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ABSTRACT 
High performance and ease of use are the two main goals of the 
Massive Collection System (MCS). On the outset, MCS is a 
classical process that consumes massive amount of input, 
processes it according to business specifications, and produces a 
comparable amount of output. To do that, MCS has a massive 
parallel architecture whose core processing task executes the 
business rules on a continuous flux of input records organized in 
files. Each processing task executes a processing “plan” which is 
a high level domain specific language (DSL) designed for domain 
experts rather than professional programmers.  

The MCS design for performance is composed of two factors: one 
is the massively parallel execution framework; the second is the 
effective compilation and execution of the domain specific MCS 
plans. The execution framework is built on top of IBM J2EE 
implementation Websphere Application Server (WAS). The entire 
MCS is a WAS application, written in Java, which obtained its 
performance goals as well as ease of use. 

The performance challenges of MCS were stated in terms of 
hundreds of millions of records a day. We selected Java and WAS 
for implementation due to their development advantages, allowing 
us to obtain proofs for the MCS performance goals rather early – 
within several months, which were shown to scale up almost 
linearly on the input size. 

Categories and Subject Descriptors 
D.3.2 [Programming Languages]: Language Classifications – 
Specialized application languages, Very high-level languages; 
D.3.3 [Programming Languages]: Processors – Run-time 
environments; D.2.6 [Software Engineering]: Programming 
Environments – Integrated environments;  

 

General Terms 
Management, Measurement, Performance, Design, Reliability, 
Experimentation, Languages. 

Keywords 
Scalable Middleware, Massive Records Collection, Massive event 
processing. Revenue assurance, Distributed Records Collection 

1. INTRODUCTION 
Many business operations generate large amount of event records 
describing the business progress, such as banking and other 
financial institutes. MCS was designed to handle a high volume of 
event records in the Telco industry where these are Call Detail 
Records (CDRs) describing individual telephone call events. The 
MCS end to end process in the Telco context is as follows: 

Figure 1-1: MCS layered architecture 

 
 

The records originate in the operational network in switches, and 
are pushed upstream into central processing where eventually 
they drive billing systems which when materialize, generate the 
service provider revenues. MCS was specifically required to 
handle a revenue assurance function, by which it processes CDRs 
in parallel to the billing system, repeating its function in order to 
find mismatches in the data which may lead to the discovery of 
revenue leakages. 
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To facilitate effective system, the rules by which CDRs are 
processed should be easily written by domain experts rather than 
programmers. That requirement led to the design of a domain 
specific language (DSL) [1] in which the business rule 
specifications for each type of CRD were coded.  
We will first describe the MCS architecture, which is composed 
of two major layers; The MCS framework is the execution 
environment layer in which MCS plans are processed rapidly and 
highly parallel. The architecture will describe how the plans’ 
execution is orchestrated on top of the IBM Websphere 
Application Server (WAS) [2],[3],[4], which is the IBM J2EE [5] 
implementation. 
The MCS performance is measured along two dimensions. On the 
local scale, each group of records is processed by a certain 
processing plan instance and must reach a certain high level of 
performance to meet end to end demands. The collection of such 
executions is processed in a highly parallel framework and 
presents the overall end to end MCS performance which 
processes   a mix of input record streams. 
We will also discuss future work in which the typical 
performance characteristics of an MCS-like environment are 
identified and contribute to an effective model by which MCS 
performance can be predicted and measured. 
 

2. MCS Architecture 
MCS architecture is designed to efficiently address the following 
aspects:  

1. A sequence of execution steps among which are the 
following main processing requirements : 

a. Process a group of input records of a certain 
type according to a certain processing plan 

b. Storing the output records either in a database 
or file system. 

