like most file systems, a counter is needed. If 32-bit
counters are used then the map grows by a factor of 32.
This also allows supporting up to232 clones. The WAFL
file system [6] uses 32-bits in its free-space map and it
is reputed to have to good performance. This gives the
author reason to believe that this issue can be negotiated.

8

(I) Initial trees,Tp andTq (II) ShadowQ

(III) shadowC (IV) shadowH

Figure 13: Inserting into a leaf node breaks sharing across the entire path.

(I) Initial treesTp andTq (II) After deletingTq

Figure 14: Deleting a b-tree rooted atQ.

The test framework used in this work includes a free-
space map that resides in memory. This does not al-
low a serious attempt to investigate the costs of a large
free-space map. Furthermore, even a relatively large b-
tree that takes up a gigabyte of disk-space can be rep-
resented by a 1MB free-space map that can be held in
memory. Therefore, investigating this issue remains for
future work.

Concurrency remains unaffected by ref-counts. Shar-
ing on any node that requires modification is quickly bro-
ken and each clone gets its own version.

7 The run-time system

A minimal run-time system was created for the b-tree.
The rational is to focus on the tree algorithms themselves

rather than any fancy footwork that can be performed by
a log-structured file-system.

The b-tree is split into 4KB pages that are paged
to/from disk. A page-cache is situated between the b-
tree and the disk; it can cache clean and dirty pages. A
simple clock scheme is implemented, no attempt is made
to coalesce pages written to disk into large writes, no
pre-fetching is performed. In order to shadow a pageP ,
the page is first read from disk and put into the cache.
As long asP stays in cache it can be modified in mem-
ory. Once there is memory pressure,P is written to disk.
If P belongs to the old checkpoint, it has to be written
to an alternate location; otherwise, it can be written in
place. This way, the cache absorbs much of the overhead
of shadowing, especially for heavily modified pages.

The free-space was implemented with a simple in-

9

memory map. There is a ref-count per block. This was
done to eliminate any noise generated by the particulars
of the OSD free-space component.

A log was not used, it is assumed that the OSD protects
all b-tree operations through logical logging of com-
mands.

A special threading package was used, it is similar
to [1]. The idea is to use a single operating-system
thread, themain-thread, to run all the complex code:
caching, free-space, b-tree, command logic, etc. Sepa-
rate operating-system threads perform the heavy lifting:
networking and IO. The main-thread executes multiple
light-weight tasks. Tasks are much like regular threads
except that they are non-preemptive and they cannot per-
form regular system-calls. A task yields the CPU either
voluntarily or when it performs an IO. In the experimen-
tal setup for this work most of the OSD code has been
eliminated; the upshot is that only the main-thread is ex-
ecuted along with the IO threads. This limits any b-tree
code to execute on a single CPU. While the b-tree algo-
rithms themselves are thread-safe for any threading pack-
age, they are limited here to execute on a single CPU.

This system does not contain any kernel code. It was
built and tested on a Linux operating system with an Intel
processor.

8 Performance

The OSD was built to be part of a storage controller. It
was specified to be able to manage terrabytes of disk
space with gigabytes of memory. Most of the memory
was to be used for caching customer data, most of the
CPU cycles were to be spent on networking and IO. The
b-tree was assumed to reside mostly on disk, with fre-
quently accessed pages in memory. The b-tree code was
to use little CPU.

In order to achieve good performance the b-tree had
to:

1. Work well when most of the tree is not in-memory

2. Use little CPU

3. Get good concurrency from the disk subsystem

In this section we show that the algorithms, indeed,
achieve these goals.

In [24] there was a prediction that top-down algo-
rithms will not work well. This is because every tree
modification has to exclusively lock the root and one of
its children. This creates a serialization point. We found
that not to be a problem in practice. What happens is that
the root and all of its children are almost always cached
in memory, therefore, the time it takes to pass the root
and its immediate children is very small.

In the experiments reported in this section the entries
are of size 16bytes: 8bytes for a key and 8bytes for data.
A 4KB node can contain up to 235 such entries.

