
H-0250 (H0602-017) February 13, 2006
Computer Science

IBM Research Report

A High-Performance Domain Specific Parallel and
Distributed Massive Collection System

Uri Shani, Aviad Sela, Inna Skarbovsky
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A High-Performance Domain Specific Parallel and
Distributed Massive Collection System

Uri Shani
IBM Haifa Research Lab

Haifa University Mount Carmel
31905 Haifa, Israel
+972 4 8296282

shani@il.ibm.com

Aviad Sela
IBM Haifa Research Lab

Haifa University Mount Carmel
31905 Haifa, Israel
+972 4 8296456

sela@il.ibm.com

Inna Skarbovsky
IBM Haifa Research Lab

Haifa University Mount Carmel
31905 Haifa, Israel
+972 4 8296569

inna@il.ibm.com

ABSTRACT
High performance and ease of use are the two main goals of the
Massive Collection System (MCS). On the outset, MCS is a
classical process that consumes massive amount of input,
processes it according to business specifications, and produces a
comparable amount of output. To do that, MCS has a massive
parallel architecture whose core processing task executes the
business rules on a continuous flux of input records organized in
files. Each processing task executes a processing “plan” which is
a high level domain specific language (DSL) designed for domain
experts rather than professional programmers.

The MCS design for performance is composed of two factors: one
is the massively parallel execution framework; the second is the
effective compilation and execution of the domain specific MCS
plans. The execution framework is built on top of IBM J2EE
implementation Websphere Application Server (WAS). The entire
MCS is a WAS application, written in Java, which obtained its
performance goals as well as ease of use.

The performance challenges of MCS were stated in terms of
hundreds of millions of records a day. We selected Java and WAS
for implementation due to their development advantages, allowing
us to obtain proofs for the MCS performance goals rather early –
within several months, which were shown to scale up almost
linearly on the input size.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications –
Specialized application languages, Very high-level languages;
D.3.3 [Programming Languages]: Processors – Run-time
environments; D.2.6 [Software Engineering]: Programming
Environments – Integrated environments;

General Terms
Management, Measurement, Performance, Design, Reliability,
Experimentation, Languages.

Keywords
Scalable Middleware, Massive Records Collection, Massive event
processing. Revenue assurance, Distributed Records Collection

1. INTRODUCTION
Many business operations generate large amount of event records
describing the business progress, such as banking and other
financial institutes. MCS was designed to handle a high volume of
event records in the Telco industry where these are Call Detail
Records (CDRs) describing individual telephone call events. The
MCS end to end process in the Telco context is as follows:

Figure 1-1: MCS layered architecture

The records originate in the operational network in switches, and
are pushed upstream into central processing where eventually
they drive billing systems which when materialize, generate the
service provider revenues. MCS was specifically required to
handle a revenue assurance function, by which it processes CDRs
in parallel to the billing system, repeating its function in order to
find mismatches in the data which may lead to the discovery of
revenue leakages.

mailto:inna@il.ibm.com

To facilitate effective system, the rules by which CDRs are
processed should be easily written by domain experts rather than
programmers. That requirement led to the design of a domain
specific language (DSL) [1] in which the business rule
specifications for each type of CRD were coded.
We will first describe the MCS architecture, which is composed
of two major layers; The MCS framework is the execution
environment layer in which MCS plans are processed rapidly and
highly parallel. The architecture will describe how the plans’
execution is orchestrated on top of the IBM Websphere
Application Server (WAS) [2],[3],[4], which is the IBM J2EE [5]
implementation.
The MCS performance is measured along two dimensions. On the
local scale, each group of records is processed by a certain
processing plan instance and must reach a certain high level of
performance to meet end to end demands. The collection of such
executions is processed in a highly parallel framework and
presents the overall end to end MCS performance which
processes a mix of input record streams.
We will also discuss future work in which the typical
performance characteristics of an MCS-like environment are
identified and contribute to an effective model by which MCS
performance can be predicted and measured.

