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ABSTRACT
Automatedregressionsuitesareessentialin developinglargeappli-
cationswhile maintainingreasonablequality andtimetables.The
mainobjectionto automationof tests,in additionto thecostof cre-
ationandmaintenance,is theobservation that if you run theexact
sametestmany timesit becomesalot lesslikely to find bugs.To al-
leviatethoseproblems,a new regressionsuitepractice,whichuses
randomtestgeneratorsto createregressionsuiteson-the-fly, is be-
comingmorecommon.In this regressionpractice,insteadof main-
tainingtests,regressionsuitesaregeneratedon-the-flyby choosing
aseveralspecificationsandgeneratinganumberof testsfrom each.

This paperdescribestechniquesfor optimizing randomgener-
atedregressionsuites.It first shows how thesetcover greedyalgo-
rithms,commonlyusedfor selectingtestsfor regressionsuites,may
be adaptedto selectingspecificationsfor randomlygeneratedre-
gressionsuites.It thenintroducesanew classof greedyalgorithms,
namelyfutureawaregreedy. Thesealgorithmsareascomputation-
ally efficient andgeneratemoreeffective regressionsuites.

GeneralTerms
Verification,Measurement,Algorithms,Experimentation

Keywords
FunctionalVerification,CoverageAnalysis,RegressionSuite

1. INTRODUCTION
Regressiontesting[17, 3, 23,20,14, 12,10,22,4, 24] playsan

importantpart in software testing. In regressiontesting,a setof
tests,known asa regressionsuite, is simulatedperiodicallyandaf-
ter majorchangesin theapplicationor its environment,in orderto
checkthatnonew bugswereintroduced– averycommonproblem.
A regressionsuitemust,on onehand,becomprehensive so that it
candiscover bugsintroduced,andon the otherhand,be small so
that it canbeeconomicallyrun many times.Testsareaddedto re-
gressionsuitesfor many differentreasons.For example,teststhat
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led to the discovery of hard-to-findbugsareoften includedin re-
gressionsuites.Another, complementary, approachfor construct-
ing regressionsuitesis to build suitesthatyield highcoverage.That
is, suitesthatproducesimilarcoverageto thatattainedby theentire
verificationeffort, conductedsofar.

Oneapproachfor creatinghigh coverageregressionsuitesis to
find thesmallestsetof tests,out of thosethathave beenexecuted
so far, that achieve the samecoverageas the entire set of tests.
This is aninstanceof thesetcover problem,which is known to be
NP-Complete[9]. However, in practice,many efficient approaches
exist. In additionto finding smallregressionsuites,thereis a large
body of work on finding the teststhat arerelevant for the change
in the code[23, 16] and on testscaseprioritazationwhich is of
importancewhenonly a subsetof theregressionsuitemaybeexe-
cuted[12]. Empiricalresults[10] showedthatthetestprioritization
techniqueachievescodecoverageat a fasterrateandmoreimpor-
tantly therateof detectingbugsis increased.It wasalsoshown in
[24] thatno singleregressionoptimizationtechniqueis bestfor all
scenarios.Eachhasstrengthsandweaknessesthat dependon the
usescenario.

Regressionsuitesthatarebuilt from a setof predeterminedtests
have severalinherentproblems.First, they aresensitive to changes
in thedesignandits environment.Changesin thedesignmayaffect
the behavior of the testsandleadto areasthatarenot coveredby
theregressionsuite.In addition,teststhatwerepreviouslyusedare
lesslikely to find bugs than thosethat have not beentried [18].
Finally, themaintenancecostof thesuiteis highbecauseevery test
in thesuitehasto beautomatedandmaintained.

In anenvironmentwhererandombasedtestgeneratorsareavail-
able, theseproblemscan be overcomeusing randomregression
suites. A randomregressionsuitecomprisesof a setof testspeci-
fications.Whenever regressionis done,randomtestgeneratorsare
usedto generatetestsout of thesespecifications.On stableap-
plications,randomregressionsuitesarelessaccuratewith respect
to measurablecriteria suchascoveragethanthe fixed suites,be-
causetestsgeneratedfrom thesamespecificationcancover differ-
enttasks.However, thesesuitesarelesssensitive to changesin the
applicationsor its environment,andcontainnew anddifferenttests
eachtime they arerun. The testsuitesthemselvesdo not have to
bemaintained,just thetestgenerator, which is maintainedanyway
for otherreasons.Therefore,thesavings aresubstantial.As a re-
sults,randomregressionsuitesareoftenpreferredovermaintaining
a suiteof regressiontests.

