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ABSTRACT

Automatedegressiorsuitesareessentiain developinglargeappli-
cationswhile maintainingreasonableuality andtimetables.The
mainobjectionto automatiorof tests,in additionto the costof cre-
ationandmaintenanceis the obsenation thatif you run the exact
sametestmary timesit becomes ot lesslikely to find bugs. To al-
leviatethoseproblemsa new regressiorsuitepractice which uses
randomtestgeneratorso createregressiorsuiteson-the-fly is be-
comingmorecommon.In this regressiorpractice insteadof main-
tainingtests regressiorsuitesaregenerate@n-the-flyby choosing
aseveralspecificationgndgeneratinganumberof testsfrom each.

This paperdescribegechniquedor optimizing randomgener
atedregressiorsuites.lt first shavs how the setcover greedyalgo-
rithms,commonlyusedfor selectingestsfor regressiorsuitesmay
be adaptedo selectingspecificationdor randomlygeneratede-
gressiorsuites.It thenintroducesanew classof greedyalgorithms,
namelyfutureawaregreedy Thesealgorithmsareascomputation-
ally efficientandgeneratenoreeffective regressiorsuites.

General Terms
Verification,Measurementilgorithms, Experimentation

Keywords
FunctionalVerification,CoverageAnalysis,RegressiorSuite

1. INTRODUCTION

Regressiortesting[17, 3, 23,20, 14, 12,10, 22,4, 24] playsan
importantpartin softwaretesting. In regressiontesting,a setof
tests known asaregressionsuite is simulatedperiodicallyandaf-
ter major changesn the applicationor its ervironment,in orderto
checkthatno new bugswereintroduced-avery commonproblem.
A regressionsuitemust,on onehand,be comprehensk sothatit
candiscover bugsintroduced,and on the otherhand,be small so
thatit canbe economicallyrun mary times. Testsareaddedto re-
gressionsuitesfor mary differentreasons For example,teststhat
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led to the discovery of hard-to-findbugsare often includedin re-
gressionsuites. Another complementaryapproachfor construct-
ing regressiorsuitesis to build suitesthatyield highcoverage. That
is, suitesthatproducesimilar coverageto thatattainedoy theentire
verificationeffort, conductedsofar.

Oneapproachor creatinghigh coverageregressionsuitesis to
find the smallestsetof tests,out of thosethat have beenexecuted
so far, that achiere the samecoverageas the entire set of tests.
Thisis aninstanceof the setcover problem,which is known to be
NP-Completd9]. However, in practice mary efficientapproaches
exist. In additionto finding smallregressiorsuites thereis a large
body of work on finding the teststhat arerelevant for the change
in the code[23, 16] and on testscaseprioritazationwhich is of
importancewhenonly a subsebf theregressiorsuite may be exe-
cuted[12]. Empiricalresults[10] shavedthatthetestprioritization
technigqueachievescodecoverageat a fasterrateandmoreimpor-
tantly therate of detectingbugsis increasedIt wasalsoshavn in
[24] thatno singleregressioroptimizationtechniques bestfor all
scenarios.Eachhasstrengthsand weaknessethat dependon the
usescenario.

Regressiorsuitesthatarebuilt from a setof predeterminedests
have severalinherentproblems.First, they aresensitve to changes
in thedesignandits environment.Changesn thedesignmayaffect
the behaior of the testsandleadto areasthatare not coveredby
theregressiorsuite.In addition,teststhatwerepreviously usedare
lesslikely to find bugsthanthosethat have not beentried [18].
Finally, the maintenanceostof thesuiteis high becausevery test
in thesuitehasto beautomatecdindmaintained.

In anenvironmentwhererandombasedestgeneratorareavail-
able, theseproblemscan be overcomeusing randomregression
suites A randomregressiorsuitecomprisef a setof testspeci-
fications.Wheneer regressions done,randomtestgeneratorsire
usedto generatetestsout of thesespecifications. On stableap-
plications,randomregressionsuitesare lessaccuratewith respect
to measurableriteria suchas coveragethanthe fixed suites,be-
causetestsgeneratedrom the samespecificationcancover differ-
enttasks.However, thesesuitesarelesssensitve to changesn the
applicationsor its environment,andcontainnen anddifferenttests
eachtime they arerun. Thetestsuitesthemselesdo not have to
bemaintainedjust thetestgeneratarwhich is maintainecaryway
for otherreasons.Therefore the savings aresubstantial. As are-
sults,randomregressiorsuitesareoftenpreferredover maintaining
asuiteof regressiortests.