2. MCS Architecture
MCS architecture is designed to efficiently address the following
aspects:

1. A sequence of execution steps among which are the
following main processing requirements :

a. Process a group of input records of a certain
type according to a certain processing plan

b. Storing the output records either in a database
or file system.

2. Orchestrating the massive execution of these processes
in a parallel and distributed J2EE application.

2.1 The MCS framework
2.1.1 MCS Entities
An MCS ‘Entity’ is represented by a Data Object (DO) persistent
by MCS database tables. MCS allows many entity instances of
the same type. The DO is responsible for maintaining the state of
its associated entity instance. Each entity instance has a defined
life cycle managed by a state-machine object. The lifecycle is
defined by a state machine diagram, which is further described in
the following subsection.
MCS apportions the massive input flux into a manageable
quantity which is called an ‘Envelope’. The envelope forms a unit
of work (UOW) on which MCS ensures that an end-to-end global
process either completes or fails all together. A MCS envelope
consists of one or more ‘Task’s, where each task represents a sub
set of the input records assigned to the owner envelope.
Generally, MCS aggregates input records into one or more files,
where each file (also termed “Fragment” file) is associated with
its own task. The total number of records in all these files defines
the UOW. Both envelopes and tasks are MCS entities.

MCS tasks can be processed anywhere in the system independent
of other tasks. A MCS task is responsible for invoking the MCS
language processor responsible for processing the records
according to a defined plan written specifically to the input
record’s designated type. The task entity reads the input records
from the assigned source (e.g., file, input stream etc..), processes
the records according to the plan and ends up with a collection of
output records associated with a target destination which is a
property of the owner envelope.
MCS Destination is a logical entity which is associated with a real
world resource, which in general will be a database table or a file.
The task creates an ‘OutputFile’ entity whose DO maintains the
state of the concrete destination instance, throughout their
lifecycle from generation by a task, to completion with a
successful database uploading or safely stored in a file on a file
system.
The MCS massive uploading to target table destination is carried
out by the MCS ”Package” entity. MCS manages one or more
package entities each one is a singleton in the system responsible
for uploading a specific MCS target destination. A package may
upload data produced by different envelopes sharing the same
MCS destination.
MCS also defines the ‘Poller’ entity, a system wide singleton,
responsible ‘sniffing’ the file system for incoming input records,
issuing new job request for the MCS envelopes.
The MCS interaction is illustrated in the following relations
diagram:

Figure 2-1: MCS Entities relations

The poller, envelopes, tasks and packages entities shown in the
above figure are processing entities, meaning MCS executes a
thread for each execution step in their lifecycle. The output file
which is a product of the task process is subject for further
management by the package and the envelope entities. The other
entities, such as the ‘InputFile’ and the ‘Database Table’, do not
have specific MCS entity representation, except as a real world

entities existing in some media (e.g. file system and database,
respectively).

2.1.2 MCS Flow
MCS manages the life cycle of its entities using a state machine
object created by MCS Business Process Flow & Control Engine
(BPFC) according to a defined State Machine Diagram. The state
machine object maintains the state of each entity instance within
its associated DO instance. The MCS BPFC engine is responsible
for providing transaction support for any state transition and any
action taken against external and internal resources such as
database tables or messaging engines queues.
The MCS flow is driven by messages, that MCS calls ‘Trigger’,
sent by entity instances within state machine actions. The triggers
can be sent internally targeted to the same entity or to other entity
types. Triggers are dispatched through queues defined in the
messaging layer provided by WAS. The BFPC engine reads the
triggers from the queue (via Message Driven Beans - MDBs) and
deciphers it to identify the target entity DO, and retrieve it from
the database. This DO, associated with the corresponding state-
machine diagram uniquely recreates the entity’s state at the end of
its previous processing step – the state-machine instance object.
Then the engine propagates both the retrieved DO and the
incoming trigger to the deciphered state-machine object for the
next actual processing step.
State-machine processing depends on the persistent DO state and
the incoming trigger ID. If no match exists for the trigger ID with
the current state according to the state-machine diagram, the
trigger is discarded. Otherwise, a state-machine ‘Transition
Action’ is taken followed by a ‘State Flow Processes Action’.
Basically, a transition action is a ‘short term’ (e.g. in order of
milliseconds) consists of three successive actions: starting state
Exit action, actual transition action and the End state action. This
sequence of actions is transactional, persistent in the database on
success or rolled back on failure. On the other hand, the state flow
action is a ‘long term’ (e.g. in order of seconds/minutes) action,
that programmatically addresses failures. Meaning, on failure the
state flow action issues a required trigger, to drive the entity to a
handling state.
MCS business processing is carried out by the flow action
implementations. Specifically, the input record processing is
carried out by a state flow action in the task’s state machine
diagram, and database uploading is a state flow action of the
package state machine diagram. As described above, each actual
processing step is carried out within a WAS-assigned execution
thread.
For each of the four processing entity types MCS defines a state
machines diagram: poller, envelope, task and package. Each
entity instance operates as a J2EE MDB, listening for incoming
triggers on the WAS messaging queues. When deployed as a
cluster of servers on one or more machines, the message engines
on each of the cluster nodes ensures load balancing via the
Workload Management (WLM) feature of WAS. The scope of
this paper is too short to provide the needed details which can be
found in [2], [3], [4].