Creatingregressionsuiteson-the-fly using test generatorsis a
commonpracticein hardwareverificationandsoftwaretestingwhen
randomtestgeneratorsareused.Testgeneratorsareubiquitousin
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hardware [1, 2, 13] andarefairly commonin softwaretesting.The
mostcommontestgeneratorsin softwarearetestdatagenerators,
which selectnew dataat random,biasedby the specification,for
eachtest [19, 21, 6, 15, 11]. In addition,noisegeneratorsof var-
ious kinds, which impact the environmentin which the testsare
executed,are common. For example, tools are usedto simulate
network traffic, changethe apparentspeedof the network, affect
responsetime,andcausemany otherchangesthatstressthesystem
undertesting. In the testingof multi-threadedor parallelapplica-
tions, tools,which areoften referredto asnoisemakers,areused
to changethe apparentbehavior of the scheduler[5]. As the test
is composedof the input and the noiseuse,and the noiseis bi-
asedrandomusingspecificparameters,onemaythink of thenoise
makersasrandomtestgenerators.

Thecommonmethodfor generatingrandomregressionsuitesis
to choosea few specificationsandgeneratea numberof testsfrom
eachspecification.Thereis no processfor reasoningaboutwhich
specificationshouldbe usedandhow many testsshouldbe used
from eachspecification.Consequentlythequalityof theregression
testsgeneratedis totally haphazard.

An importantsourceof informationthatcanbeusedto createef-
ficient randomregressionsuitesis theprobabilityof eachtestspec-
ification to cover eachof thecoveragetasks.This informationcan
comefrom pastexecutionsof teststhat weregeneratedfrom the
specificationfiles. Anothersourceof informationcanbea cover-
agedirectedgenerationengine[8] thatprovidesestimatesof these
probabilities.

Given a set of reliable probability estimates,we showed, in a
previous paper [7], how the constructionof efficient randomre-
gressionsuitescanbe formalizedasan optimizationproblem. In
that paperwe dealt with two variantsof the problem. First, we
showed how to constructthe regressionsuite that usesthe mini-
mumnumberof testsrequiredto achieve a specificcoveragegoal.
Then,we showed how to createa regressionsuitethatmaximizes
coveragewhena fixednumberof testsis used.Whentheselection
is ontestsandnotonproperties,this is known astestprioritization.

In this paper, we focus on the problemof creatingregression
suitesthatmaximizecoveragegiven limited resources.This paper
containstwo importantcontributions:

� A new type of future-aware greedyalgorithm. The algo-
rithms suggestedin [7] as well as all standardgreedyal-
gorithms are aware of the past but not of the future. In-
deedalgorithmsthat try to predict the future, usuallyusing
searches,arenot consideredgreedy. In this paper, we intro-
ducea greedyalgorithmsthattakesstatisticalexpectationof
the future into account.Specifically, tasksthatarelikely to
becoveredin thefuturearegivenlessweightwhenchoosing
which parametersto use. We show, (without a deepinves-
tigation) that this algorithmsis betterthenthe greedyalgo-
rithm for theclassicalsetcover problem.

� Expansionsof the work donein [7] to the casewherecov-
erageis usedto measurethe utility of testsexecutedso far.
This additionalinformationenablesus to get betterresults
but requiresmodificationof the algorithmsto selectionon-
the-fly

We show experimentson a numberof randomregressionsuite
problems.We startwith synthetic,simpleproblemson which we
explain thealgorithmsandmotivations.We thendemonstratehow
thealgorithmsperformon real world problems.The focusof this
paperis oncomputationallysimpleyetveryefficientalgorithmsfor
therandomregressionsuiteproblem.

The restof thepaperis organizedasfollows. In Sections2 we
show how to formalizetheconstructionof randomregressionsuites
asoptimizationproblemsanddescribethemethodswe useto sim-
plify theseproblems.In Section3 we explain theideasbehindthe
futureawaregreedyalgorithm. Section4 describesthedifference
betweenregressionwith andwithout feedbackfrom coverage.In
Section5,weprovidesomeexperimentalresults.Weconcludewith
a few summarizingremarksandleadsfor futurestudy.