Creatingregressionsuiteson-the-fly using test generatorss a
commornpracticen hardwareverificationandsoftwaretestingwhen
randomtestgeneratorareused. Testgeneratorare ubiquitousin



hardware [1, 2, 13] andarefairly commonin softwaretesting.The
mostcommontestgeneratorsn software aretestdatagenerators,
which selectnen dataat random,biasedby the specification for
eachtest [19, 21, 6, 15, 11]. In addition,noisegenerator®f var
ious kinds, which impact the ervironmentin which the testsare
executed,are common. For example, tools are usedto simulate
network traffic, changethe apparentspeedof the network, affect
responsgime,andcausamary otherchangeshatstresghesystem
undertesting. In the testingof multi-threadedbr parallelapplica-
tions, tools, which are often referredto asnoisemalkers, are used
to changethe apparenbehaior of the schedulef5]. As thetest
is composedf the input and the noise use, and the noiseis bi-
asedrandomusingspecificparameterspnemaythink of the noise
malersasrandomtestgenerators.

The commonmethodfor generatingandomregressiorsuitesis
to choosea few specification@ndgenerate numberof testsfrom
eachspecification.Thereis no procesdor reasoningaboutwhich
specificationshouldbe usedand hov mary testsshouldbe used
from eachspecification Consequentlyhe quality of theregression
testsgenerateds totally haphazard.

An importantsourceof informationthatcanbeusedto createef-
ficientrandomregressiorsuitesis the probability of eachtestspec-
ification to cover eachof the coveragetasks. This informationcan
comefrom pastexecutionsof teststhat were generatedrom the
specificatiorfiles. Anothersourceof informationcanbe a cover-
agedirectedgeneratiorenging[8] thatprovidesestimateof these
probabilities.

Given a set of reliable probability estimateswe shaved, in a
previous paper [7], how the constructionof efficient randomre-
gressionsuitescan be formalizedas an optimizationproblem. In
that paperwe dealtwith two variantsof the problem. First, we
shaved how to constructthe regressionsuite that usesthe mini-
mum numberof testsrequiredto achieve a specificcaveragegoal.
Then,we shaved how to createa regressionsuitethat maximizes
coveragewhena fixed numberof testsis used.Whenthe selection
is ontestsandnoton propertiesthisis knowvn astestprioritization.

In this paper we focus on the problemof creatingregression
suitesthatmaximizecoveragegiven limited resourcesThis paper
containgwo importantcontritutions:

e A new type of future-avare greedyalgorithm. The algo-
rithms suggestedn [7] aswell as all standardgreedyal-
gorithms are aware of the pastbut not of the future. In-
deedalgorithmsthattry to predictthe future, usually using
searchesarenot consideredyreedy In this paper we intro-
ducea greedyalgorithmsthattakesstatisticalexpectationof
the future into account. Specifically tasksthatarelikely to
be coveredin thefuturearegivenlessweightwhenchoosing
which parameterso use. We shaw, (without a deepinves-
tigation) that this algorithmsis betterthenthe greedyalgo-
rithm for the classicaketcover problem.

e Expansionf the work donein [7] to the casewherecov-
erageis usedto measurehe utility of testsexecutedso far.
This additionalinformation enablesus to get betterresults
but requiresmodificationof the algorithmsto selectionon-
the-fly

We shav experimentson a numberof randomregressionsuite
problems. We startwith synthetic,simple problemson which we
explain the algorithmsandmotivations. We thendemonstrat&ow
the algorithmsperformon real world problems.The focusof this
paperis on computationallysimpleyetvery efficientalgorithmsfor
therandomregressiorsuiteproblem.

Therestof the paperis organizedasfollows. In Section2 we
shav how to formalizetheconstructiorof randonregressiorsuites
asoptimizationproblemsanddescribethe methodswve useto sim-
plify theseproblems.In Section3 we explain theideasbehindthe
future aware greedyalgorithm. Section4 describeghe difference
betweenregressionwith andwithout feedbackirom coverage. In
Sectionb, we provide someexperimentatesults.We concludewith
afew summarizingemarksandleadsfor future study

2. PROBABILISTIC REGRESSIONSUITES
WITH LIMITED RESOURCES

We startedby formulatingthe problemof constructinga prob-
abilistic regressionsuite basedon statisticalestimategpredictors)
of thecovering performance$or thevarioustestspecificationsTo
this end, we setthe following terminologyand notations: Denote
t = {t1,...,tn} the setof tasksto be covered. Testspecifications
areoften setsof parametersvhich govern andbiasthe generation
of testsby a randomtestgeneratiortool. Thus,we usethe term
setasanabbreiation,anddenotes= {s,, ..., s} therepositoryof
setsfor which statisticalcoveragepredictorsexist. We assumehat
a singletestspecificationis usedfor a single testgeneratiorrun,
i.e., (dynamic)switching of setsor mixing of individual parame-
tersis not allowed. The probability of covering the taskt; using
atestgeneratedasedon the set (testspecification)s is denoted
P!. We male thesimplifying assumptionhatP} arestatisticallyin-
dependentWe assumehat thesestatisticalestimatesarereliable,
andhencewe won't dealin this sequelwith issueselatedto accu-
racy andconfidenceof thesepredictors. Theresultingregression
suiteis representedby the vectorw = {wx,...,wx} which speci-
fies anactivation policy, suchthatw; € N is aninteger specifying
howv mary testsmustbe generatedisingthe sets. We alsodenote
W = S w; the total numberof testsderived by the policy w. We
notein passinghatby ourindependencassumptionthe orderof
executingthe testsbasedon a given policy is insignificant,andin
fact,mostoftenthey will runin parallel.