2.2 The MCS task processing
MCS language is modeled in UML [6], and converted to an
executable module using the Eclipse Modeling Framework (EMF)
[7],[8]. With that tool, MCS obtains a highly effective integrated

development environment (IDE) as an MCS language plugin to
Eclipse [9], [10]. Figure 2-2 artistically shows two panels of this
IDE, where the lower is an imperative processing plan in edit
through the EMF generated tree visual editor. In that pane, a
“Table” element is in focus, and whose properties are seen on the
upper pane, depicting a certain table and columns in a relational
database.
The result of this IDE is an MCS specification plan file in
XML[11] format. The file is in fact an instance of a model of the
language, rather than a commonly ASCII representation of a
programming language, and for that we use the XMI[12] standard
language for XML model interchange.

.

Figure 2-2: The MCS integrated development environment over

the Eclipse platform, using the Eclipse Modeling Framework.

The language domain is the processing of records consisting of
fields, having certain types, coming from an input file. To convert
input records to output, the MCS processing plan performs a set
of transformations, each of which has an underlying “Base
Operation”. Base operations are MCS language elements which
interface the task execution framework to Java classes which are
written according to a certain MCS standard interface. While we
do not have the space to go into the MCS language constructs in
detail, it should be clear that at execution time, base operations
are invoked in sequence to compute new values from input values
and produce them in the output fields of output records.
The execution model of a task is therefore the following pseudo
code:
while (! EOF(input))

{

 read (input, inputRecord);

 clear (outputRecord)

 for each trans in (transformations)

 trans.invoke(inputRecord, outputRecord);

 if (outputRecord.isValid())

 write(output, outputRecord);

}

This is an implicit control flow in MCS, which mimics that of the
AWK language [13]. This is also an oversimplification of the
MCS plan execution flow, but shows that input processing
depends on the number of fields in input and output records, and
number of transformations of invocations of base operation. Each
base operation may have different processing complexities, the
simplest of which are doing simple type conversions and content
copying, whereas the more complicated have to do with table
lookups, such as are done via the Table language element shown
in Figure 2-1. Yet some other base operations can be very
“heavy” as there is no limit on the complexity of each, except for
the practical guidelines documentation in which such cases are
not recommended.

3. MCS Performance steps
In the MCS design phases the requirements to support hundreds
of millions of CDRs a day lead to the above architecture
promoting performance issues to the reliable working of a highly
parallel system. Yet, with individual task not performing a
minimal load in reasonable time, the end to end process will not
work on a reasonable hardware. A configuration of few machines,
and some dozen or so processors has been considered, but not of
dozens of machines with hundreds of processors. Converting the
system planned daily intake of 500 million records, is equivalent
to about 6,000 records a second (500,000,000/24/3600 = ~5,800).
Therefore, processing in excess of 1,000 records a second in
average was required.

