H-0245 (H0611-006) November 12, 2006
Computer Science

|BM Resear ch Report

B-trees, Shadowing, and Clones

Ohad Rodeh
IBM Research Division
Haifa Research Laboratory
Mt. Carmel 31905
Haifa, |sragl

——=—= Research Division
£ S= 555 Almaden- Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

B-trees, Shadowing, and Clones

Ohad Rodeh, IBM Research

Abstract is modified a complete path to the root is shadowed cre-

B-trees are used by many file-systems to represent fileling @ new tree rooted &t . NodesA, B, andCbecome
and directories. They provide guarantied logarithmictnreachable and will later on be deallocated.

time key-search, insert, and remove. Shadowing, or
copy-on-write, is used by other file-systems to im-
plement snapshots, crash-recovery, write-batching and
RAID. Serious difficulties arise when trying to use b-
trees and shadowing in a single system.

This paper is about a set of b-tree algorithms that re-
spects shadowing, achieves good concurrency, and im- ‘ ‘ ‘ ‘ ‘ C ‘ ‘ ‘ o
plements cloning (writeable-snapshots). Our cloning al-
gorithm is efficient and allows the creation of a, basically
unlimited, number of clones. These algorithms were
used in an experimental object-disk.

We believe that this work is applicable not only to
object-disks but also to other file-systems.

Figure 1: Modifying a leaf requires shadowing up to the
root.

In order to support snapshots the file system allows
having more than a single root. Each root node points
1 Introduction to a tree that represents a valid image of the file system.

For example, if we were to decide to perform a snapshot
B-trees [18] are used by several file systems [3, 20, 10, 9prior to modifyingC thenA would have been preserved
to represent files and directories. Compared to traditionads the root of the snapshot. Only upon the deletion of
i-nodes [14] b-trees offer guaranteed logarithmic timethe snapshot would it be deallocated. The upshot is that
key-search, insert and remove. Furthermore, b-trees cgmages can be shared between many snapshots; indeed,
represent sparse files well. whole subtrees can be shared between snapshots.

Shadowing is a technique used by some file systems This work was performed as part of research into
to ensure atomic update to persistent data-structures [Building an object-disk storage device (OSD) [21, 4].
6, 11, 15, 22]. It is a powerful mechanism that hasRoughly speaking, an OSD is a primitive file system that
been used to implement snapshots, crash-recovery, writés exported through a network interface using a standard-
batching, and RAID. The basic scheme is to look at theized protocol. It was desirable to (1) use b-trees to imple-
file system as a large tree made up of fixed-sized pagesnent the persistent OSD data-structures and (2) use shad-
Shadowing means that to update an on-disk page, the eowing for update and snapshots. This would combine
tire page is read into memory, modified, and later writtenthe good properties of both techniques: logarithmic ac-
to disk at an alternate location. When a page is shadeess data-structures coupled with simple logging, crash-
owed its location on disk changes, this creates a need tecovery, and snapshots. However, we ran into serious
update (and shadow) the immediate ancestor of the pagdifficulties when trying to use these techniques together.
with the new address. Shadowing propagates up to the The classic persistent recoverable b-tree, as described
file system root. Figure 1 shows an initial file systemin the literature [5, 8], is updated using a bottom-up pro-
with root A that contains seven nodes. After leaf ndtle cedure. Modifications are applied to leaf nodes. Rarely,

leaf-nodes split or merge in which case changes propa- would need to be shadowed. It is better to shuffle
gate to the next level up. This can occur recursively and keys fromR.
changes can propagate high up into the tree. Leaves are
chained together to facilitate re-balancing operations and
range lookups. There are good concurrency schemes al-
lowing multiple threads to update a tree; the best one is
currently b-link trees [17].

The main issues when trying to apply shadowing to
the classic b-tree are:

Leaf chaining: In aregular b-tree leaves are chained to-
gether. This is used for tree rebalancing and range
lookups. In a b-tree that is updated using COPY-ONri0ire 3: Removing a key and effects of re-balancing
write leaves cannot be linked together. For exam- .

.) and shadowing.

ple, Figure 2 shows a tree whose right most leaf

node isC and where the leaves are linked from left

to right. If Cis updated the entire tree needs to be This work describes the first b-tree construction that

shadowed. Without leaf-pointers or§; B, andA can coexist with shadowing while providing good con-

require shadowing. currency. This is a fundamental result because b-trees
and shadowing are basic file system techniques.

Our cloning algorithm improves upon the state of the

art. We support a large number of clones and allow good

concurrency when accessing multiple clones that share
l / \\ porting it efficiently is important in today’s file systems.

B ‘ blocks. Cloning is a fundamental user requirement; sup-

The rest of this paper is organized as follows: Sec-
‘ H H H H c ‘ tion 2 is about related work, Section 3 described the ex-
perimental object-disk, Section 4 discusses recoverabil-

ity, Section 5 describes the basic algorithms, Section 6

Figure 2: A tree whose leaves are chained together. Théescribes cloning, Section 7 describes the run-time sys-
right most leaf isC andB is its immediate ancestor. @ tem, Section 8 shows performance, Section 9 discusses

is modified, the entire tree has to be shadowed. future work, and Section 10 summarizes.

Without links between leaves much of the b-tree lit-

; . 2 Related work
erature becomes inapplicable.

