
H-0247 (H0611-009) November 15, 2006
Computer Science

IBM Research Report

Aggressive Function Inlining with Global Code Reordering

Omer Boehm, Daniel Citron, Gadi Haber, Moshe Klausner, Roy Levin
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Aggressive Function Inlining with Global Code Reordering

Omer Boehm, Daniel Citron, Gadi Haber, Moshe Klausner, Roy Levin
IBM Research Lab in Haifa, Israel

{omerb, citron, haber, klausner, royl}@il.ibm.com

Abstract

Code reordering and function inlining are commonly used today for improving
memory locality and eliminating memory accesses. In this paper we present a new
profile based optimization of an aggressive function inlining, based on a study of the
mutual effects between code reordering and inlined functions. The proposed
optimization duplicates frequently executed large functions and replaces their
function calls by their bodies, while removing corresponding call and return
instructions at the call sites. The inlining step is then followed by global code
reordering to achieve better grouping of frequently executed code across function
calls. The aggressiveness of the function inlining relies on the fact that no constrains
are applied on the size, or the number, of the functions being inlined - only execution
frequency is taken into consideration during the inlining process. The global code
reordering that follows the function inlining guarantees the separation between cold
and hot segments of the inlined functions.
The optimization was implemented into FDPR (Feedback Directed Program
Restructuring), a post-link optimizer, which is part of the IBM AIX and Linux
operating systems for the IBM pSeries servers. Our experiments were applied after
the –O3 optimization phase of the compiler and results on SPECint2000 show an
improvement of up to 8% (average of 4%) in execution time, on top of code
reordering optimization, resulting from improving code locality and removing
corresponding call and return instructions of inlined functions.

1. Introduction

Over the past several years, many methods and tools have been developed to improve application

performance by improving the program’s locality. Code reordering [3, 6, 7, 9, 10, 17, 19] and function

cloning [8, 24-26] are known optimizations for improving code locality and I-cache behavior. Function

inlining [1, 2, 4, 8, 11, 20-23] is another optimization that is heavily used by compilers today. In this

paper we discuss the performance effects of inlining large frequently executed functions which are

inlined at their calling sites, the way done today at the initial step of function inlining optimization. Thus,

2

inlined functions in this work are not followed by applying any register allocation or code scheduling

steps.. Therefore, avoiding the long compilation time associated with aggressive function inlining.

Although commonly used today, function inlining can cause code bloat and degraded performance,

forcing compilers to limit their scope to relatively small functions. Chen et al. [5] and McFarling [13]

examined the effect of function inlining on cache behavior. They found that overall, function inlining

seems to be largely ineffective on an optimized layout of basic blocks because the code expansion caused

by inlining increases cache conflicts.

Before Inlining bar

foo:(invoked 80 times)

 BB1: Call bar
 BB2: ...
 BB3: CMP R3,0
 JEQ BB5
 BB4: Add R3,12
 BB5: Return

bar:(invoked 90 times)

 BB6: CMP R6,R7
 JEQ BB8
 BB7: Add R6,9
 BB8: Return

After Inlining bar

foo: (invoked 80 times)

/* inlined bar:*/
 BB6: CMP R6,R7
 JEQ BB2
 BB7: Add R6,9
/* end of inlined bar */

 BB2: ...
 BB3: CMP R3,0
 JEQ BB5
 BB4: Add R3,12
 BB5: Return

bar: (invoked 10 times)

 BB6: CMP R6,R7
 JEQ BB8
 BB7: Add R6,9
 BB8: Return

After Inlining bar +
Code Reordering

foo: (invoked 80 times)

 BB6: CMP R6,R7
 JNE BB7
 BB2: ...
 BB3: CMP R3,0
 JNE BB4
 BB5: Return
 BB4: Add R3,12
 JMP BB5
 BB7: Add R6,9
 JMP BB2

 bar: (invoked 10 times)

 BB6: CMP R6,R7
 JEQ BB8
 BB7: Add R6,9
 BB8: Return

 (a) (b) (c)

Figure 1. Code Reordering Can Help Function Inlining

3

One of the issues related to inlined functions is the insertion of cold (rarely executed) code next to hot

code. For example, consider Figure 1. Here we have a function foo which includes a hot call to another

function bar shown in Figure 1a.. However, when we replace the call to bar by its inlined body in Figure

1b, we get a mixture of both hot and cold basic blocks (BB6, BB7, BB2). This causes an immediate

negative effect on the I-cache behavior. One way to solve this problem is to apply global code reordering

after function inlining, given in Figure 1c. As a result, all hot code is grouped together and the I-cache

ratio improves.