3.1 The MCS task performance
3.1.1 The MCS task as a Java application
At the initial project phases, the use of Java has been preferred for
2 reasons. One is the language natural advantages as robust,
reliable and easy to develop advanced tool. The second is our
desire to enjoy the scalability, reliability and efficiency of the
IBM WAS platform. With these environments it would be quicker
to reach MCS goals. Therefore the initial test has been a Java
program which does all steps in the above pseudo code: reading
input, parsing and converting to internal representations,
performing all transformations, and table lookups, and eventually
write it all to an ASCII file, or alternatively uploading to a
database table using JDBC [14] which is a standard Java API for
doing SQL commands to a database management system – in our
case: DB2. A second level testing wrapped this program as a
WAS Message Driven Enterprise Java Bean (MDB) invoking it to
compute same data within this framework to measure the effect it
will have on reducing MCS performance.
Machines have been a desktop PC on which the test ran, and a
database DB2 engine on a 4-way PC, reading 140 MB from 7
input files, each consisting of 20,000 records of 1KB each.
The results of this test have been very encouraging as in the
following tables for single thread execution, which means a serial
execution, thus the results are the average per file.
Legend: FR = file read time; Pr = Processing, En = Enrichment,
Sum = Summaries – these are three types of business rules, so for
this test we will look at sum of all of them. File column is for file
output and DB is for database uploading. Time is in milliseconds,
except for totals which are in seconds.

Thus, the 20,000 records were processed in a total of 11 seconds,
or 1,800 records per second, including database upload, and even
better: 6 seconds for output written to files, or 3,300 records a
second. On a RS/6000 (IBM P Series) server, running AIX 5.1,
the following results were obtained:

Here, we even have 10,000 records a second.
With multiple threads, results improve as follows for windows,
ranging from single thread on 1st line, to 7 threads on 7th line:

On AIX platform results are:

The best overall results on Windows are for 5-6 threads, as well
as for AIX, with total performance of 140,000 records in 27
seconds on Windows, and 9 seconds on AIX, or 5,100 records per
second, and 15,500 records per second respectively. These
number surpass the original requirements by far, and leave
sufficient margins for the expected more complicated real-world
cases, in the yet-to be developed high-level language
interpretation.

3.1.2 The MCS task using MCS language
The MCS IDE includes also tools to execute and measure
performance of MCS plans. The execution environment provides
access to all resources which would also be needed when
executing on a server. In fact, it is possible to run an MCS plan
within the IDE, accessing the exact same resources as on the

server. Processing time of plans excluding the compilation time
will reflect very genuinely the processing time expected on the
server.
On IDE we can measure several factors of the execution:

1. Execution time, separating read time from processing
time, from output time.

2. Profile of the relative time consumption of each of the
base operations, and their frequency of use

3. Data allocation and release on the Java heap as reflected
in the Java garbage-collection (GC) reporting during
execution.

3.1.3 Plan execution performance statistics
The following table summarizes the execution of a plan providing
some performance insight as per #1 above:

As follows: The input file consisted of 1,081 records, executed 10
times, of which the first one included the plan compilation. File
size is 490KB due to record size of about 0.5KB. Each record
defines 119 fields, and the plan contains about 200
transformations. The average read/processing/output time per
execution is (in milliseconds): 33.44/398.44/208, total of 640
ms/record, which is same as 1.74 K records/second. Further
analysis per record is 368.59 µ-seconds, and further per
transformation is 1.842 µ-seconds, or 1,842 -seconds per
transformation.

3.1.4 MCS Base operation profiling
The analysis above is the average per transformation which
consists of data-field access, and performing some algorithm.
Base operations may access from one to a dozen of data fields, so
a good model for base operation performance is a bit more
intricate, however the following results of profiling the base
operations for task performance item #2 above shed more light on
these fundamental elements of the MCS performance:

Input is 25,000 records; each base operation may be invoked by
one or more transformations, where “Other” represents time not
used for invocation. The first column is the time total in
milliseconds, the second column is the number of invocations.
The 4th column is the average time per invocation. Due to clock
resolution of 1 millisecond, the numbers are good only for relative
weights. Yet, some of the base operations are indeed inefficient.