The test-bed used in the experiments was a single ma-
chine connected to a DS4400 disk controller through
Fiber-Channel. The machine was a dual-CPU Xeon
(Pentium4) 2.4Ghz with 2GB of memory. It ran a Linux-
2.6.9 operating system. The b-tree was laid out on a vir-
tual LUN taken from a DS4400 controller. The LUN is
a RAID5 in an 8+P pattern. Strip width is 64KB, this
means that full stripe is8×64KB = 512KB. Read and
write caching is disabled.

The trees created in the experiments were spread
across a 1GB area on disk. Table 1 shows the IO-
performance of the disk subsystem for such an area.
Three workloads were used (1) read a random page (2)
write a random page (3) read and write a random page.
When using a single thread a 4KB write takes 18 mil-
liseconds, this is due to the RAID-5 penalty for short
writes. A short write requires 2 reads and 2 writes. A
4KB Read takes about 5 milliseconds. Reading a random
4KB page and then writing it back to disk takes 24 mil-
liseconds. When using 10 threads throughput improves
by a factor of six.

#threads op. time per op.(ms) ops per second

10 read N/A 1283
write N/A 421
R+W N/A 311

1 read 4.8 207
write 18.3 68
R+W 24.6 41

Table 1: Basic disk-subsystem capabilities. Three work-
loads were used (1) read a random page (2) write a ran-
dom page (3) read and write a random page. Using 10
threads increases the number of operations per second
by a factor of six.

Therefore, large trees with about 64,000 leaves were
used to empirically assess performance. It turned out
that the only way to quickly build such large trees was
through an append only workload. The even numbers
{0,2,4, . . .} were chosen as keys; they were inserted se-
quentially into the tree.

Two base-trees were usedT235 andT150. The number
of keys in a node is betweenb and3b. T235 has a maximal
fanout of 235 entries andb is equal to235

3 = 78. T150 has
a maximal fanout of 150 andb is equal to150

3 = 50. A
node can hold more than 150 entries; therefore, this limit
is artificially enforced by wasting some of the space in a
page.

10

T235

Maximal fanout: 235
Legal #entries: 78 .. 235
Contains: 7520000 keys and 64827 nodes (64273
leaves, 554 index-nodes)
Tree depth is: 4
Root degree is: 4
Index node average fanout: 117
Leaf node average capacity: 117

T150

Maximal fanout: 150
Legal #entries: 50 .. 150
Contains: 4800000 keys and 64864 nodes (63999
leaves, 865 index-nodes) Tree depth is: 4
Root degree is: 11
Index node average fanout: 75
Leaf capacity average capacity: 75.00

T235 is representative of the OSD catalog.T150 is rep-
resentative of a tree where the key-value pairs take up
20bytes instead of 16bytes. This is an approximation of
a tree that holds disk-extents. BothT235 andT150 have
an average occupancy of 50%. This is caused by the
append-only workload used to create them. When using
append, the right edge of the tree keeps splitting leaving
behind half-full nodes.

A set of experiments starts by creating a base-tree of
a specific fanout and flushing it to disk. A special proce-
dure is used. A cloneq is made of the base tree. For read-
only workloads 1000 random lookup-key operations are
performed. For other workloads the clone is aged by per-
forming 1000 random insert-key/remove-key operations.
Then, the actual workload is applied toq. At the end
the clone is deleted. This procedure ensures that the base
tree, which took a very long time to create, isn’t damaged
and can be used for the next experiment. Each measure-
ment is performed five times and results are averaged.
The standard deviation for all the experiments reported
here was 1% of the average or less.

For each experiment the number of cache-pages is
fixed at initialization time to be some percentage of the
total number of pages in the tree. This ratio is called the
in-memorypercentage.

Our b-tree construction is novel and there are no
existing data-structures to compare it against. There-
fore, we compare it toideal performance that could be
achieved with a data-structure the could somehow locate
leaf nodes without incurring the overheads of an index-
ing structure. This would allow devoting the entire cache
to leaf nodes. To compute ideal performance we assumed
that the CPU was infinitely fast.