Concurrency: In a regular b-tree, in order to add a key There is an alternat_e style of copy-on-write u_sed in some
to a leafL, in most cases, onl needs to be locked databases [12] that |s.beyo'nd the scope ofthls paper. The
and updated. When using shadowing, every chananI_y form of shadowmg discussed here is the one de-
propagates up to the root. This requires exclu-SCrbed in Section 1. _
sive locking of top-nodes making them contention 'There are fev'v.papers that discuss concurrency together
points. Shadowing also excludes b-link trees pe-With recoverability of b-trees, see [5, 8]. The challenge

cause b-link trees rely on in-place modification of in constructing an algorithm that achieves both goals is
nodes as a means to delay split operations. that recoverability severely constrains concurrency. Fur-

thermore, we found no published papers on concurrency,

Modifying a single path: Regular b-trees shuffle keys recoverability, and b-trees with the added constraint of

between neighboring leaf nodes for re-balancingshadowing.

purposes after a remove-key operation. When using This work makes use of top-down b-trees; these were

copy-on-write this habit could be expensive. For first described in [13], [25], and [23].

example, in Figure 3 a tree with leaf nodeand Some file-systems use b-trees to represent directo-

neighboring nodeR andL is shown. A key is re- ries [3, 20, 9]. One of the difficulties in handling direc-

moved from nodeé\ and the modified path includes tory entries is that, unlike b-tree values in the OSD, they

3 nodes (shadowed in the figure). If keys from nodeare variable size. We believe that the b-trees described

L were moved intoA then an additional tree-path here can be adapted to handle variable size values.

It is possible to use disk-extents instead of fixed-sized
blocks [3, 20, 9]. We have experimented with using ex-

object catalog

tents in the OSD. The resulting algorithms are similar in OCAT-mot
flavor to those reported here and we do not describe them
for brevity. / \

The WAFL system [6] has a cloning algorithm that is
closest to ours. Although the basic WAFL paper dis-
cusses read-only snapshots the same ideas can be used 5
to create clones. WAFL has two main limitations which object A / \‘ object B
we improve upon:

A-root B-root

1. WAFL is limited to 32 snapshots. / \
Y) 4

2. In WAFL the free-space bits of all blocks that be-
long to a newly created snapshot need to be setto 1
as part of snapshot creation.

data data data data

In our algorithm

Figure 4: An object-catalog that points to objedtsand
1. The limitis232—1 for the same space costas WAFL g

2. Only the children of the root of the clone are in-
volved in snapshot creation. Free-space map oper- Space is managed in 4KB blocks, also called pages.
ations are performed gradually through the lifetime Disk addresses are represented by 64-bits to accommo-
of the clone. date large disks. An object contains data blocks that are

aggregated using a b-tree. The b-tree maps offsets in the
There is a long standing debate whether it is better tmbject to data pages on disk. The object-catalog (OCAT)
shadow or to write-in-place. The wider discussion is be-maps an object-id to the root-page of the b-tree for that
yond the scope of this paper. This work is about a b-tre@bject; the OCAT is also a b-tree. Figure 4 shows an ex-

technique that works well with shadowing. ample where the catalog points to two objectsand B.
The b-tree index nodes are laid out on 4KB meta-data
. . pages.
3 Object-disk (OSD) The b-trees representing objects and the catalog both

.)) .. map 64-bit keys to 64-bit values. More generally, fixed-
An object-disk, according to the SNIA/T10 specifica- sized keys to fixed-sized values.

tion [21, 4], is essentially a primitive file system that IS — gection 5 describes the b-tree algorithms for create,
exported through a network interface using a Sta”dardaelete, lookup-key, remove-key, and insert-key. Here, we

ized .protocol. The OSD.contains objects_, which haveg o how several object-disk commands are mapped to
64-bit names, and an object-catalog that indexes therqhese operations.

'_rherg are no d|rector|e_s in an OSD. Objects are much , create-object) command is implemented by:
like files in a regular file system except that they are

likely to be sparse. The important commands are: Cref « Broot = lookup-key(OCAT-root, B)
ate, delete, read, and write object. Snapshots are alsox if (B-root != 0)
supported. There is a command that creates a writeable - return obj-already-exists
snapshot of the OSD object-system. else

Our group built an experimental object-disk. The two - B-root = create-tree()
main types of persistent data-structures in our OSD are - insert-key(OCAT, B, B-root)

objects and the object-catalog. B-trees were a natural fit
for these two data structures.

The design point for the OSD was that it would be
part of a storage controller. Such systems typically have
severe limits on memory and CPU cycles. Therefore, It

A delete-objectB) command is implemented by:

* B-root = lookup-key(OCAT-root, B)
* if (B-root == 0)
- return obj-does-not-exist

was important to try to maintain a small footprint. Using else
a generic database with full fledged transactions was not - remove-key(OCAT-root, B)
possible. - delete-tree(B-root)

A read@, ofs, len=4KB command, when the offsetis 4 Recoverability

4KB aligned, is implemented by:

* B-root = lookup-key(OCAT-root, B)
* jf (B-root == 0)
- return obj-does-not-exist
else
- addr = lookup-key(B-root, ofs)
- if (addr == 0) data=zeros
- otherwise, read data from addr
- send data to client

A write(B, ofs, len=4KB, datacommand, when the

offset is 4KB aligned, is implemented by:

* B-root = Lookup-key(OCAT-root, B)

Shadowing file systems ensure recoverability by tak-
ing periodic checkpoints, and logging commands in-
between. A checkpoint includes the entire file system
tree; once a checkpoint is successfully written to disk the
previous one can be deleted. If a crash occurs the file
system goes back to the last complete checkpoint and re-
plays the log.

For example, Figure 5(a) shows an initial tree. Fig-
ure 5(b) shows a set of modifications marked in gray.
Figure 5(c) shows the situation after the checkpoint has
been committed and unreferenced pages have been deal-
located.

* if (B-root == 0)
- return obj-does-not-exist
else
- addr = allocate 4KB on disk
- write data to disk at addr
- insert-key(B-root, ofs, addr)

In order to support writable snapshots on the OSD we
chose to support cloning at the b-tree level. clonea
b-tree means to create a writable copy of it that allows
all operations: lookup, insert, remove, and delete. This
is described in Section 6.