Interestingly, the other way around is also true. Limitations in the code reordering optimization can be

resolved by using function inlining. As an example, consider Figure 2. Here the hot path within function

foo includes a hot call to function bar in Figure 2a. Therefore, ideally, the best code order would include

the hot code preceding the function call to bar in foo, following by the hot code in bar itself and then

back to the hot code proceeding the instruction call to bar in foo, as given in Figure 2b. Unfortunately,

although this would be the ideal code order, there is an extra unconditional jump instruction that we are

forced to add to the code right after the call instruction to bar. This jump instruction is necessary in order

to maintain the original semantic of the program, so that the return instruction of bar will reach BB2.

Applying function inlining before code reordering can solve this problem, as shown in Figure 2c. Here

we can see that after inlining function bar at the call site in foo, the code reordering manages to pack the

optimal hot path without the need for extra jump instructions.

4

In this paper we concentrate on the synergy between function inlining and global code reordering. We

present an aggressive function inlining optimization based on edge profiling gathered on some

representative workload. The inlining optimization is considered aggressive, as it is not limited to small

sized functions and does not bound the resulting code size. Large functions are inlined, as well as small

ones, according to their calling frequency. The suggested optimization performs function inlining of

functions to each of its call sites that do not contain a hot directed path in the control flow graph between

them. This is to avoid cache conflicts effects at run-time. We show that by inlining functions at call sites,

which adhere to the above criteria, increases performance noticeably, provided the inlining is followed by

a global code reordering. The code reordering groups all the hot code together and places all rarely

executed code farther away in the code area. In this paper we describe the heuristics applied when

choosing which functions to inline, along with the analysis of the effects on performance and the

resulting code.

Although, the above technique can be applied at compiler level, we chose to implement it in a post-link

Before Code Reordering

foo:(invoked 80 times)

 BB1: Call bar
 BB2: ...
 BB3: CMP R3,0
 JEQ BB5
 BB4: Add R3,12
 BB5: Return

bar:(invoked 90 times)

 BB6: CMP R6,R7
 JEQ BB8
 BB7: Add R6,9
 BB8: Return

After Code Reordering

foo:(invoked 80 times)

 BB1: Call bar
 JMP BB2 (penalty)
Bar:
 BB6: CMP R6,R7
 JNE BB7
 BB8: Return
 BB2: ...
 BB3: CMP R4,R5
 JNE BB4
 BB5: Return

 BB7: Add R6,9
 JMP BB8
 BB4: Add R3,12
 JMP BB5

After Reordering +
Inlining

foo:(invoked 80 times)

 BB6: CMP R6,R7
 JNE BB7
 BB2: ...
 BB3: CMP R4,R5
 JNE BB4
 BB5: Return

 BB7: Add R6,9
 JMP BB8
 BB4: Add R3,12
 JMP BB5

bar:(invoked 10 times)

 BB6: CMP R6,R7
 JNE BB7
 BB8: Return

 (a) (b) (c)

Figure 2. Function Inlining Can Help Code Reordering

5

optimization tool called FDPR (Feedback Directed Program Restructuring) reported in [9, 10, 16, 19].

Other known post-link tools can be found in [6, 7, 15, 18, 20]. FDPR was also used to collect the profile

information for the optimizations presented here. The optimizations were applied on the SPECint2000

benchmark on the AIX Power4 64-bit platform. The performance results show an improvement of up to

11% and an average of 6.5% when applying function inlining followed by global code reordering and up

to 8% with an average of 4% on top of code reordering.

This paper is organized as follows: Section 2 discusses related works. Section 3 describes the

optimization method of the aggressive function inlining. Section 4 discusses the effects of the inlining on

the code before and after applying code reordering. Experimental results are given in Section 5, followed

by conclusions in Section 6.

2. Related work

As mentioned in the introduction, although function inlining can help improve performance, it can

sometimes cause a substantial code bloat which results in a higher rate of I-cache misses and

performance loss. As a result, inlining is often applied only to small functions. Nevertheless, several

works have addressed the code expansion issue by suggesting additional heuristics which handle inlining

of large functions.