3.1.5 Java GC considerations
The third measurement looks at Java heap reallocation, or what’s
called “garbage collection”. With a heap size of 0.5 GB, running
the plan in up to hundred iterations, total heap allocations can be
calculated, resulting in a usage rate of 130KB per 1 KB input
record. GC sweeps all allocations for “dead” objects and frees this
space, and possibly even doing space compaction. In our case, we
found out that GC time occupies 25%-50% of total execution
time. Still MCS providing the performance we need, yet much
performance improvements are still possible via smarter object
management and reuse.

3.2 The MCS orchestrated performance
3.2.1 MCS scalability
To achieve its performance goals, MCS are deployed as J2EE
application on WAS. Specifically, MCS using WAS Network
Deployment (ND - [2], [3], [4]) clustering capabilities provides
MCS with the needed scalability with load balancing via
messaging. With WAS-ND, MCS can be deployed on a number
of machines, each serving as one or more nodes in the distributed
system, each node managing one or more servers – each of which
is a J2EE instance. Each server, in turn, manages a pool of threads
on which the MCS processing entities execute their processing
steps, when invoked by a trigger message as MDBs. The
messaging engines in WAS (the System Integration Bus – or SIB)
implements the Java Messaging Services (JMS) [15], and
provides load balancing, ensuring that threads will work evenly
distributed on the MCS allocated machines.
MCS maintains 4 different queues, each driving a different type
of MCS processing entity. That is depicted in Figure 3-1, showing
a plurality of Envelope and Task entities, according to the
different input files flowing through MCS. The Poller is a system-
wide singleton and its queue is used to simply start it up and
periodically invoke it via timer messages (triggers) to rescan the
input folder for new incoming files. The packages are also
singletons, each created to handle one database loading
destination.
WAS is configured to the number of listening points per server,
per each queue – or number of concurrent MDBs. This dictates
the level of parallelism on each server. Defining the number of
threads is a critical performance issue, and is based on experience
and tuning. Performance estimates as we will present in the next
section are essential in doing that tuning. The general guidelines
would be to keep CPU busy. MCS tests indicate the following
thread distribution is a good start:

• Number of Task MDBs = number of CPUs + 20 %

• Number of Envelope MDBs = number of Package
MDBs

• Number of Package MDBs = assumed number of
assigned packages instances.

• Number of Poller MDBs = one.

The MCS data flow among its entities as well as their relations is
illustrated in Figure 3-1.

Figure 3-1: MCS Queue Data Flow

The above description is very brief, as we do not elaborate on the
post task-processing in MCS which mainly includes database
loading and other database processing. Our purpose in this paper
is to discuss the massive data processing which occurs at the task
level in a highly parallel way.

3.2.2 Linear model for mix of input
MCS input is a mixture of record types having different number
of fields, fields types, processing plan (which drives different base
operations), and different output fields and types. The incoming
record rates for the different record types present what we call an
MCS input mix. Looking at past results, one can create pretty
reliable estimates for future and differing mixtures.
Although all the parameters controlling the MCs execution should
be considered, we show that a very simple linear model works
pretty well for gross estimates. It can be assumed that different
MCS server configuration in which the number of MCS entities
working in parallel is set up differently will impose different
coefficients in that model.
To derive the estimation MCS is over loaded with a single record
type, during which logs are collected indicating the start and end
events of each transition and state action in a server. Using simple
shell scripts these logs are processed to form an occurrence graph,
as in Figure 3-2, with the occurrence number on the X axis, and
event time on the Y axis. This graph show that each type of event
is independent of the other events, and behaves almost linearly.
Therefore, MCS behavior can be extrapolated linearly from a
significant, but small sampling period.

0

500

1000

1500

2000

2500

1 119 237 355 473 591 709 827 945

envelope
tfmLoad
tfmLoadEnded
stage
complete
task
move

Figure 3-2: Vanilla Record Occurrence Graph

(1 Envelope MDB, 1 Package MDB, 8 Task MDBs).