The expected workload is mostly read/write com-
mands; create/delete commands are less frequent. Clone
commands are assumed to be infrequent. In terms of b-
tree operations this translates into a high frequency of
lookup-key/insert-key and a low frequency of remove-

NN
\ﬁl\\/\\\\\‘\\

(a) Initial file system tree

a
T
£

key/create/delete.

| : .
ﬂi\\c\\\h‘\ /\\\

The OSD handles multiple commands concurrently.
When a command arrives, the runtime system checks if
there are enough resources to execute it. If so, the re-
sources are reserved and the command is logged and ex-
ecuted; otherwise, the command is rejected. In order to
simplify the runtime system we chose not to abort nor
roll back commands. Therefore, it is crucial to com-
pute in advance a worst-case estimate on the command’s
resource-usage and to practice deadlock avoidance. The
two important resources are memory-pages and disk-
pages. The amount of memory, depending on configu-
ration, can be very low, so memory-usage of each com-
mand should be low.

This design means that the b-tree implementation has
to:

(b) Modifications

1 L=
| ﬂlH /H\'\\‘\'\

(c) New checkpoint

Figure 5: Checkpoints.

Have good concurrency
Work well with shadowing

1.
2.
3. Use deadlock avoidance
4,

The process of writing a checkpoint is efficient be-
cause modifications can be batched and written sequen-
tially to disk. If the system crashes while writing a check-
point no harm is done, the previous checkpoint remains
intact.

Command logging is attractive because it combines

Have guarantied bounds on disk-space and numbgg, 5 single log-entry a set of possibly complex modi-
of memory-pages required per each b-tree operatioR .,+ions to the file system.

Section 5 goes into how such a b-tree is constructed.

This combination of checkpointing and logging allows

an important optimization for the shadow-page primitive. '
When a page belonging to a checkpoint is first shadowed
a cached copy of it is created and held in memory. All

modifications to the page can be performed on the cached ‘ 1 ‘ 2 ‘
shadow copy. Assuming there is enough memory, the
dirty page can be held until the next checkpoint. Even

if the page needs to be swapped out, it can be written to
the shadow location and then paged to/from disk. This
means that additional shadows need not be created.

The OSD implements cloning. Checkpoints are sim-entries wheré > 2. For performance reasons it is desir-
ply clones that users cannot access. Clones are describe#le to increase the upper boundstg however, in this
in Section 6. Section we limit ourselves to the ranfle . . 2b + 1].

A pro-active approach to rebalancing is used. When a
node with2b 4 1 entries is encountered during an insert-
key operation, it is split. When a node withentries
is found during a remove-key operation itfised Fix-

5

6‘7‘ ‘IO‘II‘

Figure 7: A b-tree with two levels.

5 Base algorithms

The variant of b-trees that is used here is knowias . . _ SO S
trees In a b+-tree leaf nodes contain key-data pairs, Ing means either moving keys into it or merging it with
index nodes contain mappings between keys and chil@ neighbor node so it will have more tharkeys. Pro-

nodes; see Figure 6. The tree is composed of individua?Ctive fix/split simplifies tree-modification algorithms as

nodes where a node takes up 4KB of disk-space. The ir]Well as locking protocols because it prevents modifica-
' jons from propagating up the tree. However, care should

ternal structure of a node is based on [7]. There are n% X) = -
e taken to avoid excessive split/fix activity. If the tree

links between leaves. . ;
constraints weré and2b — 1 then a node witl2b — 1
entries could never be split into two legal nodes. Further-
H‘ more, even if the constraints wedrand2b a node with2b

entries would split into two nodes of sizevhich would

‘ B ‘ ‘ ‘ immediately need to be merged back together. Therefore,
h i furth larging the legal
\ e | £ oon of values. In all e examples i this secton 5 and
C

‘ ‘ ‘ the set of legal values {8 .. . 5].
During the descent through the tieek-coupling[19]
Figure 6: Three types of nodes in a treeis a root node,
Bis an index node, and' is a leaf node. Leaves are not

is used. Lock couplingaf crabbing is locking children
linked together.

before unlocking the parent. This ensures the validity of
a tree-path that a task is traversing without pre-locking
the entire path. Crabbing is deadlock free.

When performing modifying operations, such as in-
sert/remove key, each node on the path to the leaf is shad-

Shadowing a page can cause the allocation of a Pag&yed during the descent through the tree. This combines

on disk. When a leaf is modified all the nodes on the paﬂ'locking, preparatory operations, and shadowing into one
to the root need to be shadowed. If trees are unbalance&lowmvt,;erI traversal

then the depth can vary depending on the leaf. One leaf
might cause the modification of 10 nodes, another, only
2. Here, all tree operations maintain a perfectly balance®.1 Create
tree; the distance from all leaves to the root is the same

L In order to create a new b-tree a root page is allocated
The b-trees use a minimum key rule. If nofde has pag

hild nodeNs then the kev in\ o N and formatted. The root page is special, it can contain
a child nodel, then the key IV, pointing 0 N> IS 705 1595, 1 1 entries. All other nodes have to contain

]Emalle; orhequal to the mllmml;]m Wz)' For examhple‘; at leasth entries. Figure 8 presents a tree that contains a
igure 7 shows an example where integers are the key$, + 1 oqe with 2 entries.

In this diagram and throughout this document data val-
ues that should appear at the leaf-nodes are omitted for
simplicity.
B-trees are normally described as having betwien
and2b — 1 entries per node. Here, these constraints are
relaxed and nodes may contain betwéeand 2b + 1 Figure 8: A b-tree containing only a root.

5.2 Delete

In order to erase atree itis traversed and all the nodes and
data are deallocated. A recursive post-order traversal is ‘ s ‘ .
used.

An example for the post-order delete pass is shown in
Figure 9. A tree with eight nodes is deleted.