Chen et al. [5] showed that code expanding optimizations have strong implications on instruction cache

design. They found that function inline expansion improves the performance for small cache sizes, but

degrades the performance of medium caches. McFarling [13] describes a method of determining which

procedures to inline for machines with instruction caches. The method uses profile information as well as

cache size and cache miss penalty information in order to define a relevant cache model. This cache

model is then used to weigh the benefit of removing calls against the increase in the instruction cache

miss rate for choosing inlining candidates. Our proposed solution does not rely on a cache model or any

6

architectural information such as I-cache structure or code size constraints and, therefore, suitable for

different machine configurations.

Ayers et al. [2] and Das [8], found an analogy between the code expansion problem and the Knapsack

problem. They used this analogy to help in identifying appropriate candidates for function inlining.

Arnold et al. [1] tried to find the best candidates that would fit to a given code size budget for the

Jalapeño dynamic optimizing compiler. Triantafyllis et al. [21] suggested to use aggressive inlining

together with code specialization techniques for the EPIC compiler. In their work they eliminated the

need to limit the amount of code growth due to the specialization phase that reduces the amount of code

being duplicated. The main difference of the above works from our proposed optimization is based on

applying global code reordering after function inlining and by focusing on inlining functions only to call

sites which are unlikely to increase cache conflicts as they are executed in different time frames. As a

result, the heuristic of selecting candidates for function inlining does not depend on limiting the code size

growth.

Way et al. in [22, 23] suggest different inlining heuristics that are based on the idea of “region based”

analysis. The usage of regions is designed to enable the compiler to operate on reduced control flow

graphs of inlined functions, before applying the register allocation and scheduling algorithms on them.

The formation of a region is guided by profiling information and is similar to the way code reordering

algorithm determines the new order of the basic blocks. In our work we concentrate on the specific

optimization of code reordering that is applied after function inlining. As a result, we manage to show

performance gain by concentrating on the study of the program locality effects of code reordering

together with function inlining. Although the idea of compiling applications in a region based can help

reduce compilation complexity, the heuristics for determining the function inlining candidates are also

bounded by code size limitations, as opposed to this work.

7

For function inlining optimization, Way et al. [26] describe a new profile based method for determining

which functions to inline in order to avoid cases of code bloat, by collecting path profiling information

on the call graph of the program.

The post-link tools PLTO [20] and ALTO [15] address the issue of code inlining as part of their post-link

optimizations. PLTO uses cache model for determining which functions to inline (similar to McFarling's

[13]). We have also chosen to implement our techniques at post-link level using the FDPR tool [9, 10,

16, 19]. However, in our work we eliminate the restriction on the increase of code size by selecting only

hot functions as candidates and by not duplicating them to call sites for which they are likely to cause

cache conflicts.

3. Aggressive Inlining Method

The main issue of function inlining is that different copies of the same function can sometimes compete

with one another in the I-cache. If a function is frequently called from different places in the code,

duplicating it can cause higher cache miss ratio due to references to the multiple copies. For these cases,

maintaining only the original copy of the callee function guarantees that function callers will share the

same copy in the cache. In this work, for each potential inlining candidate function foo which is called by

more than one frequent caller, we scan for hot paths between the callers, in order to determine if foo can

be inlined without causing cache conflicts at run-time. In this work, in order to determine the frequency

degree of the edges in the paths between the callers, an input threshold parameter, referred to as the

Hotness Threshold (HT), is used.

For example consider the following C code:

8

In this example, inlining function gal into both foo and bar will most probably cause cache conflicts

during the execution of jar1 since both copies of gal will be frequently executed at the same time frame.

However, in the following code example, inlining gal into foo and bar will not cause significant number

of cache misses:

The reason for this derives from the fact that there is a relatively cold edge in the control flow of jar2

between the function call to foo and the basic block containing the function call to bar, and each function

call is executed in a different time frame of the program execution trace. This means that inlining

function gal will cause relatively small number of I-cache conflicts at run-time and therefore, makes a

good candidate for inlining.