Givenapolicy w, the probability of coveringataskt; is

P=1-[] (1-P)" &

andsincethe eventof coveringataskt; is Bernoulli, Pj = E(t;) is
the expectedcoverageof tasktj. The constructiorof arandomre-
gressiorsuitecanthusbe expressedy the following optimization
problem[7]:

DEFINITION 2.1. Probabilistic RegressionSuite Find thepol-
icy w, which minimizeghenumberof testexecutionsand,with high
probability, providesa desied coverage

ming S w N
stvj Pj=1-T]; (1—P}) ' > Ecng
Vi Now >0

The formulationat Definition 2.1 doesnt take in consideration
ary limitations of theresourceswvailablefor the coverageprocess.
However, practicallimitations do exist. They mostprobablywill
have a major impacton our ability to carry out a policy, andwe
shouldthereforeincorporatethemin the problemdefinition. Our
motivating scenarids thusthe requiremento constructthe “best”
possibleregressionsuite, while limiting the amountof resource
consumption. We identify resourceswith CPU time, hencethe
term“limited resourceconsumptiontranslatego a boundon the
total numberof testsexecuted(for example,dueto limitation of
thebatchschedulein thesite). However, resourcenaytranslateo



othermeasurablguantitiessuchasmemoryconsumption.More-
over, the constraintsfor resourcesisagemay be definedper set,
resourcesllocatedby differentsetsmight be chaged differently,
andtheremaybearestrictionof thetotal costof resourcesllocated
to carryonthe coveragetask.

Theres no definite meaningto the term “best” possibleregres-
sionsuite.In this sequelwe adaptaninterpretatiorthatfocuseson
the expectedcoverageprobability as a quality measureand thus
thenext problemdefinitionfollows.

DEFINITION 2.2. ExpectedCoverageProbability with Lim-
ited Resources Given a bound on the total numberof executed
tests,W, and a boundon the costof the resouce consumptiorcC,
find the policy w, which maximizeghe expectedcoverage proba-

bility,
maxy 3, [1— Mi (1—P})Wi}

st Yiwi<W
Yiciw <C
Vi wi>0

whete ¢; is thecostof theoverall resouceconsumptiorwhile using
theparametersets.

Theproblemformulatedat Definition2.2is anonlinead P, which
is quite difficult to handle. One possibleapproachs to apply the
annealechpproximation

|og§|i‘|(1—P})Wizlzwi?og(l—P}) @)

whereg;j = log (17 P}) This approximationijn turn, yields the
following linearIP

maxy Wiy 0ij
st Yiwi<W
yicw; <C

Vi wi>0

However, the solutionis an approximationof the true objectie,
which heaily depend®n thedistribution of valuesof g; ;.

A muchsimplerandmoredirectapproachsuggesteat[7], de-
viseanincrementafreedytechniqueby exploiting the next simple
obsenation

i \Wi K j \we'd
mjaxD(l—Pj) ‘:mjax(l—Pj)D(l—Pk) i (3)
wherew?d denoteghe policy beforethe lastincrementandk de-
notesthe setselectedor the next increment,i.e. w = wg'd + 1.
Theincrementafgreedyalgorithmthusstartsfrom aninitial guess
Wy, (eitherprovided by the useror setto all zeros). At eachstep
increasedy 1 thewy thatminimizes

S [1a-pp* 4
L

andthusmaximizesthe objectie, since

mv?xz {1—|T| (1—P})Wi] Eﬂ\]l\ilnz _ (1—P})Wi )

3. FUTURE-AWARE GREEDY ALGORITHM

The greedyalgorithm for constructingprobabilisticregression
suiteswith limited resourceprovidesefficientandhigh-qualityre-
gressiorsuites but thesesuitesareusuallynotoptimal. Onereason
for the sub-optimalityof the greedyalgorithmis thatit doesnot
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Figure 1: Progressof the greedyand futur e-aware greedyalgo-
rithms

considerfuture stepsin the algorithm. Specifically the greedyal-
gorithmignoresthe contritution of the heuristicsselectedn future
stepgo theoverall coverage As aresult,thegreedyalgorithmmay
selecta heuristicwith a high probability of covering a giventask,
ignoringthefactthatthistaskwill becoveredwith high probability
in thefuture, evenwithout the selectecheuristic.

For example,considera simplecase wherethe goalis to max-
imize the coverageof two tasks(T; andT,) with 10 testcasesse-
lectedfrom thetwo heuristics(H; andH;) andthe coverageprob-
ability matrix shavn in Tablel.