' £ dn 15 20
6 7 8

‘]‘5‘]0‘ 15 | 20 ‘IO‘II‘ 15 Ib‘ 20 23‘
SN N
‘ : ‘ ? { 1° ‘7 ‘ ‘ 0 ‘ ! ‘ sl ‘ gl Figure 10: Inserting ke$ into a tree. Gray nodes have
(a) Tree to be deleted been shadowed. The root node has been split and a level
I was added to the tree.
15
at leasth + 1 keys. This guaranties that removing a key
‘ ! ‘5 ‘ 10 ‘ 15 |20 from the leaf will, at worst, effect its immediate ances-
] *; tor. During the descent in the tree lock-coupling is used.

~

Locks are taken in exclusive mode.
For example, Figure 11 shows a remove-key operation

LRl pele] [

16 [+

(b) A post-order traversal that fixes index-nod¢3, 6] by merging it with its sibling
[15,20].
Figure 9: Deleting a tree.
5.3 Insert key \ 3 |8 \ 15 |28
Insert-key is implemented with a pro-active split policy. /
On the way down to a leaf each full index node is split. ‘ 3 ‘4 ‘ ‘o ‘ 7 ‘s ‘ 10 ‘ 1 ‘ 15 | 16 ‘ 20 |25 |30 ‘

This ensures that inserting into a leaf will, at most, split
the leaf. During the descent lock-coupling is used. Locks 3 6 15 20
are taken in exclusive mode. This ensures the validity of / \
a tree-path that a task is traversing.

Figure 10 shows an example where key 8 is added O
to a tree. Nodd3,6,9,15,20] is split into [3,6,9] and
[15,20] on the way down to led, 7]. Gray nodes have
been shadowed. Figure 11: Removing key0 from a tree. Gray nodes
have been shadowed. The two children of the root were
merged and the root node was replaced.

16 ‘ 20

5.4 Lookup key

Lookup for a key is performed by an iterative descent
through the tree using lock-coupling. Locks are taken in5_6 Resource analysis
shared-mode.

This section analyzes the requirements of each operation
in terms of memory and disk-pages.

For insert/remove key three memory pages are needed
Remove-key is implemented with a pro-active mergein the worst case; this happens if a node needs to be split
policy. On the way down to a leaf each node with a min-or fixed during the downward traversal. The number of
imal amount of keys is fixed, making sure it will have modified disk-pages can be2tree-depth. Since the tree

5.5 Remove key

is balanced the tree depth is, in the worst case, equal tmstead of making a pass on the entire tree and increment-
logy(IN); whereN is the number of keys in the tree. In ing the counters during the clone operation, this is done
practice, a tree of depth 6 is more than enough to covein a lazy fashion.

huge objects and object-catalogs. Throughout the examples in this section trégsand
For lookup-key two memory-pages are needed. Fofl, are used. Tre€&, has rootP and treel, has root node
lookup-range three memory-pages are needed. Q. Nodes whose ref-count has changed are marked with

diagonals, modified nodes are colored in light gray. In or-
. der to better visualize the algorithms reference counters
5.7 Comparison to standard b-tree are drawn inside nodes. This can be misleading, the ref-
A top-down b-tree with boundg, 2b + 1] is no worse ~ counters are physically located in the free-space maps.
than a bottom-up b-tree with boundis + 1,2b]. The
intuition is that a more aggressive top-dow_n ::?IgorlthmG_1 Create
would never allow nodes with or 2b + 1 entries; such
nodes would be immediately split or fixed. This meansThe algorithm for cloning a tre€, is:
that each node would contain betwdes 1 and2b en-
tries. This is, more or less, equivalent to a bottom-up 1. Copy the root-node df, into a new root.
b-tree witht’ = b + 1.

In practice, the bounds of the number of entries in a 2. Increment the free—space counters for each of the
node are expanded fb, 3b]. This improves performance children of the root by one.
because it means that there are few spurious cases of

split/merge. The average capacity of a node is around A" €xample for cloning is shown in Figure 12. Tree
%. T, contains seven nodes afiy is created as a clone of

T, by copying the root” to (). Both roots point to the
shared childrenB andC. The reference counters fé
6 Clones andC are incremented to 2.
Notice that in Figure 12(Il) nodeB, E, G andH have
This section builds upon Section 5 and adds the neces ref-count of one although they belong to two trees. This
sary modifications so that clones will work. is an examp|e of |azy reference Counting_
There are several desirable properties in a cloning al-

gorithm. Assumée/, is a b-tree and’, is a clone of7),
then: 6.2 Lookup

e Space efficiencyT], andT}, should, as much as pos- The lookup-key a_n_d Io_okup-range algorithms are unaf-
sible, share common pages. fected by the modification to the free-space maps.

e Speed: creatind, from 7T}, should take little time

and overhead. 6.3 Insert-key and Remove-key

Changing the way the free-space works impacts the
insert-key and remove-key algorithms. It turns out that a
subtle change is sufficient to get them to work well with
dree-space ref-counts.
Before modifying a page, it is “marked-dirty”. This
lets the run-time system know that the page is about to
A trivial algorithm for cloning a tree is copying be modified and gives it a chance to shadow the page if
it wholesale. However, this does not provide spacefnecessary.
efficiency nor speed. The method proposed here does Without clones, the only requirement for the mark-
not copy the entire tree and has the desired properties. dirty operation is to check if the page does not belong
The main idea is to use a free space maps that mairto the previous checkpoint; if so, the page must be shad-
tains a reference countef-counj per block. The ref- owed. Otherwise, it can be modified in place. With
count records how many times a page is pointed to. Aclones, this is more subtle. The following procedure is
zero ref-count means that a block is free. Essentially, infollowed when marking-dirty a clean pagé:
stead of copying a tree, the ref-counts of all its nodes are
incremented by one. This means that all nodes belong 1. If the reference countis 1 nothing special is needed.
to two trees instead of one; they are all shared. However, This is no different than without cloning.

e Number of clones: it should be possible to cldne
many times.

e Clones as first class citizens: it should be possibl
to cloneT,.