2. PROBABILISTIC REGRESSIONSUITES
WITH LIMITED RESOURCES

We startedby formulatingthe problemof constructinga prob-
abilistic regressionsuitebasedon statisticalestimates(predictors)
of thecoveringperformancesfor thevarioustestspecifications.To
this end,we setthe following terminologyandnotations:Denote
t � �

t1 ��������� tn � the setof tasksto be covered. Testspecifications
areoftensetsof parameterswhich govern andbiasthegeneration
of testsby a randomtestgenerationtool. Thus,we usethe term
setasanabbreviation,anddenotes � �

s1 ��������� sk � therepositoryof
setsfor whichstatisticalcoveragepredictorsexist. We assumethat
a single testspecificationis usedfor a single testgenerationrun,
i.e., (dynamic)switchingof setsor mixing of individual parame-
ters is not allowed. The probability of covering the task t j using
a testgeneratedbasedon the set (testspecification)si is denoted
Pi

j . Wemake thesimplifying assumptionthatPi
j arestatisticallyin-

dependent.We assumethat thesestatisticalestimatesarereliable,
andhencewe won’t dealin this sequelwith issuesrelatedto accu-
racy andconfidenceof thesepredictors. Theresultingregression
suite is representedby the vectorw � �

w1 ��������� wk � which speci-
fies anactivation policy, suchthatwi � N is an integerspecifying
how many testsmustbegeneratedusingthesetsi . We alsodenote
W � ∑wi the total numberof testsderived by the policy w. We
notein passingthatby our independenceassumption,theorderof
executingthe testsbasedon a given policy is insignificant,andin
fact,mostoftenthey will run in parallel.

Givena policy w, theprobabilityof coveringa taskt j is

Pj � 1 	 ∏
i

1 	 Pi
j

wi
(1)

andsincetheeventof coveringa taskt j is Bernoulli,Pj � E 
 t j � is
theexpectedcoverageof taskt j . Theconstructionof a randomre-
gressionsuitecanthusbeexpressedby thefollowing optimization
problem[7]:

DEFINITION 2.1. Probabilistic RegressionSuiteFind thepol-
icy w, which minimizesthenumberof testexecutionsand,with high
probability, providesa desiredcoverage

minw ∑wi

s.t. � j Pj � 1 	 ∏i 1 	 Pi
j

wi 

Ecnst

� i N � wi



0

The formulationat Definition 2.1 doesn’t take in consideration
any limitationsof theresourcesavailablefor thecoverageprocess.
However, practicallimitations do exist. They mostprobablywill
have a major impacton our ability to carry out a policy, andwe
shouldthereforeincorporatethemin the problemdefinition. Our
motivatingscenariois thustherequirementto constructthe“best”
possibleregressionsuite, while limiting the amountof resource
consumption. We identify resourceswith CPU time, hencethe
term “limited resourceconsumption”translatesto a boundon the
total numberof testsexecuted(for example,due to limitation of
thebatchschedulerin thesite).However, resourcemaytranslateto
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othermeasurablequantitiessuchasmemoryconsumption.More-
over, the constraintsfor resourcesusagemay be definedper set,
resourcesallocatedby differentsetsmight be chargeddifferently,
andtheremaybearestrictionof thetotalcostof resourcesallocated
to carryon thecoveragetask.

There’s no definitemeaningto the term “best” possibleregres-
sionsuite.In this sequelwe adaptaninterpretationthatfocuseson
the expectedcoverageprobability asa quality measure,and thus
thenext problemdefinitionfollows.

DEFINITION 2.2. ExpectedCoverageProbability with Lim-
ited ResourcesGiven a boundon the total numberof executed
tests,W, and a boundon the costof the resource consumptionC,
find the policy w, which maximizesthe expectedcoverage proba-
bility,

maxw ∑ j 1 	 ∏i 1 	 Pi
j

wi

s.t. ∑i wi � W
∑i ciwi � C

� i wi



0

whereci is thecostof theoverall resourceconsumptionwhileusing
theparametersetsi .

TheproblemformulatedatDefinition2.2is anonlinearIP, which
is quite difficult to handle. Onepossibleapproachis to apply the
annealedapproximation

log∑
j
∏

i

 1 	 Pi

j � wi � ∑
i

wi ∑
j

log 1 	 Pi
j (2)

wheregi j � log 1 	 Pi
j . This approximation,in turn, yields the

following linearIP

maxw ∑i wi ∑ j gi � j
s.t. ∑i wi � W

∑i ciwi � C
� i wi



0

However, the solution is an approximationof the true objective,
which heavily dependson thedistributionof valuesof gi � j .