After inlining all the selected calling sites, a global code reordering is applied on the code. Therefore,

properly updating the profiling information to reflect the changes in the control flow resulting from the

massive function inlining, is vital for an effective basic-block reordering.

The proposed algorithm consists of three main steps:

1. Identifying all functions that are to be inlined according to the call graph, the control flow

graphs of each function and the profile information of the original program.

 void jar1()
 {
 for (i=0; i < MAX_NUM; i++) {
 foo();
 bar();
 }
 }

 void foo()
 {
 gal();
 }

 void bar()
 {
 gal();
 }

void jar2()
 {
 for (i=0; i < MAX_NUM; i++)
 foo();

 for (i=0; i < MAX_NUM; i++)
 bar();
}

9

2. Performing the actual inlining process for the selected functions from step 1.

3. Performing global code reordering on the program containing the inlined functions.

Given the call graph of the program, the proposed algorithm must also handle recursive function calls

that are reflected by cyclic paths in the call graph. In order to handle cyclic paths, the algorithm must

remove one of the edges in the cycle. Note that different inlining orders are created for different edges

being removed from the graph, as can be seen from Figure 3. The figure shows an example of a cycle in

the call graph of a given program, in which function f includes a call to function i that in turn calls to

another function j which in turn calls back to f. The different possible inlining chains created by

removing different edges in the call graph are shown at the lower part of the figure according to the

following rules: if some function foo contains an inlined calling site to some function bar, then bar will

be drawn beneath foo and slightly aligned to the right. If for some reason, bar is drawn directly beneath

function foo, without being aligned to the right, then this would mean that both foo and bar were inlined

into some other function gal containing the two calling sites to foo and bar. Figure 3 shows all possible

inlining chains created by removing different edges in the f – i – j cycle. For example, removing the j - f

edge, will cause function j to be inlined into i which in turn will be inlined into f (as shown in the figure).

Therefore, it is important to search for the maximal directed acyclic graph representation of the given call

graph. This problem is a variation of the feedback edge set problem [12]. The problem is NP-hard and the

time complexity of the algorithm is exponential with respect to the number of edges in the largest

strongly connected component of G. However, since in practice, the number of recursive functions

which participate in the creation of cycles in a call graph is usually very small, the time complexity is

sufficiently small.

10

 f g h

 i

 j

 Call Graph

 Removing j-f edge Removing i-j edge Removing f-i edge

Figure 3 – Different Inlining Options for Cycles in the Call Graph

The main algorithm

1. Create the call graph G for the given program and attach a weight to each edge,

representing the frequency of each function call according to the profile information.

2. Go over the call graph and remove any cold edges from G. In this work, a cold edge is

defined as an edge in the control flow graph of the program whose weight falls below 10%

of the average heat ratio AvgHeat which is calculated by the sum of all the frequencies of

f

 i

 j

 g

 h

j

 f

 i

 g

 h

i

 j

 f

 g

 h

11

all the executed instructions gathered during the profiling stage, devided by the total

number of instructions in the program.

3. Remove cyclic paths from the resulted graph G by finding the smallest weighted set of

edges E in G using the algorithm of Eades et. al. [12] for solving the feedback edge set

problem.

4. Remove all the edges from G which can potentially cause cache conflicts when inlined at

their call sites according to the filtering algorithm described further below.

5. Sort G in a topological order.

6. Go over all the functions in G according to their topological order starting from the

functions in the roots in ascending order. For each function f :

a. Duplicate the code of function f for each of the call sites which have an

outgoing edge to f. All relevant information related to the copy of f,

referred to here as f_dup, such as symbolic information, branch tables,

traceback data etc., are to be duplicated as well.

b. Update the call instruction to f, in all it call sites, to call f_dup.

c. Update the weights of the edges in both call graph and control flow graph

of both f and f_dup to reflect the changes resulting from duplicating f.

7. Go over all the functions in G starting from the leaf functions in descending order. For each

function f_dup : Inline f_dup into its calling function g by placing its code within g and

eliminating the save and restore instructions of the return address of f_dup, and by

eliminating the call and return instructions in f_dup. Update the call and control flow

graphs to reflect the changes resulting from inlining f.