2. Orchestrating the massive execution of these processes 
in a parallel and distributed J2EE application. 

 

2.1 The MCS framework 
2.1.1 MCS Entities  
An MCS ‘Entity’ is represented by a Data Object (DO) persistent 
by MCS database tables. MCS allows many entity instances of 
the same type. The DO is responsible for maintaining the state of 
its associated entity instance.  Each entity instance has a defined 
life cycle managed by a state-machine object. The lifecycle is 
defined by a state machine diagram, which is further described in 
the following subsection. 
MCS apportions the massive input flux into a manageable 
quantity which is called an ‘Envelope’. The envelope forms a unit 
of work (UOW) on which MCS ensures that an end-to-end global 
process either completes or fails all together. A MCS envelope 
consists of one or more ‘Task’s, where each task represents a sub 
set of the input records assigned to the owner envelope.  
Generally, MCS aggregates input records into one or more files, 
where each file (also termed “Fragment” file) is associated with 
its own task. The total number of records in all these files defines 
the UOW. Both envelopes and tasks are MCS entities. 

MCS tasks can be processed anywhere in the system independent 
of other tasks. A MCS task is responsible for invoking the MCS 
language processor responsible for processing the records 
according to a defined plan written specifically to the input 
record’s designated type. The task entity reads the input records 
from the assigned source (e.g., file, input stream etc..), processes 
the records according to the plan and ends up with a collection of 
output records associated with a target destination which is a 
property of the owner envelope.  
MCS Destination is a logical entity which is associated with a real 
world resource, which in general will be a database table or a file. 
The task creates an ‘OutputFile’ entity whose DO maintains the 
state of the concrete destination instance, throughout their 
lifecycle from generation by a task, to completion with a 
successful database uploading or safely stored in a file on a file 
system. 
The MCS massive uploading to target table destination is carried 
out by the MCS ”Package” entity.  MCS manages one or more 
package entities each one is a singleton in the system responsible 
for uploading a specific MCS target destination. A package may 
upload data produced by different envelopes sharing the same 
MCS destination. 
MCS also defines the ‘Poller’ entity, a system wide singleton, 
responsible ‘sniffing’ the file system for incoming input records, 
issuing new job request for the MCS envelopes. 
The MCS interaction is illustrated in the following relations 
diagram: 
 

  

Figure 2-1: MCS Entities relations 
 
The poller, envelopes, tasks and packages entities shown in the 
above figure are processing entities, meaning MCS executes a 
thread for each execution step in their lifecycle. The output file 
which is a product of the task process is subject for further 
management by the package and the envelope entities. The other 
entities, such as the ‘InputFile’ and the ‘Database Table’, do not 
have specific MCS entity representation, except as a real world 



entities existing in some media (e.g. file system and database, 
respectively). 

2.1.2 MCS Flow 
MCS manages the life cycle of its entities using a state machine 
object created by MCS Business Process Flow & Control Engine 
(BPFC) according to a defined State Machine Diagram. The state 
machine object maintains the state of each entity instance within 
its associated DO instance. The MCS BPFC engine is responsible 
for providing transaction support for any state transition and any 
action taken against external and internal resources such as 
database tables or messaging engines queues. 
The MCS flow is driven by messages, that MCS calls ‘Trigger’, 
sent by entity instances within state machine actions. The triggers 
can be sent internally targeted to the same entity or to other entity 
types. Triggers are dispatched through queues defined in the 
messaging layer provided by WAS. The BFPC engine reads the 
triggers from the queue (via Message Driven Beans - MDBs) and 
deciphers it to identify the target entity DO, and retrieve it from 
the database. This DO, associated with the corresponding state-
machine diagram uniquely recreates the entity’s state at the end of 
its previous processing step – the state-machine instance object. 
Then the engine propagates both the retrieved DO and the 
incoming trigger to the deciphered state-machine object for the 
next actual processing step. 
State-machine processing depends on the persistent DO state and 
the incoming trigger ID. If no match exists for the trigger ID with 
the current state according to the state-machine diagram, the 
trigger is discarded. Otherwise, a state-machine ‘Transition 
Action’ is taken followed by a ‘State Flow Processes Action’. 
Basically, a transition action is a ‘short term’ (e.g. in order of 
milliseconds) consists of three successive actions:  starting state 
Exit action, actual transition action and the End state action. This 
sequence of actions is transactional, persistent in the database on 
success or rolled back on failure. On the other hand, the state flow 
action is a ‘long term’ (e.g. in order of seconds/minutes) action, 
that programmatically addresses failures. Meaning, on failure the 
state flow action issues a required trigger, to drive the entity to a 
handling state. 
MCS business processing is carried out by the flow action 
implementations. Specifically, the input record processing is 
carried out by a state flow action in the task’s state machine 
diagram, and database uploading is a state flow action of the 
package state machine diagram. As described above, each actual 
processing step is carried out within a WAS-assigned execution 
thread. 
For each of the four processing entity types MCS defines a state 
machines diagram: poller, envelope, task and package. Each 
entity instance operates as a J2EE MDB, listening for incoming 
triggers on the WAS messaging queues. When deployed as a 
cluster of servers on one or more machines, the message engines 
on each of the cluster nodes ensures load balancing via the 
Workload Management (WLM) feature of WAS. The scope of 
this paper is too short to provide the needed details which can be 
found in [2], [3], [4]. 