T1 | T2
H; | 0.80| 0.00
H, | 0.30 | 0.05

Table 1: Coverageprobability matrix example

Whenthe greedyalgorithmpresentedn the previous sectionis
used,in thefirst stepof thealgorithm,heuristicH; is usedbecause
of its contritution to the coverageof T;. For the samereasonthe
greedyalgorithmalsoselectdH; in thesecondstep. After the sec-
ondstep,the probability of covering Ty is highenough(0.96),such
thatthe contribution of H; to its coveragein future stepsis small.
Thereforethe contritution of Hy to the coverageof T, is dominant
in the next 8 steps. The resultingregressionsuite createdby the
greedyalgorithmis W = {2,8}, with averagecoverageof 1.3343.
The progressof the averagecoveragefor the greedyalgorithmis
shavnin Figurel.

Thegreedyalgorithmignoresthefactthatat eachstepthe prob-
ability of covering Ty increasesegardlessof the heuristicsused.
Evenif Hy is usedin all 10 testcasesthe probability of covering
Ty is 1— (1—0.3)10 = 0.9718. If this factis usedin the first two
stepsof the greedyalgorithm,the contritution of selectingH; be-
comesmuchlower, andH, becomeghe preferredheuristic. The
resultingregressiorsuitein this caseis W = {0, 10}, with average
coverageof 1.3730(seethedashedine in Figurel).

The performanceof the greedyalgorithm can be improved by
consideringat eachstepof the algorithm not only the probability
that a taskis coveredin previous stepsof the algorithm, but also
the probability that the taskwill be coveredby future steps. This



improvementis possibleonly if the sizeof the regressionsuite or
an estimateof it areknown in adwance. Otherwise predictionof
thefuture is impossible becausehe future may not exist (i.e., we
arein thelaststep). Fromthis point on we assumehatthe size of
theregressiorsuite (andthusthe numberof stepsn thealgorithm)
is known.

The basic greedyalgorithm looks for the heuristicthat maxi-
mizesthe coverageafterthek 4 i’th step,giventhe heuristicsused
in thepreviousk steps.Thatis, in eachstepthegoalis to maximize

_s)\p
argmiaxZ(l S)P},

whereS; is the probability of coveringtask | in the previous steps
andP! is the probability of coveringtaskTj usingheuristicH;. The
future-avaregreedyalgorithmreplaceghis goalfunctionwith

argmiaXZ(l—Sj)P}(l— Fi), (6)
J

whereF; is an estimationof the probability of coveringtaskT; in
future steps.

Thequality of theestimatiorof F; affectsthequality of thesolu-
tion provided by thefuture-avarealgorithm. It is easyto shav that
exactknowledgeof F; leadsto anoptimalsolution. The problemis
thatexactly calculatingF; is ashardasproviding an optimalsolu-
tion to the probabilisticregressionsuite. An optimistic estimation
of Fj maydegradethequality of thesolution,sinceit mayunneces-
sarily punishgoodheuristicshecaus®f a too optimisticfuture. In
theextremecasejf we useF; = 1, thegreedyalgorithmis reduced
to arandomselectionof heuristics.

Whena goodmethodfor estimatingF; is used thefuture-avare
algorithmshouldperformbetterthanthe greedyalgorithm. But if
we look at coverageprogressas function of the stepin the algo-
rithm, the greedyalgorithmshouldperformbetterthanthe future-
awaregreedyin the early steps. This happendecausedhe greedy
algorithmtriesto maximizethecurrentgain,while thefuture-avare
algorithmlooks at a fartherhorizon. Figure 1 illustratesthis. In
general,we expectthe future-avare algorithmfor n stepsto per
form betterthanthe future-avarealgorithmfor m > n stepsaftern
steps.

In our experimentg(seeSection5), we examinedseveral meth-
odsof estimatingFj. Theseestimationmethodsdiffer in their ac-
curay andcomputationacompleity. But generally they all im-
proved the quality of the generatedegressionsuitescomparedo
the simplegreedyalgorithm. The estimationmethodswe usedfor
Fj were:

e Fj =1 (1—M;j)X wherek is the numberof stepsleft in
the algorithmandMj is the minimum probability of cover-
ing task T; over all heuristics(i.e., Mj = minj P). This es-
timation is obviously pessimisticandit is usefulonly if the
coverageprobabilitymatrix {P} } doesnotcontainmary zero
entries. Otherwise this estimationis reducedo the simple
greedyalgorithm.

e Usedatafrom previous executionsof the algorithm. This
methodtakes advantageof the factthatin mary casesthe
regressionsuiteis used(andgeneratedjnary times. In this
case Fj canbe estimatedasthe averageof the probabilities
of covering T; in previous activationsof the regressionsuite
generatioralgorithm.

e Whendatafrom previousactivationsof thefuture-avaregreedy

algorithmis not available,we canusedatafrom the greedy

algorithmitself to estimatethe future. Let Hg betheheuris-
tic selectedht stepl of the algorithm,thenan estimationof
the future probability of covering taskT; afterthek stepis
givenby
! Si
1-P;
I:k+1( X