8. Perform global code reordering on the resulted code in order to pack all hot code.

12

The above algorithm relies on the code reordering phase to improve the code locality after function

inlining. Therefore, it is very important to update the profile information in both the call graph and

control flow graph used by code reordering. If function foo is to be inlined into function bar then the

profile information of both the inlined version of foo and the original foo function must be updated to

describe the new state. The more the fix is representative of the state, the better the reordering results

would be. In the absence of path profiling we calculate the ratio between the callee's prolog and the caller

site count and fix all basic blocks' and edges' counts of foo by multiplying them with that ratio.

The Filtering Algorithm

Let AvgHeat be the average edge weight in the control flow graph of the entire program as

calculated in step 2 of the main algorithm, and let MaxHeat denote its maximal weight. Let HT

denote an input hotness threshold percentage between 0 and 1. The Normalized Hotness

Threshold value NormHT is calculated according to the following formula:

For HT = 0%, NormHT = 0

For HT = 100%, NormHT = MaxHeat + 1

For 0% < HT < 100%, NormHT = min(AvgHeat/ln(1/HT2), MaxHeat+1)

1. Every edge of the control flow graph, which falls bellow NormHT as calculated in step 1

above, is removed from the graph. As a result, the higher the input HT percentage, the

more aggressive the optimization is. For HT = 0% all the edges in the call graph will be

removed completey, thus disabling the optimization. For HT = 100% the call graph is

left unchanged, enabling the optimization for every non-cold edge which was left in the

call graph after applying step 2 of the main algorithm.

2. For each inlining candidate function f in the call graph G:

13

a. For every two incoming edges e1, e2 to f let caller1 be the caller basic

block terminating with e1 and let caller2 be the caller basic block

terminating with e2, and let fallthru1 and falthru2 be the basic blocks

following caller1 and caller2 respectively.

b. Go over the control flow graph and search for directed paths from

fallthru1 to caller2 and from fallthru2 to caller1.

c. If both paths exist, then remove the e1 and e2 edges from G.

4. The Effects of Aggressive Inlining on the Program Code

The aggressive inlining process produces a set of “chains” of inlined code in the program. Each chain is a

sequence of inlined functions contained within a single chain header function. A header function f may

contain several inlined call sites to different functions, which in turn may include other inlined functions

in them. All these inlined functions form a single chain which begins and ends with f’s prolog and epilog

in respect. We claim that a chain correlates to one hot execution path through the program code in the

combined call graph and control flow graphs of the inlined functions in the chain. Therefore, the

optimization is aimed at creating large chains that will include as few hot function calls as possible in

them. There are two types of chains produced after aggressive function inlining: “regular chains” which

begin/end with a prolog/epilog of a cold header function, and “service chains” which begin/end with a

hot prolog/epilog and are being called from other two or more chains. Figure 4 illustrates the code

14

produced after aggressive inlining. The code is partitioned into a set of regular and service chains, service

functions and isolated cold functions.

. . .

Cold Prolog
H

ot
 p

at
h

Cold Prolog

Cold Epilog
H

ot
 p

at
h

Hot Prolog

Hot Epilog

. . . H
ot

 p
at

h H
ot

 p
at

h

Function Chains Isolated Cold functions

Cold Epilog

Hot Prolog

Hot Epilog

. . .

Cold code

Hot code

Cold call

Hot call

Figure 4. Code Layout After Function Inlining

15

The aggressive inlining has also an impact on the code reordering optimization potential. The heuristic of

the code reordering algorithm for generating optimized sequences of basic blocks is based on the tracing

idea. The algorithm starts with an entry point basic block and tries to grow a "trace" of basic blocks,

using the profiling information. Another decision which the code reordering algorithm makes is when to

stop growing a trace. Basically, when the probability of transferring the control to a next block in a trace

falls below a certain frequency threshold, the algorithm decides to finish growing a trace and starts a new

one. Note that in general, traces do not cross procedure boundaries due to the overhead caused by the

need to add extra jump instructions during the code positioning phase, as was shown in Figure 2b.

Another decision is where to start the next trace, as there are several alternatives for starting a new trace.

In our code reordering algorithm we do not necessarily continue to cover the rest of the traces of the

same procedure A. Rather, the algorithm can switch to a trace from another procedure C, then from D,

and so on.