2.2 The MCS task processing 
MCS language is modeled in UML [6], and converted to an 
executable module using the Eclipse Modeling Framework (EMF) 
[7],[8]. With that tool, MCS obtains a highly effective integrated 

development environment (IDE) as an MCS language plugin to 
Eclipse [9], [10]. Figure 2-2 artistically shows two panels of this 
IDE, where the lower is an imperative processing plan in edit 
through the EMF generated tree visual editor. In that pane, a 
“Table” element is in focus, and whose properties are seen on the 
upper pane, depicting a certain table and columns in a relational 
database. 
The result of this IDE is an MCS specification plan file in 
XML[11] format. The file is in fact an instance of a model of the 
language, rather than a commonly ASCII representation of a 
programming language, and for that we use the XMI[12] standard 
language for XML model interchange.  
 
. 

 
Figure 2-2: The MCS integrated development environment over 

the Eclipse platform, using the Eclipse Modeling Framework. 
 

The language domain is the processing of records consisting of 
fields, having certain types, coming from an input file. To convert 
input records to output, the MCS processing plan performs a set 
of transformations, each of which has an underlying “Base 
Operation”. Base operations are MCS language elements which 
interface the task execution framework to Java classes which are 
written according to a certain MCS standard interface. While we 
do not have the space to go into the MCS language constructs in 
detail, it should be clear that at execution time, base operations 
are invoked in sequence to compute new values from input values 
and produce them in the output fields of output records. 
The execution model of a task is therefore the following pseudo 
code: 
while (! EOF(input)) 

{ 

  read (input, inputRecord); 

  clear ( outputRecord) 

  for each trans in (transformations) 

    trans.invoke(inputRecord, outputRecord); 

  if (outputRecord.isValid()) 

    write(output, outputRecord); 

} 



This is an implicit control flow in MCS, which mimics that of the 
AWK language [13]. This is also an oversimplification of the 
MCS plan execution flow, but shows that input processing 
depends on the number of fields in input and output records, and 
number of transformations of invocations of base operation. Each 
base operation may have different processing complexities, the 
simplest of which are doing simple type conversions and content 
copying, whereas the more complicated have to do with table 
lookups, such as are done via the Table language element shown 
in Figure 2-1. Yet some other base operations can be very 
“heavy” as there is no limit on the complexity of each, except for 
the practical guidelines documentation in which such cases are 
not recommended. 
 

3. MCS Performance steps 
In the MCS design phases the requirements to support hundreds 
of millions of CDRs a day lead to the above architecture 
promoting performance issues to the reliable working of a highly 
parallel system. Yet, with individual task not performing a 
minimal load in reasonable time, the end to end process will not 
work on a reasonable hardware. A configuration of few machines, 
and some dozen or so processors has been considered, but not of 
dozens of machines with hundreds of processors. Converting the 
system planned daily intake of 500 million records, is equivalent 
to about 6,000 records a second (500,000,000/24/3600 = ~5,800). 
Therefore, processing in excess of 1,000 records a second in 
average was required. 
 