‘ s ‘ ‘ s ‘ ‘ ol ‘ ‘ = ‘ ‘ s ‘ ‘ = ‘ ‘ ol ‘ ‘ s ‘

() Initial tree T}, () Creating a clond,

Figure 12: Cloning a b-tree.

2. If the ref-count is greater than 1 and pages relo- 1. If the ref-count ofN is greater than 1 then decre-
cated from addresk; to addresd.,, the ref-count ment the ref-count and stop downward traversal.
for L; is decremented and the ref-count bs is The node is shared with other trees.
made 1. The ref-count oN’s children is incre-

2. If the ref-count ofV is one then it belongs only to
T,. Continue downward traversal and on the way
For example, Figure 13 shows an example of a two back up deallocatey.

trees, T, andT,, that start out sharing all their nodes

except the root. Initially, all nodes are clean. A key is

inserted into leaf nodé!. This means that a downward
traversal is performed and nod€sC and H are shad-
owed. In stage (Il) nod€) is shadowed. Its ref-count is
one, so nothing special is needed. In stage (lll) n6de)
is shadowed, this spli§ into two versions, one belong- 6.5 Resource and performance analysis
ing to 7}, the other tdl, each with a ref-count of 1. The
children ofC are noded$7 andG, their ref-count is incre-
mented to two. In stage (IV) nod# is shadowed, this
splits H into two separate versions each with ref-count

1.

Performing the mark-dirty in this fashion allows de-
laying the ref-count operations. For example, in Fig-
ure 13(l) nodeC' starts out with a ref-count of two. At
the end of the insert operation there are two versions of e Once sharing is broken for a page and it belong to
C each with a ref-count of 1. Nod€ starts out with a a single tree, there are no additional ref-count costs
ref-count of 1, because it is shared indirectly betw&gn associated with it.
and7,. Atthe end of the operation, it has a ref-count
of two because it is pointed-to directly from noded/in

mented by 1.

Figure 14 shows an example whérgandT,, are two
trees that share some of their nodes. Trgés deleted.
This frees nodeg), X, andZ and reduces the ref-count
on nodes” andY to 1.

The modifications made to the basic algorithms do not
add b-tree node accesses. This means that the worst-case
estimate on the number of memory-pages and number of
disk-blocks used per operation remains unchanged. The
number of free-space accesses increases. This has a po-
tential of significantly impacting performance.

Several observations make this unlikely:

o If a page is dirty and remains in-memory, no addi-

andT7,. tional checking is needed.
_ This modification to the mark-_dirty primitive gets the § The vast majority of b-tree pages are leaves. Leaves
insert-key and remove-key algorithms to work. have no children and therefore do not incur addi-

tional overhead.

6.4 Delete A major cost to free-space counters is the increased
The delete algorithm is also affected by the free-spacsize of free-space map. Instead of keeping a bit per block
ref-counts. Without cloning, a post-order traversal islike most file systems, a counter is needed. If 32-bit
made on the tree and all nodes are deallocated. In oeounters are used then the map grows by a factor of 32.
der to take ref-counts into account a modification has tdThis also allows supporting up 52 clones. The WAFL

be made. Assume trég, is being deleted and that during file system [6] uses 32-bits in its free-space map and it
the downward part of the post-order traversal nddes is reputed to have to good performance. This gives the
reached: author reason to believe that this issue can be negotiated.

‘ s ‘ ‘ s ‘ ‘ ol ‘ ‘ = ‘ ‘ s ‘ ‘ = ‘ ‘ ol ‘ ‘ s ‘

(1 shadowC (IV) shadowH

Figure 13: Inserting into a leaf node breaks sharing across the entire path.

‘BIHCJ ‘x.l‘
b NN
‘ D.1 ‘ ‘ E.l ‘ ‘ G.1 ‘ ‘ X2 Z1 ‘
(1) Initial treesT,, andT, () After deleting T,

Figure 14: Deleting a b-tree rooted@t

The test framework used in this work includes a free-rather than any fancy footwork that can be performed by
space map that resides in memory. This does not ala log-structured file-system.
low a serious attempt to investigate the costs of a large The p-tree is split into 4KB pages that are paged
free-space map. Furthermore, even a relatively large byo/from disk. A page-cache is situated between the b-
tree that takes up a gigabyte of disk-space can be regree and the disk; it can cache clean and dirty pages. A
resented by a 1MB free-space map that can be held igjmple clock scheme is implemented, no attempt is made
memory. Therefore, investigating this issue remains fog coalesce pages written to disk into large writes, no
future work. pre-fetching is performed. In order to shadow a payge
Concurrency remains unaffected by ref-counts. Sharthe page is first read from disk and put into the cache.
ing on any node that requires modification is quickly bro- pg long asP stays in cache it can be modified in mem-
ken and each clone gets its own version. ory. Once there is memory pressufeis written to disk.
If P belongs to the old checkpoint, it has to be written
7 The run-time system to an alte_rnate location; otherwise, it can be written in
place. This way, the cache absorbs much of the overhead
A minimal run-time system was created for the b-tree.0f shadowing, especially for heavily modified pages.
The rational is to focus on the tree algorithms themselves The free-space was implemented with a simple in-