By assuming a linear dependency of processing time on the size
of input record, the MCS execution of records is drastically
simplified – but shows pretty reliable predictions.
The MCS performance consists of two parts: processing input
records and uploading the results to a database. That second part
has not been dealt at depth in this report. Yet, we also measured
for a certain uploading solution, the database loading time in
average and made it depending on the output record size as well.
Here too, we found a linear model to reflect nicely on the actual
performance.
Table 3-1 shows a base plan we call “vanilla” working for a long
period of time, processing input records at a rate of 340 million
records a day, processing input records of size 535 bytes. Output
records are of size 1359 bytes, and are loaded at a lower rate of
140 million records a day. That sets the overall system
performance at the lower level, showing that it requires
strengthening by allocating more computing resources to it.

Table 3-1. Vanilla Record Type Performance

MCS Plan
Input

Record
(bytes)

Output
Record
(bytes)

Performance
(Millions of Record

per day)
535 340 Vanilla

 1359 140

Let define as the rate of processing records of type jn

{ }kj ,,2,1 K∈ , meaning the number of records processed at a

given time frame (e.g., per day). Let be the size of record

in bytes. Our model assumes inverse dependency of record

size and rate, so that for

js
j

{ kji ,,2,1, L∈ }∀ , the following
holds:

Dsnsn iijj == **)1.3(

So, knowing (being our “vanilla” record type, all can be

estimated. Same as we do the above for input records, we can also
0n jn

do for output records, estimating uploading rates of the output
records into the database.
Given a distribution of records

() 1,,,)2.3(21 == ∑
k

mk ddddD K

The overall estimated rate (e.g., number of records processed in a
day) is calculated by the simple inner product:

()k

T

nnnN
where

DNN

,,,

,)3.3(

21 K=

=

The following tables compare estimates with actual performance
results, according to the linear model of equations (3.1). Table 3-2
shows the estimation results for different record types applying
equation (3.1) on the vanilla record as base. Table 3-3 shows
distribution (aka equation (3.2)) of input record mix, and Table 3-
3 shows the very good match between the actual results obtained
in that test compared with the estimates.

Table 3-2. MCS estimations for different records types
(million numbers of records per day)

Estimated
Performance Plan Input

(bytes)
Output
(bytes) Task

Processes
DB

Upload
Orange 3245 1565 56.1 125.9
Sugar 1914 1590 95.0 123.9

Rice 1123 1443 162.0 136.6

Water 455 886 399.8 222.4

Salt 246 644 739.4 306.0

Chocolate 246 659 739.4 299.0

Bananas 246 659 739.4 299.0

Table 3-3. MCS actual records distributions

Distribution
(accounting failures) Plan Input

(bytes)
Output
(bytes) Task

Processes
DB

Upload
Orange 3245 1565 2.80% 2.89%
Sugar 1914 1590 7.86% 5.68%
Rice 1123 1443 12.73% 12.35%

Water 455 886 0.62% 0.64%
Salt 246 644 1.83% 1.89%

Chocolate 246 659 49.11% 50.70%
Bananas 246 659 25.04% 25.85%

Total -- -- 100% 100%

Table 3-4. MCS total performance (million numbers of
records per day)

Performance (MR/day)

Task Processing DB Upload

Estimate Actual Estimate Actual

594.03 620.89 263.66 276.16

4. Future work
MCS operates in a changing business environment. MCS
deployments require a deep understanding of the underlying
system resources needed to make efficiency forecasts affected by
business changes, thus reducing risks in system operations and
making it proactive to system operation hazards. To this end, the
simplified MCS linear model needs to be further elaborated to
include more coefficients and parameters which will make
accurate estimations of processing times at all node as part of
overall capacity analysis. MCS core is the relatively small set of
base operations – so it is easy to analyze and parameterize for
performance – unlike any other general purpose programming
language. With MCS it is possible to identify emerging
bottlenecks, and plot an operational course of action, either
automatically, or as part of an what-if questions session with a
system manager when considering cost/performance tradeoffs as
well as other business factors when deploying MCS.