3.1 The MCS task performance 
3.1.1 The MCS task as a Java application 
At the initial project phases, the use of Java has been preferred for 
2 reasons. One is the language natural advantages as robust, 
reliable and easy to develop advanced tool. The second is our 
desire to enjoy the scalability, reliability and efficiency of the 
IBM WAS platform. With these environments it would be quicker 
to reach MCS goals. Therefore the initial test has been a Java 
program which does all steps in the above pseudo code: reading 
input, parsing and converting to internal representations, 
performing all transformations, and table lookups, and eventually 
write it all to an ASCII file, or alternatively uploading to a 
database table using JDBC [14] which is a standard Java API for 
doing SQL commands to a database management system – in our 
case: DB2. A second level testing wrapped this program as a 
WAS Message Driven Enterprise Java Bean (MDB) invoking it to 
compute same data within this framework to measure the effect it 
will have on reducing MCS performance. 
Machines have been a desktop PC on which the test ran, and a 
database DB2 engine on a 4-way PC, reading 140 MB from 7 
input files, each consisting of 20,000 records of 1KB each. 
The results of this test have been very encouraging as in the 
following tables for single thread execution, which means a serial 
execution, thus the results are the average per file.  
Legend: FR = file read time; Pr = Processing, En = Enrichment, 
Sum = Summaries – these are three types of business rules, so for 
this test we will look at sum of all of them. File column is for file 
output and DB is for database uploading. Time is in milliseconds, 
except for totals which are in seconds. 

 
 

 
Thus, the 20,000 records were processed in a total of 11 seconds, 
or 1,800 records per second, including database upload, and even 
better: 6 seconds for output written to files, or 3,300 records a 
second. On a RS/6000 (IBM P Series) server, running AIX 5.1, 
the following results were obtained: 

 
Here, we even have 10,000 records a second. 
With multiple threads, results improve as follows for windows, 
ranging from single thread on 1st line, to 7 threads on 7th line: 

 
On AIX platform results are: 

 
The best overall results on Windows are for 5-6 threads, as well 
as for AIX, with total performance of  140,000 records in 27 
seconds on Windows, and 9 seconds on AIX, or 5,100 records per 
second, and 15,500 records per second respectively. These 
number surpass the original requirements by far, and leave 
sufficient margins for the expected more complicated real-world 
cases, in the yet-to be developed high-level language 
interpretation. 
 

3.1.2 The MCS task using MCS language 
The MCS IDE includes also tools to execute and measure 
performance of MCS plans. The execution environment provides 
access to all resources which would also be needed when 
executing on a server. In fact, it is possible to run an MCS plan 
within the IDE, accessing the exact same resources as on the 



server. Processing time of plans excluding the compilation time 
will reflect very genuinely the processing time expected on the 
server. 
On IDE we can measure several factors of the execution: 

1. Execution time, separating read time from processing 
time, from output time. 

2. Profile of the relative time consumption of each of the 
base operations, and their frequency of use  

3. Data allocation and release on the Java heap as reflected 
in the Java garbage-collection (GC) reporting during 
execution. 

3.1.3 Plan execution performance statistics 
The following table summarizes the execution of a plan providing 
some performance insight as per #1 above: 

 
As follows: The input file consisted of 1,081 records, executed 10 
times, of which the first one included the plan compilation. File 
size is 490KB due to record size of about 0.5KB. Each record 
defines 119 fields, and the plan contains about 200 
transformations. The average read/processing/output time per 
execution is (in milliseconds): 33.44/398.44/208, total of 640 
ms/record, which is same as 1.74 K records/second. Further 
analysis per record is 368.59 µ-seconds, and further per 
transformation is 1.842 µ-seconds, or 1,842 -seconds per 
transformation.  

3.1.4 MCS Base operation profiling 
The analysis above is the average per transformation which 
consists of data-field access, and performing some algorithm. 
Base operations may access from one to a dozen of data fields, so 
a good model for base operation performance is a bit more 
intricate, however the following results of profiling the base 
operations for task performance item #2 above shed more light on 
these fundamental elements of the MCS performance: 

Input is 25,000 records; each base operation may be invoked by 
one or more transformations, where “Other” represents time not 
used for invocation. The first column is the time total in 
milliseconds, the second column is the number of invocations. 
The 4th column is the average time per invocation. Due to clock 
resolution of 1 millisecond, the numbers are good only for relative 
weights. Yet, some of the base operations are indeed inefficient. 