memory map. There is a ref-count per block. This was In the experiments reported in this section the entries
done to eliminate any noise generated by the particularare of size 16bytes: 8bytes for a key and 8bytes for data.
of the OSD free-space component. A 4KB node can contain up to 235 such entries.
Alogwas notused, itis assumed that the OSD protects The test-bed used in the experiments was a single ma-
all b-tree operations through logical logging of com- chine connected to a DS4400 disk controller through
mands. Fiber-Channel. The machine was a dual-CPU Xeon
A special threading package was used, it is similar(Pentium4) 2.4Ghz with 2GB of memory. It ran a Linux-
to [1]. The idea is to use a single operating-system.6.9 operating system. The b-tree was laid out on a vir-
thread, themain-thread to run all the complex code: tual LUN taken from a DS4400 controller. The LUN is
caching, free-space, b-tree, command logic, etc. Sepa RAID5 in an 8+P pattern. Strip width is 64KB, this
rate operating-system threads perform the heavy liftingmeans that full stripe i8 x 64K B = 512K B. Read and
networking and 10. The main-thread executes multiplewrite caching is disabled.
light-weighttasks Tasks are much like regular threads The trees created in the experiments were spread
except that they are non-preemptive and they cannot pegcross a 1GB area on disk. Table 1 shows the 10-
form regular system-calls. A task yields the CPU eitherperformance of the disk subsystem for such an area.
voluntarily or when it performs an 10. In the experimen- Three workloads were used (1) read a random page (2)
tal setup for this work most of the OSD code has beenyrite a random page (3) read and write a random page.
eliminated; the upshot is that only the main-thread is exayhen using a single thread a 4KB write takes 18 mil-
ecuted along with the 10 threads. This limits any b-treejiseconds, this is due to the RAID-5 penalty for short
code to execute on a single CPU. While the b-tree algoyyrites. A short write requires 2 reads and 2 writes. A
rithms themselves are thread-safe for any threading packsk B Read takes about 5 milliseconds. Reading a random
age, they are limited here to execute on a single CPU. 4KB page and then writing it back to disk takes 24 mil-

This system does not contain any kernel code. It wagiseconds. When using 10 threads throughput improves
built and tested on a Linux operating system with an Intelpy 3 factor of six.

processor.
| #threads| op. | time per op.(ms)| ops per second
8 Performance 10 read | N/A 1283
) write | N/A 421
The OSD was built to be part of a storage controller. It R+W | N/A 311
was specified to be able to manage terrabytes of dis 1 read | 48 507
space with gigabytes of memory. Most of the memory write 1é 3 68
was to be used for caching customer data, most of the R+W 24.6 a1

CPU cycles were to be spent on networking and 10. The

b-tree was assumed to reside mostly on disk, with fre-rap|e 1: Basic disk-subsystem capabilities. Three work-
quently accessed pages in memory. The b-tree code W3§aq4s were used (1) read a random page (2) write a ran-

to use little CPU. - dom page (3) read and write a random page. Using 10
.In order to achieve good performance the b-tree hagh eads increases the number of operations per second
to: by a factor of six.

1. Work well when most of the tree is not in-memory

2. Use little CPU Therefore, large trees with about 64,000 leaves were

used to empirically assess performance. It turned out

that the only way to quickly build such large trees was
In this section we show that the algorithms, indeed,through an append only workload. The even numbers

achieve these goals. {0,2,4, .. } were chosen as keys; they were inserted se-
In [24] there was a prediction that top-down algo- quentially into the tree.

rithms will not work well. This is because every tree Two base-trees were us&ts; andT}59. The number

modification has to exclusively lock the root and one of of keys in a node is betweérand3b. 1535 has a maximal

its children. This creates a serialization point. We foundfanout of 235 entries aridis equal t02§—5 = 78. T150 has

that not to be a problem in practice. What happens is thad maximal fanout of 150 antlis equal to% =50. A

the root and all of its children are almost always cachechode can hold more than 150 entries; therefore, this limit

in memory, therefore, the time it takes to pass the roois artificially enforced by wasting some of the space in a

and its immediate children is very small. page.

3. Get good concurrency from the disk subsystem

10

To3s 8.1 Effect of the in-memory percentage on
Maximal fanout: 235 performance
Legal #entries: 78 .. 235)
Contains: 7520000 keys and 64827 nodes (64273 he in-memory percentage has a profound effect on per-

leaves, 554 index-nodes) formance. A pure random lookup-key workload was run
Tree depth is: 4 againstZsss with in-memory ratios 100%, 50%, 10%,
Root degree is: 4 5% and 2%. Each experiment included 30000 random
Index node average fanout: 117 lookup-key operations and throughput per second was
Leaf node average capacity: 117 calculated. If the in-memory percentagerithen, under

ideal performancey of the workload is absorbed by the
cache and the rest of workload reaches the disk; through-
T150 put per second would bE283 x ﬁ Table 2 summa-
Maximal fanout: 150 rizes the results.
Legal #entries: 50 .. 150
Contains: 4800000 keys and 64864 nodes (63999 | Tree | % in-memory| 1 task | 10 tasks]| ideal |

leaves, 865 index-nodes) Tree depth is: 4 T35 | 100 91354 | 91705 | ~©
Root degree is: 11 50 393 2431 2566
Index node average fanout: 75 10 219 1374 1425
Leaf capacity average capacity: 75.00 5 207 1306 1350
2 197 1230 1309

Tyss is representative of the OSD cataldso is rep- Table 2: Throughput results, measured in operations per
resentative of a tree where the key-value pairs take ugecond. A pure random lookup-key workload is applied
20bytes instead of 16bytes. This is an approximation of0 7235.

a tree that holds disk-extents. Bdihss andT;59 have

an average occupancy of 50%. This is caused by the

append-only workload used to create them. When using When the entire tree is in memory there is no differ-
append, the right edge of the tree keeps splitting leavingnce in performance between ten tasks and one. This
behind half-full nodes. is because all tasks share a single CPU, and it is 100%

A set of experiments starts by creating a base-tree oftilized. When memory percentages drop, the disk-
a specific fanout and flushing it to disk. A special proce-parallelism comes into play. For the other percentages
dure is used. A clongis made of the base tree. For read- @ speedup of about x6 is achieved.
only workloads 1000 random lookup-key operations are Performance with 10 tasks is very close to ideal per-
performed. For other workloads the clone is aged by performance, except for the case where the entire tree is in-
forming 1000 random insert-key/remove-key operationsmemory. There, it is hard to compete with an infinitely
Then, the actual workload is applied 40 At the end fast CPU.
the clone is deleted. This procedure ensures that the basePerformance is logarithmic with respect to cache size.
tree, which took a very long time to create, isn't damagedThis is because the clock algorithm is able to keep all
and can be used for the next experiment. Each measur#ie index nodes foffy35 in memory. This means that
ment is performed five times and results are averagedperations like lookup/remove/insert-key access, in most
The standard deviation for all the experiments reported:ases, one on-disk leaf page.
here was 1% of the average or less. Performance differences between 10%, 5%, and 2%