Fi=1-

e The problemwith the previous estimationmethodsis that
they do not take into accountthe heuristic selectedin the
currentstepwhen estimatingthe future. To overcomethis
problem,we canmodify the previous estimationto consider
thevariouspossibilitiesfor thecurrentstep. Thatis, for each
heuristic,we calculate(1— S; )P} for all the coveragetasks
andusethisasthestartingpointfor thegreedyalgorithm.As
a result,the outputof the greedyalgorithmusesthe current
step,andthe estimationof the future is moreaccurate.The
costof this estimationis thatin eachstepwe needto execute
the greedyalgorithmoncefor eachheuristicinsteadof only
once.

e An algorithmthat turns out to combinegood performance
with excelentresultsis onein which insteadof estimating
thefuture we choosein the future! Thisis accomplishedy
running the regular greedyalgorithmto completionbut in-
steadof choosingthe heuristicfor the first stepwe choose
theonthatwaschoserfor thelaststep. Theintuition is that
we choosethe onethatis chosenwith the mostknowledge.
We repeathe procesdor every choice. The numberof sim-
ple greedyalgorithmstepss a squareof the naive algorithm.
We calledthis algoritmthereversegreedyalgorithm.

Notethatthefuture-avaregreedyapproachs notlimited to prob-
abilistic problems.Thereis a large body of work on usinggreedy
algorithmsfor the setcover problem[20]. While thisis notthefo-
cusof thiswork, we comparedhefuture-avareapproactsuggested
in this paperto greedyalgorithmsfor deterministicsetcover. The
ideais very similar. Insteadof choosinghealgorithmthataddsthe
mosttasks,we weight the tasksaccordingto the probability that
we will seethemin thefutureandchooseaccordingo this weight.
Experimentakesultsshav thatthe future-avare approachs supe-
rior to the greedyapproachandachieesfull coveragewith fewer
setsor bettercoveragewith alimited numberof sets.

4. REGRESSIONSUITESWITH INTERME-
DIATE COVERAGE MEASUREMENT

Until now, we assumedhatthegeneratiorof theregressiorsuites
is doneoff-line. Thatis, we first createthe entireregressiornsuite
andthenwe executeit andmeasurehe coverageit achieves. The
quality of the off-line (or static)generatiorof the regressionsuite
canbeimprovedif we generateheregressiorsuiteonthefly. That
is, executepartsof the regressionsuite and measurdts coverage
while generatingherestof the suite.

In generalfinding the optimalregressiorsuitewith intermediate
coveragemeasuremens ascomple asfinding theoptimalregres-
sionsuitewithout intermediatecoveragemeasurementT herefore,
our generatiorschemesrebasedon the greedyandfuture-avare
greedyalgorithmspresentedn the previous sections. In the fol-
lowing discussionwe assumethat the generationand execution
of partsof the regressionsuite aredonesequentially Thatis, we
generatgartof theregressiorsuite,executeit, measurehe cover-
age,andafterthecoveragemeasuremerns completedyve continue
with thegeneratiorof thenext partof the suite. Underthisassump-
tion, at the endof eachstep,we canremove all the tasksthatare



Ty | To | T3

H;, | 1.00 | 0.00 | 0.00
H, | 0.00| 1.00| 0.00
Hz | 0.10| 0.10| 0.10

Table 2: Coverage probability matrix for regressionsuite with
intermediate measuementexample

coveredin the stepandstartgeneratinga “new” suite with fewer
tasksandfewer tests. In addition,we assumethatin eachstepa
single heuristicis selectedand executed. Under this assumption
thegreedyalgorithmselectgheheuristicH; thatmaximizestheex-
pressiony P}, whereP} is the probability of covering T usingH;
if Tjis not coveredand if Tj is covered.

The future-avare approachwith intermediatemeasurementis
more comple than the future-avare approachwithout measure-
mentsbecauséhe algorithmneedsto considerthe size of the cur
rent step(1 in our case)in additionto the size of the entire re-
gressiorsuite. To illustratethis, considera simplecase wherethe
goalis to maximizethe coverageof threetasks(T;, T, andT3) with
threetestcasesselectedrom the threeheuristicsandthe coverage
probabilitymatrix shavn in Table2.

Both the greedyalgorithm and the future-avare greedyalgo-
rithm presentedn the previous stepselectH; (or Hp) at the first
stepof the algorithmon their way to generatinghe optimal solu-
tion {1,1,1}. This selectionis not very usefulwhenintermediate
measurementare used,sinceits outcome(after measurements
known andthe measuremendoesnot help to improve the quality
of thesolution.Ontheotherhand,executingHs in thefirst stepcan
improve the solution,becausefterthe coveragemeasurementye
know if T1 (or Ty) is coveredandH; (or Hy) is nolongerneeded.

Still, asthe experimentalresultsin the next sectionshaw, using
thefirst stepof the future-avare algorithmwith ary of the meth-
odsof estimatinghe futureandmeasuringoverageaftereachtest
case,improvesthe quality of the regressionsuite over the simple
greedyalgorithm. Onepossiblemethodto improve this simpleal-
gorithmis to considemotonly theaveragecontritutionto coverage
of eachheuristic,but alsothe amountof informationaddedwhen
the heuristicis executed(from the knowledgethatis will be ex-
ecuted). For example,we can generatethe entire suite (without
measuremen@ndselectfrom it the heuristicthat hasthe highest
variance pecauseheoutcomeof this heuristicaddsthe mostinfor-
mation. Thetopic of how to combinethe averagecontritution and
thevariances partof our futureresearchn this area.