8.1 Effect of the in-memory percentage on
performance

The in-memory percentage has a profound effect on per-
formance. A pure random lookup-key workload was run
againstT235 with in-memory ratios 100%, 50%, 10%,
5% and 2%. Each experiment included 30000 random
lookup-key operations and throughput per second was
calculated. If the in-memory percentage isx then, under
ideal performance,x of the workload is absorbed by the
cache and the rest of workload reaches the disk; through-
put per second would be1283 × 1

1−x . Table 2 summa-
rizes the results.

Tree % in-memory 1 task 10 tasks ideal

T235 100 91354 91705 ∞
50 393 2431 2566
10 219 1374 1425
5 207 1306 1350
2 197 1230 1309

Table 2: Throughput results, measured in operations per
second. A pure random lookup-key workload is applied
to T235.

When the entire tree is in memory there is no differ-
ence in performance between ten tasks and one. This
is because all tasks share a single CPU, and it is 100%
utilized. When memory percentages drop, the disk-
parallelism comes into play. For the other percentages
a speedup of about x6 is achieved.

Performance with 10 tasks is very close to ideal per-
formance, except for the case where the entire tree is in-
memory. There, it is hard to compete with an infinitely
fast CPU.

Performance is logarithmic with respect to cache size.
This is because the clock algorithm is able to keep all
the index nodes forT235 in memory. This means that
operations like lookup/remove/insert-key access, in most
cases, one on-disk leaf page.

Performance differences between 10%, 5%, and 2%
were very small, therefore, for the rest of the experiments
we focused on the 5% case.

8.2 Latency

There are four operations whose latency was measured:
lookup-key, insert-key, remove-key, and append-key. In
order to measure latency of operationx an experiment
was performed wherex was executed 30000 times, and
total elapsed time was measured. The latency per op-
eration was computed as the average. Operations were
performed with randomly chosen keys.

11

Table 3 shows the latency of the b-tree operations on
the two trees. The cost of a lookup is close to the cost
of a single disk read. An insert-key requires reading a
leaf from disk and modifying it. The dirty-page is later
flushed to disk. The average cost is therefore a disk-read
and a disk-write, or, about 24ms. The performance of
remove-key is about the same as an insert-key; the algo-
rithms are very similar. Append always costs 12us be-
cause the pages it operates on are always cached.

Tree Lookup Insert Remove-key Append

T235 4.780 24.175 24.437 0.012
T150 4.839 24.567 24.372 0.012

Table 3: Latency for single-key operations in millisec-
onds.

8.3 Throughput

Throughput was measured using four workloads taken
from [24], Search-100, Search-80, Update, and Insert.
Each workload is a combination of single-key opera-
tions. Search-100is the most read-intensive, it per-
forms 100% lookup.Search-80mixes some updates with
the lookup workload; it performs 80% lookups, 10%
remove-key, and 10% add-key.Update is an update
mostly workload; it performs 20% lookup, 40% remove-
key, and 40% add-key.Insert is an update-only work-
load; it performs 100% insert-key. Table 4 summarizes
the workloads.

lookup insert remove

Search-100 100% 0% 0%
Search-80 80% 10% 10%
Modify 20% 40% 40%
Insert 0% 100% 0%

Table 4: The four different workloads.

Each operation was performed 30000 times and
throughput per second was calculated. Five such experi-
ments were performed and averaged. The throughput test
compared running a workload using one task compared
with the same workload but executed concurrently with
ten tasks. CPU utilization throughout all the tests was
about 1%; the tests were all IO bound.

Table 5 shows ideal performance and the results for a
single task and for ten tasks. There is little difference in
performance betweenT235 andT150 this is because the
caching algorithm is able to place all the index nodes in
cache. The throughput gain in all cases is x6 or slightly
better.

In the Search-100workload each lookup-key trans-
lates into a disk-read for the leaf node. This means that
ideal throughput is1283× 1

0.95 = 1350 requests per sec-
ond. Actual performance is within 3% of ideal.

In theInsertworkload each insert-key request is trans-
lated, roughly, into a single disk-read and a single disk-
write of a leaf. This means that ideal throughput is
311 × 1

0.95 = 327. Surprisingly, actual performance ex-
ceeds ideal performance by about 10%. This is because
we are using a write-back cache. After each experiment
about 2000 dirty leaf nodes remain in cache and the cost
of writing them to disk is not accounted for. This unfairly
disadvantages the computation of ideal performance.