For each experiment the number of cache-pages iwere very small, therefore, for the rest of the experiments
fixed at initialization time to be some percentage of thewe focused on the 5% case.
total number of pages in the tree. This ratio is called the
In-memorypercentage. o 8.2 Latency

Our b-tree construction is novel and there are no
existing data-structures to compare it against. ThereThere are four operations whose latency was measured:
fore, we compare it tadeal performance that could be lookup-key, insert-key, remove-key, and append-key. In
achieved with a data-structure the could somehow locaterder to measure latency of operatioran experiment
leaf nodes without incurring the overheads of an index-was performed where was executed 30000 times, and
ing structure. This would allow devoting the entire cachetotal elapsed time was measured. The latency per op-
to leaf nodes. To compute ideal performance we assumeeration was computed as the average. Operations were
that the CPU was infinitely fast. performed with randomly chosen keys.

11

Table 3 shows the latency of the b-tree operations on In the Search-100workload each lookup-key trans-
the two trees. The cost of a lookup is close to the costates into a disk-read for the leaf node. This means that
of a single disk read. An insert-key requires reading aideal throughput i 283 x ﬁ = 1350 requests per sec-
leaf from disk and modifying it. The dirty-page is later ond. Actual performance is within 3% of ideal.
flushed to disk. The average cost is therefore a disk-read In thelnsertworkload each insert-key request is trans-
and a disk-write, or, about 24ms. The performance oflated, roughly, into a single disk-read and a single disk-
remove-key is about the same as an insert-key; the algawrite of a leaf. This means that ideal throughput is

rithms are very similar. Append always costs 12us be311 x 54z = 327. Surprisingly, actual performance ex-

cause the pages it operates on are always cached. ceeds ideal performance by about 10%. This is because
we are using a write-back cache. After each experiment
| Tree | Lookup | Insert | Remove-key| Append| about 2000 dirty leaf nodes remain in cache and the cost
Thss | 4.780 24.175| 24.437 0.012 of writing them to disk is not accounted for. This unfairly
Ti50 | 4.839 24.567| 24.372 0.012 disadvantages the computation of ideal performance.

. _ S The Modify and Search-80wvorkloads are somewhere
Table 3: Latency for single-key operations in millisec- in the middle betweemnsert and Search-100 Overall,
onds. the b-tree performs no worse than 4% less than ideal.

| Tree | #tasks| Src-100] Src-80| Modify | Insert |

Toss | 10 1307 763 407 359
8.3 Throughput 1 209 104 | 47 41
Throughput was measured using four workloads taken 7150 10 1284 752 407 357
from [24], Search-100 Search-80 Update and Insert 1 206 102 47 40
Each workload is a combination of single-key opera-|_!deal 1350 | 798 | 384 327

tions. Search-100is the most read-intensive, it per-
forms 100% lookupSearch-80nixes some updates with
the lookup workload; it performs 80% lookups, 10%
remove-key, and 10% add-keyUpdateis an update
mostly workload; it performs 20% lookup, 40% remove-
key, and 40% add-keylnsertis an update-only work-
load; it performs 100% insert-key. Table 4 summarizes
the workloads. The performance of append has very different charac-
teristics than performance of other operations. It is in-
structive to examine a 100% append workload. The base

Table 5: Throughput results, measured in operations per
second.

Append

] | lookup [insert | remove]

Search-100 100% | 0% 0% trees,Th35 and 750, Were built using a single task that
Search-80 | 80% | 10% | 10% appended to them. The time to create the trees and the
Modify 20% | 40% | 40% throughput in append operations/second is shown in Ta-
Insert 0% 100% | 0% ble 6. The in-memory percentage was 5%
Table 4: The four different workloads. | Tree | #keys | Total time (sec)| append ops/sef
Toss | 7520000 1565.1 4800
Each operation was performed 30000 times an Thso | 4800000] 1564.8 3069

throughput per second was calculated. Five such experirypq g Append throughput results when building trees
ments were performed and averaged. The throughput te§1;235 andTs.

compared running a workload using one task compared

with the same workload but executed concurrently with

ten tasks. CPU utilization throughout all the tests was These throughput numbers are higher by two orders of

about 1%; the tests were all 10 bound. magnitude compared with other workloads with a single
Table 5 shows ideal performance and the results for aask. This is because append has very good locality, it

single task and for ten tasks. There is little difference inneeds only the nodes at the right edge of the tree. If they

performance betweehys; andT}5q this is because the are all in-memory then append can be performed at CPU

caching algorithm is able to place all the index nodes inspeed. Once in a while, a split is needed which requires,

cache. The throughput gain in all cases is x6 or slightlyin most cases, one additional page. Overall, there are

better. very few 10s needed to perform this workload.

12

8.5 Performance impact of checkpoints There is little performance degradation when using
_ _))) clones. The clock algorithm is quite successful in placing
During a checkpoint all dirty pages must first be written the index nodes for both clones into the cache. This also

to disk before they are reused. It is not possible to conghows that concurrency is good even when using clones.
tinue modifying a dirty-page that is memory-resident, it

must be evicted to disk first in order to create a consistent
checkpoint. 9 Future work

In terms of performance of an ongoing workload, the . . .
: Several issues that can have a significant impact on per-
worst-case occurs when all memory-resident pages arg

dirty at the beginning of a checkpoint. The best case rmance have not been studied here:
occurs when all memory-resident pages are clean. Then, ¢ Space allocation
the checkpoint occurs immediately, at essentially no cost.
In order to assess performance the throughput tests ® Write-batching
were run againstys;. After 20% of the workload was ;0 sophisticated caching algorithms, for exam-
complete, that s, after 6000 operations, a checkpoint was ple, ARC [16]
initiated. Table 7 shows performance for tfBgs; with '
10 tasks. The first row shows results when running a We believe each of this issues merits further study.
checkpoint. The second row shows base results, for ease
of reference.
For the Search-100wnorkload there was virtually no
degradation. This is because there are no dirty-pages 1§ yrees are an important data-structure used in many file-

destage. Other workloads suffer between 3% and 10%ystems. Shadowing is a powerful technique for updating
degradation in performance. file-system data-structures.