3.1.5 Java GC considerations 
The third measurement looks at Java heap reallocation, or what’s 
called “garbage collection”. With a heap size of 0.5 GB, running 
the plan in up to hundred iterations, total heap allocations can be 
calculated, resulting in a usage rate of 130KB per 1 KB input 
record. GC sweeps all allocations for “dead” objects and frees this 
space, and possibly even doing space compaction. In our case, we 
found out that GC time occupies 25%-50% of total execution 
time. Still MCS providing the performance we need, yet much 
performance improvements are still possible via smarter object 
management and reuse. 
 

3.2 The MCS orchestrated performance 
3.2.1 MCS scalability 
To achieve its performance goals, MCS are deployed as J2EE 
application on WAS. Specifically, MCS using WAS Network 
Deployment (ND - [2], [3], [4]) clustering capabilities provides 
MCS with the needed scalability with load balancing via 
messaging. With WAS-ND, MCS can be deployed on a number 
of machines, each serving as one or more nodes in the distributed 
system, each node managing one or more servers – each of which 
is a J2EE instance. Each server, in turn, manages a pool of threads 
on which the MCS processing entities execute their processing 
steps, when invoked by a trigger message as MDBs. The 
messaging engines in WAS (the System Integration Bus – or SIB) 
implements the Java Messaging Services (JMS) [15], and 
provides load balancing, ensuring that threads will work evenly 
distributed on the MCS allocated machines. 
MCS maintains 4 different queues, each driving a different type 
of MCS processing entity. That is depicted in Figure 3-1, showing 
a plurality of Envelope and Task entities, according to the 
different input files flowing through MCS. The Poller is a system-
wide singleton and its queue is used to simply start it up and 
periodically invoke it via timer messages (triggers) to rescan the 
input folder for new incoming files. The packages are also 
singletons, each created to handle one database loading 
destination.  
WAS is configured to the number of listening points per server, 
per each queue – or number of concurrent MDBs. This dictates 
the level of parallelism on each server. Defining the number of 
threads is a critical performance issue, and is based on experience 
and tuning. Performance estimates as we will present in the next 
section are essential in doing that tuning. The general guidelines 
would be to keep CPU busy. MCS tests indicate the following 
thread distribution is a good start: 

• Number of Task MDBs = number of CPUs +  20 % 

• Number of Envelope MDBs = number of Package 
MDBs 



• Number of Package MDBs = assumed number of 
assigned packages instances. 

• Number of Poller MDBs = one. 
 

The MCS data flow among its entities as well as their relations is 
illustrated in Figure 3-1. 
 

 
Figure 3-1: MCS Queue Data Flow 

 
The above description is very brief, as we do not elaborate on the 
post task-processing in MCS which mainly includes database 
loading and other database processing. Our purpose in this paper 
is to discuss the massive data processing which occurs at the task 
level in a highly parallel way.  
 

3.2.2 Linear model for mix of input 
MCS input is a mixture of record types having different number 
of fields, fields types, processing plan (which drives different base 
operations), and different output fields and types. The incoming 
record rates for the different record types present what we call an 
MCS input mix. Looking at past results, one can create pretty 
reliable estimates for future and differing mixtures.  
Although all the parameters controlling the MCs execution should 
be considered, we show that a very simple linear model works 
pretty well for gross estimates. It can be assumed that different  
MCS server configuration in which the number of MCS entities 
working in parallel is set up differently will impose different 
coefficients in that model.  
To derive the estimation MCS is over loaded with a single record 
type, during which logs are collected indicating the start and end 
events of each transition and state action in a server. Using simple 
shell scripts these logs are processed to form an occurrence graph, 
as in Figure 3-2, with the occurrence number on the X axis, and 
event time on the Y axis. This graph show that each type of event 
is independent of the other events, and behaves almost linearly. 
Therefore, MCS behavior can be extrapolated linearly from a 
significant, but small sampling period.  
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Figure 3-2: Vanilla Record Occurrence Graph  

(1 Envelope MDB, 1 Package MDB, 8 Task MDBs). 
 
By assuming a linear dependency of processing time on the size 
of input record, the MCS execution of records is drastically 
simplified – but shows pretty reliable predictions.  
The MCS performance consists of two parts: processing input 
records and uploading the results to a database. That second part 
has not been dealt at depth in this report. Yet, we also measured 
for a certain uploading solution, the database loading time in 
average and made it depending on the output record size as well. 
Here too, we found a linear model to reflect nicely on the actual 
performance. 
Table 3-1 shows a base plan we call “vanilla” working for a long 
period of time, processing input records at a rate of 340 million 
records a day, processing input records of size 535 bytes. Output 
records are of size 1359 bytes, and are loaded at a lower rate of 
140 million records a day. That sets the overall system 
performance at the lower level, showing that it requires 
strengthening by allocating more computing resources to it. 