5. EXPERIMENT AL RESULTS

To demonstrat¢éhefeasibility andapplicability of the suggested
formalisms,we conductedseveral experimentson regressiondata
collectedfrom both softwaretestingandhardwareverificationen-
vironmentsusingreal-life applicationsandcoveragemodels.

5.1 Experimental approach

We describedwo approachefor usingouralgorithm,in oneap-
proachour policy is dynamicin thesensdhatwe measureoverage
after eachexecutionanddecideon the next activation. The other
approachis static, we createan activation policy and executeit.
Our measurementBave shavn that creatinga dynamicactivation
policy with a naive greedyalgorithmyields betterresultsthanthe
beststaticactivation policy thatour algorithmswereableto create
(seeTable3 for example)thereforewe will discusseachapproach
separatlg.

[ Best | Worst |
DynamicPolicy | 95.6 | 94.9
StaticPolicy 93.33| 92.8

Table 3: Averagecoveragefor the UE problemwith 20tests

Our primary measuremenf an algorithms quality is its aver
agenumberof coveredtasks andour secondaryneasuremerns its
distribution over hardtasks.We shav thatthe future awaregreedy
algorithm not only yields a betteraveragebut also investsits re-
sourcesn hardertasks.

5.2 RegressionSuite for Software Testing

A testin the multi-threadeddomainis a combinationof inputs
and interlearings, where an interleaving is the relative orderin
which the threadswere executed. Runningthe sameinput twice
may resultin differentoutcomesgither by designor dueto race
conditionsthat exist in the code. Re-executingthe samesuite of
testsmay resultin othertasksbeing executed. Therefore,a re-
gressiorsuitedoesnot have the samemeaningasin the sequential
domain.

ConTest[5] is atool for generatinglifferentinterleaving for the
purposeof revealing concurrentfaults. ConTesttakes a heuristic
approachof seedingthe programwith instrumentatiorin concur
rently significantlocations. At run-time, we male heuristically
possiblycoverage-basedlecisiongegardingwhich noise(sleep(),
yield(), or priority()) to activateat eachinterleaszing. Theheuristics
differ in the probability that noiseis createdor eachinstrumenta-
tion point andin the noisestrength. For example,if the noiseis
yield(), thenumberof timesit is executeddepend®on the strength.
Low strengthmeanghatyield is executedustafew timesandhigh
strengthmeanghatyield is executedmary times. For sleep()the
strengthparameteimpactthelengthof the sleep.Someheuristics
have additionalfeaturesuchaslimiting thelocationof thenoiseto
variableghataresharedetweerthreador having additionaltypes
of noiseprimitives. ConTestdramaticallyincreaseshe probability
of finding typical concurrentfaultsin Jasa programs.The proba-
bility of observingthe concurrenfaultswithout the seededlelays
is very low.

Thetestedprogramin the experimentis a cravling enginefor a
largewebproduct.For theexperimentwe used18differentheuris-
tics asthetestspecificationand9 synchronizatioreventsastasks.

During the testingprocesswe collectedthe statisticsneededo
constructprobabilistic regressionsuites. Prior to this work, our
practicewasto usea predefinedandommix of heuristics.No tun-
ing wasdonefor specificapplicationsandtestcases.We demon-
stratethe benefitof suchtuning.

Giventhestatisticscollectedfor the18 heuristicswe constructed
dynamicpolicies designedo maximizethe coverageof the nine
events,using 10 testruns andfive testruns. thesepolicieswere
executed100,000timesandthe resultsshav the averagecoverage
they yielded.

Weshaw in Figure2 how thepessimistidutureawaregreedythe
worstof ourfutureawareheuristicsjs ableto producebetterresults
thangreedy The graphshaws the differencebetweerfuture aware
greedyandgreedy We seehow greedyachieves betterresultsat
the beginning, while future awarebypasse# at somepointin the
middleof thewholeregressionThisis becausé canpredictwhich
taskswill be coveredregardlessof its efforts, andso it investsin
hardertasks.We alsoseehow in thefive testrunsthe future aware
startsto climb earlierand also bypasseshe greedyat aroundthe
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third test. Figure 3 shavs the probability for future avare greedy
to cover ataskcomparedo greedy This shavs how our algorithm
investsmoreresourcesn hardertasks- taskswith a probability of

(0.2- 0.55)andfewer resourcesn easiemnes.