Note that the longer the traces produced by code reordering, the better program locality is. We claim that

the average size of traces created before aggressive inlining vs. the average size after inlining can also

serve as a measure for the improvement in program locality. In general, the average size of traces

increases due to function inlining. This is due to the fact that traces that started to grow in a certain

procedure can now grow into the corresponding inlined callee procedures, as the corresponding function

call instructions are removed during function inlining.

5. Experimental Results

In this section we demonstrate the benefits of the aggressive inlining presented in the paper and try to

explain the reason for the performance gain. The experiments were conducted on an IBM 64-bit Power4

Regatta machine with four processors, containing an I-cache of 16KB instruction, and a unified 4MB L2

cache. As mentioned in the introduction, the optimization was implemented into the IBM FDPR post-link

16

tool, running on the AIX operating system version 5.2. The optimization method was applied on the

SPECint2000 benchmark executable files, after being compiled as 64-bit programs with the IBM xlC

compiler using the -O3 optimization flag. The profile information was gathered on the train input,

whereas performance measurements were taken with the ref input. The function inlining optimization

was applied with four different hotness threshold factors of 30%, 50%, 70% and 100% and included only

basic code transformations of eliminating the corresponding call and return instructions.

Figure 5 demonstrates the synergy effect of function inlining together with code reordering. As can be

seen from the figure, the performance improvement resulted from applying both optimizations is always

higher than the sum of the performance gains when applied separately. In most cases, aggressive inlining,

without code reordering, reduces the performance, as is the case with gzip, gcc, crafty, parser, eon, gap

vortex and bzip2.

-6%
-4%
-2%
0%
2%
4%
6%
8%

10%
12%

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf Avg.

Cloning & Embedding alone (HT=70%) Code Reordering alone CR + C&E

Figure 6 shows the performance improvement on SPECint2000 measured after aggressive inlining

followed by global code reordering, versus the performance after code reordering alone without function

inlining. We can see that the performance improvement on top of code reordering reaches up to 8% with

an average of 4% for HT = 70% which, in general, gives the best results.

Figure 5 – The Synegry of Function Inlining with Code Reordering

17

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf Avg.

HT = 100% HT = 70% HT = 50% HT = 30%

Figure 7 shows the change in hot code size after function inlining. Interestingly, the size of the hot code

in gzip and in vortex actually decreases for HT values of 30% or 50%, after applying function inlining.

This is mainly due to the following two reasons:

1. The removal of call and return instructions together with their corresponding store and restore

instructions of the returning address for each inlined function.

2. In most cases the original copy of each inlined function turns cold while only its inlined copy

remains hot. Therefore, in such cases, function inlining did increase the total hot code size.

Note that since functions are inlined only for callers which are unlikely to create cache conflicts, as they

are executed in different time frames, increasing the hot code footprint will not increase the number of

cache conflicts in a noticeable manner.

Figure 6 - Run-Time Improvement on top of Code Reordering (%)

18

-40%

-20%

0%

20%

40%

60%

80%

100%

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf Avg.

HT = 100% HT = 70% HT = 50% HT = 30%

Figure 8 displays the total size expansion in the executable file. As can be seen from the figure, the

executable size expansion is between 20% – 30% depending on the hotness threshold value being used,

and can reach up to 120% with vortex when enabling all the non-cold call sites to be optimized (HT =

100%). It is interesting to see that the eon benchmark, which showed the highest performance

improvement of 8% on top of code reordering in Figure 6, shows an exceptionally small increase in the

total executable size after applying the optimization.

0%

20%

40%

60%

80%

100%

120%

140%

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf Avg.

HT = 100% HT = 70% HT = 50% HT = 30%

Figure 7 – Hot Code Size Expansion (%)

Figure 8 – Total Executable Expansion (%)

19

Figure 9 shows the total number of chains created after function inlining for HT = 70% and the ratio

between chains starting/terminating by cold prologs/epilogs versus chains wrapped by hot

prologs/epilogs (service chains). There is a correlation between the total number of chains and the high

ratio of chains that are wrapped by cold prologs. A cold-prologed/epiloged chain indicates a complete

trace in the program which contains all hot paths in it. Therefore, we would always thrive to reach a high

percentage of cold-prologed chains in the program. In the figure, crafty and eon show the best ratio.

0

200

400

600

800

1000

1200

1400

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf Avg.