TheModify andSearch-80workloads are somewhere
in the middle betweenInsert andSearch-100. Overall,
the b-tree performs no worse than 4% less than ideal.

Tree #tasks Src-100 Src-80 Modify Insert

T235 10 1307 763 407 359
1 209 104 47 41

T150 10 1284 752 407 357
1 206 102 47 40

Ideal 1350 798 384 327

Table 5: Throughput results, measured in operations per
second.

8.4 Append

The performance of append has very different charac-
teristics than performance of other operations. It is in-
structive to examine a 100% append workload. The base
trees,T235 andT150, were built using a single task that
appended to them. The time to create the trees and the
throughput in append operations/second is shown in Ta-
ble 6. The in-memory percentage was 5%

Tree #keys Total time (sec) append ops/sec

T235 7520000 1565.1 4800
T150 4800000 1564.8 3069

Table 6: Append throughput results when building trees
T235 andT150.

These throughput numbers are higher by two orders of
magnitude compared with other workloads with a single
task. This is because append has very good locality, it
needs only the nodes at the right edge of the tree. If they
are all in-memory then append can be performed at CPU
speed. Once in a while, a split is needed which requires,
in most cases, one additional page. Overall, there are
very few IOs needed to perform this workload.

12

8.5 Performance impact of checkpoints

During a checkpoint all dirty pages must first be written
to disk before they are reused. It is not possible to con-
tinue modifying a dirty-page that is memory-resident, it
must be evicted to disk first in order to create a consistent
checkpoint.

In terms of performance of an ongoing workload, the
worst-case occurs when all memory-resident pages are
dirty at the beginning of a checkpoint. The best case
occurs when all memory-resident pages are clean. Then,
the checkpoint occurs immediately, at essentially no cost.

In order to assess performance the throughput tests
were run againstT235. After 20% of the workload was
complete, that is, after 6000 operations, a checkpoint was
initiated. Table 7 shows performance for treeT235 with
10 tasks. The first row shows results when running a
checkpoint. The second row shows base results, for ease
of reference.

For theSearch-100workload there was virtually no
degradation. This is because there are no dirty-pages to
destage. Other workloads suffer between 3% and 10%
degradation in performance.

Tree Src-100 Src-80 Modify Insert

checkpoint 1302 697 388 346
base 1307 763 407 359

Table 7: Throughput results, when a checkpoint is per-
formed during the workload. The in-memory percentage
is 5%, the tree isT235.

8.6 Performance for clones

In order to assess the performance of cloning a special
test was performed. Two clones of the base tree are
created,p and q. Both clones are aged by performing
1000

2 = 500 operations on them. Finally,300002 = 15000
operations are performed against each clone.

Table 8 shows performance for treeT235 with 10 tasks.
The first row shows results with 2 clones. The second
row shows base results, for ease of reference.

Src-100 Src-80 Modify Insert

2 clones 1303 733 394 350
base 1307 763 407 359

Table 8: Throughput results withT235 and ten tasks. The
in-memory percentage is 5%. Measurements are in op-
erations per second.

There is little performance degradation when using
clones. The clock algorithm is quite successful in placing
the index nodes for both clones into the cache. This also
shows that concurrency is good even when using clones.

9 Future work

Several issues that can have a significant impact on per-
formance have not been studied here:

• Space allocation

• Write-batching

• More sophisticated caching algorithms, for exam-
ple, ARC [16]

We believe each of this issues merits further study.

10 Summary

B-trees are an important data-structure used in many file-
systems. Shadowing is a powerful technique for updating
file-system data-structures.

This paper has shown how to use shadowing to up-
date b-trees and get the benefits of both algorithms:
snapshots, recoverability, concurrency, and logarithmic
lookup and update. The algorithms are efficient and they
make good use of the disk subsystem.

Although our testbed was an object-disk we believe
the ideas are applicable to other file-systems.