5.3 RegressionSuite for Hardware Verifica-
tion

The goalof the experimentavasto construcrandomregression
suitespairedwith staticactivation policiesthat maximizesthe av-
eragenumberof coveredtasks

Theseaxperimentsvereconductean subset®f acoveragemodel
usedin theverificationof the Stolage Control Elemen{SCE)of an
IBM z-seriessystem,asshavn in Figure4. The ervironmentand
coveragemodelusedin the experimentsare similar to thoseused
in [8]. The environmentcontainsfour nodesthatareconnectedn
aring. Eachnodeis comprisedof a local store,eight CPUs(CPO
— CP7),andan SCEthathandlesccommandgrom the CPUs.Each
CPU consistf two coresthatgeneraténdependenthcommands
to the SCE.EachSCEhandlesncomingcommandsisingtwo in-
ternal pipelines. Whenthe SCE finisheshandlinga commandit

sendsaresponseo thecommandingCPU.

Node 2

SCE

i i Y
Iﬂ, cee Iﬂ,

Y
A

30S
€ 9pON
Node 1

SCE

A Node 0 A

L SCE -t

Figure 4: Structur e of the SCE simulation ernvironment of an
IBM z-seriessystem

The coveragemodelconsistof all the possibletransactionbe-
tweentheCPUsandthe SCE.It containssix attributes:thecorethat
initiatedthe commandthe pipelinein the SCEthathandledit, the
commandtself, andthreeattributesthatrelateto the responseln
this experimentwe concentrat®n a subsef the coveragemodel
thatdealswith unrecaerableerrors(UE). Thesizeof the UE space
is 98 events,all of which arerelatively hardto cover.

Therepositorywe usedconsistef 98 setsof testspecifications,
eachof which wasdesignedo provide the bestpossibleconfigu-
rationto cover oneof the events. The inherentrandomnes# the
testgeneratiormechanismenableghe coverageof othereventsas
well, duringa simulationrun. (Otherwise theres no hopeof con-
structinga regressiorsuitesmallerthanthe wholerepository).

Theregressiorsuiteandactivating policy weregeneratedising
boththestaticanddynamicactivationpolicies,we startwith exam-
ining resultsfrom the staticpolicies. We usethe greedyalgorithm
andthereversegreedyalgorithmdescribedn Section3. Thegraph
in Figure 5 shaws the differencebetweenthe reversegreedyand
greedy The datadepictsthe expectedaverageresultsin eachtest.
We shaw 10 testrunsand 20 testruns,andonceagainwe seethat
the future awarealgorithmachievesbetterresultsat the endof the
plannedtestand worseintermediateresults. We also seehow it
depend®nthe numberof testsin therun.

In Figure6 we comparethe reversegreedyalgorithm’s distribu-
tion to the greedyalgorithm’s distribution over the tasks. We can
seethatreversegreedyfindsgreedys hardtaskseasierandgreedys
easytasksjustaseasy the comparisoris donefor the casewith 20
testruns,a comparisorfor the 10 testrunscaseyields similar re-
sults

Finally, shawv the resultsfor the dynamicpolicies generatedy
greedyandthefutureawaregreedywhich predictsthefutureusing
simplelearningtechniquesTheresultsarethe averageof 100,000
regressionruns. Figure 7 shavs for eachstep,the averagetasks
coveredfor 10 testrunsand 20 testrunsfuture aware greedyand
the 20 testrunsgreedy (It givesthe samefirst 10 testresultsas
the 10 testrunsgreedysoaddingit to thegraphdoesnt addinfor-
mation). The distribution over tasksalsoshaws that future aware
attributesmoreimportanceo the weaktasks.In Table4, we shav



2
of /|
-2+ /,// .
> -4 — /7/ T |
2 / ~_
g
o /
O
[ / 1
E I
] /
s /
g / i
8 /
g /
T _io} o~ 4
-12F / p
\\
\ /
al N\ ,
\ //
\/
. v ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 12 14 16 18 20

tests

Figure5: Coverageprogressof the SCE model

09r-

o
©
T

o <}
o ~
T T

Reverse Greedy
3 o o
w S o
T T T

o
N
T

0.1r

0 I I I L L L L L L I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Greedy

Figure 6: Coverage progressof the SCE model distrib ution
over tasks

the averagenumberof coveredtasks(averagedover 100,000runs)
for the 20 testrun for greedy pessimistiduture awaregreedyand
the future awarethat useslearningtechniquedo approximatethe
future. Onecanclearlyseethatthe pessimistidés notagoodenough
approximation.

Greedy 94.94
Pessimistic| 94.96
Learning 95.61

Table 4: Averagecoveragefor the UE problemwith 20tests

6. CONCLUSIONS AND FUTURE WORK

The problemof testselectionandtestprioritization for efficient
regressiortestinghasreceived a lot of theoreticalandpracticalat-
tention. Besidebeingtheoreticallyinteresting,closely relatedto
one of the bestknown NP-C problems— the set cover problem
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Figure 7: Coverage progressof the SCE model distrib ution
over tasks

[25] — it is alsoof immensepracticalvalue. The problemof cre-
ating goodregressiorsuiteshasmary facetsthataretreatedin the
literature: minimize the numberof testswhile maintaininggood
coverageevaluatingwhich testsarerelevantto which codechange
usingimpactanalysischoosingeststhataregeneratedby testgen-
eratorson thefly; andmary others.