Table 3-1. Vanilla Record Type Performance 

MCS Plan 
Input 

Record 
(bytes) 

Output 
Record 
(bytes) 

Performance 
(Millions of Record 

per day) 
535  340 Vanilla 

  1359 140 
 
Let define as the rate of processing records of type  jn

{ }kj ,,2,1 K∈ , meaning the number of records processed at a 

given time frame (e.g., per day). Let  be  the size of record 

in bytes.  Our model assumes inverse dependency of record 

size and rate, so that for
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j
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do for output records, estimating uploading rates of the output 
records into the database. 
Given a distribution of records 
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The overall estimated rate (e.g., number of records processed in a 
day) is calculated by the simple inner product: 
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The following tables compare estimates with actual performance 
results, according to the linear model of equations (3.1). Table 3-2 
shows the estimation results for different record types applying 
equation (3.1) on the vanilla record as base. Table 3-3 shows 
distribution (aka equation (3.2)) of input record mix, and Table 3-
3 shows the very good match between the actual results obtained 
in that test compared with the estimates. 

Table 3-2. MCS estimations for different records types 
(million numbers of records per day) 

Estimated 
Performance Plan Input 

(bytes) 
Output 
(bytes) Task 

Processes 
DB 

Upload 
Orange 3245 1565 56.1 125.9 
Sugar 1914 1590 95.0 123.9 

Rice 1123 1443 162.0 136.6 

Water 455 886 399.8 222.4 

Salt 246 644 739.4 306.0 

Chocolate 246 659 739.4 299.0 

Bananas 246 659 739.4 299.0 
 

Table 3-3. MCS actual records distributions  

Distribution 
(accounting failures) Plan Input 

(bytes) 
Output 
(bytes) Task 

Processes 
DB 

Upload 
Orange 3245 1565 2.80% 2.89% 
Sugar 1914 1590 7.86% 5.68% 
Rice 1123 1443 12.73% 12.35% 

Water 455 886 0.62% 0.64% 
Salt 246 644 1.83% 1.89% 

Chocolate 246 659 49.11% 50.70% 
Bananas 246 659 25.04% 25.85% 

Total -- -- 100% 100% 
 

Table 3-4. MCS total performance (million numbers of 
records per day) 

Performance (MR/day) 

Task Processing DB Upload 

Estimate Actual Estimate Actual 

594.03  620.89  263.66  276.16  
 
4. Future work 
MCS operates in a changing business environment. MCS 
deployments require a deep understanding of the underlying 
system resources needed to make efficiency forecasts affected by 
business changes, thus reducing risks in system operations and 
making it proactive to system operation hazards. To this end, the 
simplified MCS linear model needs to be further elaborated to 
include more coefficients and parameters which will make 
accurate estimations of processing times at all node as part of 
overall capacity analysis. MCS core is the relatively small set of 
base operations – so it is easy to analyze and parameterize for 
performance – unlike any other general purpose programming 
language. With MCS it is possible to identify emerging 
bottlenecks, and plot an operational course of action, either 
automatically, or as part of an what-if questions session with a 
system manager when considering cost/performance tradeoffs as 
well as other business factors when deploying MCS. 

5. Summary 
This paper describes a highly distributed massive collection 
system that processes a massive mix of input records according to 
different domain specific processing plans. The founding 
requirements consist of ease of use along with very high 
performance throughput rates. To this end, pure java 
implementation was determined as benchmark baseline for 
comparison. The MCS specification language together with its 
interpreter was shown to provide an efficient and adequate 
performance results compared to the pure java benchmark.  On 
the massive highly parallel J2EE deployment on WAS, a simple 
linear model provides a reliable prediction to different input 
records distributions. Surprisingly, it seems that during massive 
load there is little dependency on the specific input records 
structure or processing plan, except for input and output records 
sizes. 
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