Cold-prologed chains Hot-prologed chains

Figure 9 – Total Number of Inlined Chains for HT = 70% (in bytes)

Figure 10 shows the ratio between the average size of cold-prologed chains versus service chains. On

average service functions which are called from several hot sites form a very small portion of all the hot

chains in the optimized program. Overall, the average size of service functions which are called from

several hot sites, form a very small portion of all the total average size of the hot chains in the optimized

program.

20

0

2000

4000

6000

8000

10000

12000

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf Avg.

Cold-prologed chains Hot-prologed chains

Figure 10 – Average Size of Inlined Chains for HT = 70% (in bytes)

Figure 11 shows the increase in the average size of the traces produced by code reordering preceded by

function inlining, versus the size of the reordering traces without applying inlining. A trace size is

computed by the sum of all its instructions. An average trace size is the average size of all the hot traces

for which their average execution count is above the given hotness threshold. On average, code

reordering traces have increased between 20% - 50% depending on the hotness threshold value being

used. As explained in Section 4, the main reason for the growth derives from the ability of the reordering

algorithm to build traces which cross procedure boundaries after function inlining.

21

-20%
0%

20%
40%
60%
80%

100%
120%
140%
160%

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf Avg.

HT = 100% HT = 70% HT = 50% HT = 30%

The experimental results show that inlining together with code reordering helps increase the locality by

eliminating cold code as well as increasing the traces in the hot code. In some cases the code locality is

the main contributor, in others, the increase in trace size, and in others the combination of the two. From

the experiments we also learn that there are several factors for choosing the most suitable HT percentage

factor: the size of the cache, the percentage of growth of the average trace size during code reordering,

the ratio of hot service chains versus cold regular ones, and the increase/reduction in hot code size. In

our experiments all the SPECInt2000 benchmarks along with their optimized versions, did not exceed the

L2 cache capacity of 4MB. For example, mcf benchmark which has a small size code, shows the best

performance results even with a threshold factor of 100% which is equivalent to inlining any non-cold

call site. The mcf is an example where the large cache size has a dominant affect on its performance. On

the other hand, the eon benchmark shows a decrease in performance when using HT = 100% versus HT =

70%. The eon benchmark, which is 4 times larger than the size of mcf, already becomes too large to fit

into the cache for HT = 100% and a more appropriate filtering must be used. In general, an HT value

between 70% - 80% showed a peak performance also in commercial appliactions.

Figure 11 – Expansion of Average Trace Size (%)

22

6. Conclusions

In this work we presented a new optimization based on a study of the mutual effects between function

inlining and code reordering. The proposed optimization performs an aggressive inlining which is not

bounded by the increase in code size. The inlining is proceeded by a global code reordering phase. As a

result, the increase in total code size and in the hot code footprint does not degrade performance due to

the fact that execution time frames are taken into consideration.

The performance results measured here did not include any additional optimizations which are part of the

function inlining optimization, such as register allocation, instruction scheduling etc.

23

7. References

[1] M. Arnold, S. Fink, V. Sarkar, and P. Sweeney "A comparative study of static and profile-based
heuristics for inlining" In Proceedings of the ACM SIGPLAN workshop on Dynamic and adaptive
compilation and optimization, pp 52-64, 2000

[2] A. Ayers, R. Gottlieb, and R. Schooler, "Aggressive Inlining", In Proceedings of the '97 ACM
SIGPLAN conference on Programming language design and implementation, Pages 134-145, Las
Vegas, June 1997

[3] B. Calder, and D. Grunwald, “Reducing Branch Costs via Branch Alignment”, Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems, 1994, pp.
242-251.

[4] P. P. Chang, S. A. Mahlke, W.Y. Chen, and W.W. Hwu, "Profile-guided automatic inline expansion
for C programs", Software Practice and Experience, Vol, 22, pp. 349-370, May 1992

[5] W.Y. Chen, P.P. Chang, T.M. Conte, and W.W. Hwu. “The Effect of Code Expanding Optimizations
on Instruction Cache Design”, IEEE Transactions on Computers, 42(9):1045-1057, September 1993.

[6] R. Cohn, D. Goodwin, and P. G. Lowney, "Optimizing Alpha Executables on Windows NT with
Spike", Digital Technical Journal, vol. 9, no. 4, Digital Equipment Corporation 1997, pp. 3-20.