This paperdealswith a relatedproblemof choosinginput pa-
rameterdfor testgeneratorsn sucha way thatthe suite of gener
atedtestswill have goodexpectedcharacteristicsWhenwe started
this researchye were not aware of ary work on input parameter
selection/prioritization.We startedby proposinga methodto for-
mulatetheconstructiorof randonregressiorsuitesasoptimization
problems.solving the optimizationproblemprovidesinformation
on which specificationshouldbe usedandhow mary testsshould
be generatedrom eachspecification. This formalism allows us
to designrandomregressionsuitesthat maximizecoveragewith a
limited numberof tests.Thequality of theregressiorsuitebecomes
aknown quality andinformeddecisionscanbe maderegardingthe
sizeanddistribution of theregressiorsuites.

Not surprisingly our first attemptg7] wereanadaptatiorof the
known algorithmsfor test selectionand prioritization to our do-
main. The main differenceis that a given set of input parame-
tersimpactsthe probability of having certaincharacteristicin the
tests.Thework is not deterministicbut probabilistic. We createca
new greedyalgorithmthatchoosegparameterso try to maximize
the quality of the tests. Unlike the setcover problem,wherethe
selectedasksare removed from the problem,in the probabilistic
case the probability of the tasksbeingobsered is impacted.Ex-
perimentalresultsshav that the impactis large asthe regression
suitescreatedare expectedto be muchbetterthanthosecreatedn
random.Specifically we shav thatwhenthereareseveral specifi-
cations,noneof whichdominategheother asmartselectiorof the
amountof resourcesledicatedo theuseof eachis muchbetterthat
usingall theresource®n the bestparametesourceor distributing
theresourcesvenly.

We then cameup with the conceptof the future-avare greedy
for probabilisticregressionsuites,which is the main contribution
of this paper Future-avaregreedyis basedn the obserationthat
theamountof resourcesisedto solve theproblemis known. Since
the numberof teststo be executedis known the probability that
taskswill be seenin the future can be estimated. This probabil-



ity, togethemwith the knowledgeof the past,is usedto impactthe
choiceof input parameter After corvincing oursehesthat this is
usefulon artificial problemswe tried theideaon realworld prob-
lem and shaved that it works. The interestingproblem, we are
just startingto investigate,is how to evaluatethe future. "Safe”
evaluationturnedout to be too pessimisticandnot of muchvalue.
Learningalgorithmsshav promiseand there are probably mary
otherheuristiconecandevise, which may performbetterin some
scenarios.

The work hasbeenexecutedin two similar domains: one in
which the policies use no feedbackfrom the executionand an-
otherin which feedback,in the form of coverage,is used. The
two domainsshouldnot be mixed, asa simplealgorithmthatuses
feedbaclkoutperformthe bestalgorithmwithout feedback.The al-
gorithmsusedin both are very similar;, however, someheuristic
work betterin one domainthanin the other An obvious differ-
encebetweerthetwo is thatwhenfeedbacks used,it replaceghe
evaluationof the past. We have notbeenableto ascertainpr even
getgoodintuition, how this impactsthe heuristics. However, we
have shawvn in both domainsthatit paysto be aware of thefuture.
Furtherfuture avarenesss shavn to yield goodresultsin the de-
terministicsetcover problemaswell.

We have shawvn that future aware heuristicsandthe useof cov-
eragearebothbeneficial. Thisresearchs in its early stage We are
currentlyinvestigatingthe useof hybrid schemeshatcombinethe
building of future aware probabilisticregressionsuiteswith snap-
shotsof the currentcoveragestate. We needto decidehow fre-
quentcheckpointsat which coverageis measuredshouldbe. At
eachcheckpointye-generatiorof the regressiorsuiteis calculated
for the non-caveredtasks.As the costof re-generatinghe suiteis
small comparedo the costof testing, we expectthat an optimal
solutionwill have several suchcheckpoints.We alsoneedto im-
prove our predictionof thefuture. We expectthatsomeheuristics
will be betterin somedomains.As we arediscussingestingwith
limited resourceswe have to decidehow muchof the testingre-
sourceshouldbe dedicatedo decidingwhich heuristicto run and
howv muchto runningthe heuristics We shouldseewhenwe reach
thepointof diminishingandactuallynegative returns.As all theal-
gorithmsdiscussedn this paperarevery efficient, we assumehat
they will be of benefitbut still we cannot executethem without
regardto resources.

Specialattentionshouldbe given to tasksthat are coveredwith
avery low probability With our currentcostfunctions,thesetasks
have low impactonthe selectionprocessastrying to reachthemis
notefficient (unlessmary testswill areexecuted).Careneedgo be
taken sothatthis taskgetsproperattention. Whenregressionsare
executedregularly, we needto usehistoricaldatato decideabout
whichregressiorto chooseafterthesetasks.As regressiongrenot
independentye shouldfavor heuristicghatreachdifferenttasksin
differentregressiongvenif theirtotalis higher—averysimilaridea
to the future-avaregreedyusedin a singleregressiorexplainedin
this paper
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