13

References

[1] A. Adya, J. Howell, M. Theimer, W. Bolosky, and
J. Douceur. Cooperative Task Management without
Manual Stack Management or, Event-driven Pro-
gramming is Not the Opposite of Threaded Pro-
gramming. InUsenix Annual Technical Confer-
ence, June 2002.

[2] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and
W. Oberle. Fault Tolerance under Unix. InACM
Trans. Computer Systems, February 1989.

[3] A. Sweeny, D. Doucette, W. Hu, C. Anderson, M.
Nishimoto, and G. Peck. Scalability in the XFS File
System. InUSENIX, 1996.

[4] SNIA Storage Networking Industry As-
sociation. OSD: Object Based Stor-
age Devices Technical Work Group.
http://www.snia.org/techactivities/workgroups/osd/.

[5] C. Mohan and F. Levine. ARIES/IM: an efficient
and high concurrency index management method
using write-ahead logging. InACM SIGMOD inter-
national conference on Management of data, pages
371 – 380, 1992.

[6] D. Hitz, J. Lau, and M. Malcolm. File System De-
sign for an NFS File Server Appliance. InUSENIX,
1994.

[7] D. Lomet. The Evolution of Effective B-tree: Page
Organization and Techniques: A Personal Account.
In SIGMOD Record, 2001.

[8] D. Lomet and B. Salzberg. Access method Con-
currency with Recovery. InACM SIGMOD inter-
national conference on Management of data, pages
351 – 360, 1992.

[9] H. Reiser. ReiserFS.
http://www.namesys.com/ .

[10] J. Menon, D. Pease, R. Rees, L. Duyanovich, and
B. Hillsberg. IBM Storage Tank a Heterogeneous
Scalable SAN File-System.IBM Systems Journal,
42(2):250–267, 2003.

[11] J. Ousterhout and F. Douglis. Beating the I/O Bot-
tleneck: A Case for Log-Structured File Systems.
In ACM SIGOPS, January 1989.

[12] J. Rosenberg, F. Henskens, A. Brown, R. Morrison,
and D. Munro. Stability in a Persistent Store Based
on a Large Virtual Memory.Security and Persis-
tence, pages 229–245, 1990.

[13] L. Guibas and R. Sedgewick. A Dichromatic
Framework for Balanced Trees. InNineteenth An-
nual Symposium on Foundations of Computer Sci-
ence, 1978.

[14] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A
Fast File System for Unix.ACM Transactions on
Computer Systems, 1984.

[15] M. Rosenblum and J. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. ACM Transactions on Computer Systems,
10(1):26–52, 1992.

[16] N. Megiddo and D. S. Modha. ARC: A Self-
Tuning, Low Overhead Replacement Cache. In
USENIX File and Storage Technologies (FAST),
March 2003.

[17] P. Lehman and S. Yao. Efficient Locking for Con-
current Operations on B-Trees.ACM Transactions
on Database Systems, 6(4):650–670, 1981.

[18] R. Bayer and E. McCreight. Organization and
Maintenance of Large Ordered Indices.Acta In-
formatica, pages 173–189, 1972.

[19] R. Bayer and M. Schkolnick. Concurrency of oper-
ations on b-trees.Acta Informatica, 9:1–21, 1977.

[20] S. Best. Journaling File Systems.Linux Magazine,
October 2002.

[21] Object Based Storage Devices Command Set
(OSD). http://www.t10.org/drafts.htm. T10 Work-
ing draft.

[22] V. Henson, M. Ahrens, and J. Bonwick. Automatic
Performance Tuning in the Zettabyte File System.
In File and Storage Technologies (FAST), work in
progress report, 2003.

[23] V. Lanin and D. Shasha. A symmetric concurrent
B-tree algorithm. InFall Joint Computer Confer-
ence, 1986.

[24] V. Srinivasan and M. Carey. Performance of b+
tree concurrency control algorithms.VLDB Jour-
nal, The International Journal on Very Large Data
Bases, 2 (4):361 – 406, January 1993.

[25] Y. Mond and Y. Raz. Concurrency Control in B+-
trees Databases Using Preparatory Operations. In
Eleventh International Conference on Very Large
Data Bases, 1985.

14