[7] R. Cohn, and P. G. Lowney, "Hot Cold Optimization of Large Windows/NT Applications",
Proceedings of the 29th Annual IEEE/ACM International Symposium on Microarchitecture, Paris,
France, December 1996, pp. 80 - 89.

[8] D. Das, "Function Inlining versus Function Cloning", ACM SIGPLAN Notices, ACM Press, New-
York USA, Volume 38, Issue 6, June 2003, pages 23 - 29

[9] G. Haber, E.A. Henis, and V. Eisenberg, "Reliable Post-link Optimizations Based on Partial
Information", Proceedings of the 3rd Workshop on Feedback Directed and Dynamic Optimizations,
December 2000.

[10]E. A. Henis, G. Haber, M. Klausner and A. Warshavsky, "Feedback Based Post-link Optimization
for Large Subsystems", Second Workshop on Feedback Directed Optimization, Haifa, Israel,
November 1999, pp. 13-20.

24

[11]W.W. Hwu and P. P. Chang, "inline function expansion fro compiling C programs", in proceeding
of the '89 ACM SIGPLAN conference on Programming Language Design and
Implementation, pp. 246-257, June 1989

[12]P. Eades, X. Lin, and W. F. Smyth. "A fast and effective heuristic for the feedback arc set problem".
Info. Proc. Letters, 47:319-323, 1993.

[13]S. McFarling. "Procedure Merging with Instruction Caches", In proceedings of the SIGPLAN
1991Conference on Programming Language Design and Implementation, pages 71-79, June 1991.

[14]S. S. Muchnick, Advanced Compiler Design & Implementation, Morgan Kaufmann Publishers, San
Francisco, California, 1997.

[15]R. Muth, S. Debray, S. Watterson, "alto: A Link-Time Optimizer for the Compaq Alpha", Technical
Report 98-14, Dept. of Computer Science, The University of Arizona Dec. 1998.

[16]I. Nahshon and D. Bernstein. "FDPR - A Post-Pass Object Code Optimization Tool", Proc. Poster
Session of the International Conference on Compiler Construction, pp. 97-104, April 1996.

[17]K. Pettis and R. Henson, "Profile Guided Code Positioning", Proc. Conf. on Programming
Language Design and Implementation, June 1990, pp. 16-27.

[18]T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad. and B. Chen,
"Instrumentation and Optimization of Win32/Intel Executables Using Etch", Proceedings of the
USENIX Windows NT Workshop. August 1997, pp. 1-7.

[19]W. J. Schmidt, R. R. Roediger, C. S. Mestad, B. Mendelson, I. Shavitt-Lottem, and V. Bortnikov-
Sitnitsky, "Profile-directed Restructuring of Operating System code", IBM Systems Journal, 37, No.
2, 1998, pp. 270-297.

[20]B. Schwarz, S. Debray, G. Andrews, and M. Legendre, "PLTO: A link-Time Optimizer for the Intel
IA-32 Architecture", In Proceedings of Workshop on Binary Rewriting, Sept 2001

[21]S. Triantafyllis, M. Vachharajani, and D. I. August "Procedure Boundary Elimination for EPIC
Compilers" In Proceedings of the Second Workshop on Explicitly Parallel Instruction Computer
Architectures and Compiler Technology, November 2002.

25

[22]T. Way, B. Breech, and L. L. Pollock, "Region Formation Analysis with Demand-driven Inlining for
Region-based Optimization", PACT, pages 24-36, 2000

[23]T. Way and L. Pollock, ``Evaluation of a Region-based Partial Inlining Algorithm for an ILP
Optimizing Compiler," IASTED International Conference on Parallel and Distributed Computing
and Systems (PDCS 2002), Cambridge, Mass., November 2002

[24]M. W. Hall., "Managing Interprocedural Optimization", Ph.d. thesis, Rice University, April 1991

[25]K. D. Cooper, M. W. Hall and K. Kennedy, "A methodology for procedure cloning ", Computer
Languages, pages 105-117, 1993.

[26]T. Way, B. Breech, W. Du, V, Stoyanov, and L. Pollock, "Using Path-pectra-based Cloning in
Regional-based Optimization for Instruction Level Parallelism", ISCA 14th International Conference
on Parallel and Distributed Computing Systems, (ISCA PDCS), pp. 83-90 2001