5. Summary
This paper describes a highly distributed massive collection
system that processes a massive mix of input records according to
different domain specific processing plans. The founding
requirements consist of ease of use along with very high
performance throughput rates. To this end, pure java
implementation was determined as benchmark baseline for
comparison. The MCS specification language together with its
interpreter was shown to provide an efficient and adequate
performance results compared to the pure java benchmark. On
the massive highly parallel J2EE deployment on WAS, a simple
linear model provides a reliable prediction to different input
records distributions. Surprisingly, it seems that during massive
load there is little dependency on the specific input records
structure or processing plan, except for input and output records
sizes.

6. ACKNOWLEDGMENTS
Our thanks to to Dagan Gilat, Pnina Vortman, and Yoel Arditi for
their visionary drive in this project. To David Berk, Yaakov
Dolgov, and Alex Akilov who contributed to the implementation
and design of the solution.

7. REFERENCES
[1] Domain-Specific Languages: An Annotated Bibliography,

Arie van Deursen, Paul Klint, Joost Visser,
http://homepages.cwi.nl/~arie/papers/dslbib/.

[2] WebSphere Application Server V6 Scalability and
Performance Handbook, IBM Redbook, SG24-6392-00,
ISBN: 0738490601

[3] WebSphere Application Server V6 Technical Overview, by
Carla Sadtler, IBM Redbook, REDP-3918-00

[4] WebSphere Application Server V6 Planning and Design
WebSphere Handbook Series, IBM Redbook, SG24-6446-
00, ISBN: 0738492183

[5] Java™ 2 Platform Enterprise Edition Specification, v1.4,
Sun Microsystems®, Nov 2003,
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

[6] Unified Modeling Language version 2.0 Specifications,
Object Management Group,
http://www.omg.org/technology/documents/formal/uml.htm

[7] The Eclipse project organization http://www.eclipse.org.
[8] “Contributing to Eclipse: Principles, Patterns, and Plugins,”

by Erich Gamma and Kent Beck, Addison-Wesley, 2003,
ISBM 0-32-1205758

[9] The Eclipse Modelling Framework,
http://www.eclipse.org/emf/emf.php

[10] “Eclipse Modelling Framework: a Developer’s Guide,” by
Frank Budinsky et. al., Addison-Wesley, 2003, ISBN 0-13-
142542-0.

[11] Extensible Markup Language (XML) 1.0, 3rd Edition - a
technical recommendation standard of the W3C.
http://www.w3.org/TR/REC-xml

[12] XML Metadata Interchange (XMI) Specifications, Version
2.0, May 2003, Object Management Group,
http://www.omg.org/docs/formal/03-05-02.pdf

[13] The Awk Programming Language (Aho, Weinberg and
Kernigham), http://www.uga.edu/~ucns/wsg/unix/awk/

[14] JDBC – Java DataBase Connectivity, API Specifications,
Sun Develioper Network (SDN),
http://java.sun.com/products/jdbc/download.html

[15] Java™ Message Service Specification Version 1.1, April
2002, Sun Microsystems®,
http://java.sun.com/products/jms/docs.html

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://www.eclipse.org/
http://www.eclipse.org/emf/emf.php
http://www.w3.org/TR/REC-xml
http://www.omg.org/docs/formal/03-05-02.pdf
http://www.uga.edu/%7Eucns/wsg/unix/awk/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jms/docs.html

	1. INTRODUCTION
	2. MCS Architecture
	2.1 The MCS framework
	2.1.1 MCS Entities
	2.1.2 MCS Flow

	2.2 The MCS task processing

	3. MCS Performance steps
	3.1 The MCS task performance
	3.1.1 The MCS task as a Java application
	3.1.2 The MCS task using MCS language
	3.1.3 Plan execution performance statistics
	3.1.4 MCS Base operation profiling
	3.1.5 Java GC considerations

	3.2 The MCS orchestrated performance
	3.2.1 MCS scalability
	3.2.2 Linear model for mix of input

	4. Future work
	5. Summary
	6. ACKNOWLEDGMENTS
	7. REFERENCES