This paper has shown how to use shadowing to up-

10 Summary

| Tree | Src-100] Src-80] Modify | Insert] date b-trees and get the benefits of both algorithms:
checkpoint| 1302 697 388 346 snapshots, recoverability, concurrency, and logarithmic
base 1307 763 407 359 lookup and update. The algorithms are efficient and they

o make good use of the disk subsystem.
Table 7: Throughput results, when a checkpoint is per- - aithough our testbed was an object-disk we believe

formed during the workload. The in-memory percentagethe ideas are applicable to other file-systems.
is 5%, the tree i9535.

8.6 Performance for clones

In order to assess the performance of cloning a special
test was performed. Two clones of the base tree are
created,p andq. Both clones are aged by performing
109 — 500 operations on them. Finally22% = 15000
operations are performed against each clone.

Table 8 shows performance for trég;; with 10 tasks.
The first row shows results with 2 clones. The second
row shows base results, for ease of reference.

] | Src-100] Src-80] Modify | Insert |

2 clones| 1303 733 394 350
base 1307 763 407 359

Table 8: Throughput results with,35 and ten tasks. The
in-memory percentage is 5%. Measurements are in op-
erations per second.

13

References [13] L. Guibas and R. Sedgewick. @A Dichromatic

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Framework for Balanced Trees. Mineteenth An-
A. Adya, J. Howell, M. Theimer, W. Bolosky, and nual Symposium on Foundations of Computer Sci-
J. Douceur. Cooperative Task Management without ence 1978.
Manual Stack Management or, Event-driven Pro-
gramming is Not the Opposite of Threaded Pro-[14] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A

gramming. InUsenix Annual Technical Confer- Fast File System for Unix ACM Transactions on
ence June 2002. Computer System&984.

A. Borg, W. Blau, W. Graetsch, F. Herrmann, and [15] M. Rosenblum and J. Ousterhout. The Design
W. Oberle. Fault Tolerance under Unix. ACM and Implementation of a Log-Structured File Sys-
Trans. Computer Systep@ebruary 1989. tem. ACM Transactions on Computer Systems

10(1):26-52, 1992.
A. Sweeny, D. Doucette, W. Hu, C. Anderson, M. i _
Nishimoto, and G. Peck. Scalability in the XFS File [16] N. Megiddo and D. S. Modha. ARC: A Self-

System. INJSENIX 1996. Tuning, Low Overhead Replacement Cache. In
USENIX File and Storage Technologies (FAST)

SNIA Storage Networking Industry As- March 2003.

sociation. OSD: Object Based Stor-

[17] P. Lehman and S. Yao. Efficient Locking for Con-
current Operations on B-Tree8CM Transactions
on Database Systen(4):650-670, 1981.

age Devices Technical Work Group.
http://www.snia.org/teclactivities/workgroups/osd/.

C. Mohan and F. Levine. ARIES/IM: an efficient

and high concurrency index management methodls]
using write-ahead logging. IKCM SIGMOD inter-
national conference on Management of dgdages

371 -380, 1992. [19] R. Bayer and M. Schkolnick. Concurrency of oper-
D. Hitz, J. Lau, and M. Malcolm. File System De- ations on b-treesActa Informatica9:1-21, 1977.

sign for an NFS File Server Appliance. USENIX [20] S. Best. Journaling File Systenisinux Magazine
1994. October 2002.

R. Bayer and E. McCreight. Organization and
Maintenance of Large Ordered Indice#cta In-
formatica pages 173-189, 1972.

D. Lomet. The Evolution of Effective B-tree: Page [21] Object Based Storage Devices Command Set
Organization and Techniques: A Personal Account. (OSD). http:/fwww.t10.org/drafts.htm. T10 Work-

In SIGMOD Record2001. ing draft.

D. Lomet and B. Salzberg. Access method Con-[22] V. Henson, M. Ahrens, and J. Bonwick. Automatic

currency with Recovery. IACM SIGMOD inter- Performance Tuning in the Zettabyte File System.

national conference on Management of datages In File and Storage Technologies (FAST), work in

351 - 360, 1992. progress report2003.

H. Reiser. ReiserFS. [23] V. Lanin and D. Shasha. A symmetric concurrent

http://www.namesys.com/ . B-tree algorithm. InFall Joint Computer Confer-
ence 1986.

J. Menon, D. Pease, R. Rees, L. Duyanovich, and

B. Hillsberg. IBM Storage Tank a Heterogeneous[24] V. Srinivasan and M. Carey. Performance of b+
Scalable SAN File-SystemBM Systems Journal tree concurrency control algorithms/LDB Jour-
42(2):250-267, 2003. nal, The International Journal on Very Large Data

] . Bases?2 (4):361 — 406, January 1993.
J. Ousterhout and F. Douglis. Beating the I/O Bot-

tleneck: A Case for Log-Structured File Systems.[25] Y. Mond and Y. Raz. Concurrency Control in B+-
In ACM SIGOPSJanuary 1989. trees Databases Using Preparatory Operations. In

) Eleventh International Conference on Very Large
J. Rosenberg, F. Henskens, A. Brown, R. Morrison, Data Bases1985.

and D. Munro. Stability in a Persistent Store Based
on a Large Virtual Memory.Security and Persis-
tence pages 229-245, 1990.

14