A muchsimplerandmoredirectapproach,suggestedat [7], de-
viseanincrementalgreedytechniqueby exploiting thenext simple
observation

max
j

∏
i

 1 	 Pi

j � wi � max
j

 1 	 Pk

j � ∏
i

 1 	 Pi

k � wold
i (3)

wherewold denotesthepolicy beforethelast increment,andk de-
notesthe setselectedfor the next increment,i.e. wk � wold

k � 1.
The incrementalgreedyalgorithmthusstartsfrom aninitial guess
w0, (eitherprovided by the useror setto all zeros). At eachstep
increasesby 1 thewk thatminimizes

∑
j
∏

i

 1 	 Pi

j � wi (4)

andthusmaximizestheobjective,since

max
w ∑

j
1 	 ∏

i
1 	 Pi

j

wi �
min

w ∑
j
∏

i
1 	 Pi

j

wi
(5)

3. FUTURE-AWARE GREEDY ALGORITHM
The greedyalgorithm for constructingprobabilisticregression

suiteswith limited resourcesprovidesefficientandhigh-qualityre-
gressionsuites,but thesesuitesareusuallynotoptimal.Onereason
for the sub-optimalityof the greedyalgorithm is that it doesnot
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Figure1: Progressof the greedyand futur e-awaregreedyalgo-
rithms

considerfuturestepsin thealgorithm. Specifically, thegreedyal-
gorithmignoresthecontributionof theheuristicsselectedin future
stepsto theoverallcoverage.As aresult,thegreedyalgorithmmay
selecta heuristicwith a high probability of covering a given task,
ignoringthefactthatthistaskwill becoveredwith highprobability
in thefuture,evenwithout theselectedheuristic.

For example,considera simplecase,wherethegoal is to max-
imize thecoverageof two tasks(T1 andT2) with 10 testcasesse-
lectedfrom thetwo heuristics(H1 andH2) andthecoverageprob-
ability matrix shown in Table1.

T1 T2
H1 0.80 0.00
H2 0.30 0.05

Table 1: Coverageprobability matrix example

Whenthegreedyalgorithmpresentedin theprevious sectionis
used,in thefirst stepof thealgorithm,heuristicH1 is usedbecause
of its contribution to thecoverageof T1. For thesamereason,the
greedyalgorithmalsoselectsH1 in thesecondstep.After thesec-
ondstep,theprobabilityof coveringT1 is highenough(0.96),such
that thecontribution of H1 to its coveragein futurestepsis small.
Therefore,thecontributionof H2 to thecoverageof T2 is dominant
in the next 8 steps. The resultingregressionsuitecreatedby the
greedyalgorithmis W � �

2� 8� , with averagecoverageof 1� 3343.
The progressof the averagecoveragefor the greedyalgorithmis
shown in Figure1.

Thegreedyalgorithmignoresthefactthatat eachsteptheprob-
ability of covering T1 increasesregardlessof the heuristicsused.
Even if H2 is usedin all 10 testcases,theprobability of covering
T1 is 1 	�
 1 	 0� 3� 10 � 0� 9718. If this fact is usedin thefirst two
stepsof thegreedyalgorithm,thecontribution of selectingH1 be-
comesmuchlower, andH2 becomesthe preferredheuristic. The
resultingregressionsuitein this caseis W � �

0� 10� , with average
coverageof 1� 3730(seethedashedline in Figure1).

The performanceof the greedyalgorithmcan be improved by
consideringat eachstepof the algorithmnot only the probability
that a taskis coveredin previous stepsof the algorithm,but also
the probability that the taskwill be coveredby future steps.This
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improvementis possibleonly if thesizeof the regressionsuiteor
an estimate� of it areknown in advance. Otherwise,predictionof
the future is impossible,becausethe futuremaynot exist (i.e., we
arein thelaststep).Fromthis point on we assumethat thesizeof
theregressionsuite(andthusthenumberof stepsin thealgorithm)
is known.

The basicgreedyalgorithm looks for the heuristic that maxi-
mizesthecoverageafterthek � i’ th step,giventheheuristicsused
in thepreviousk steps.Thatis, in eachstepthegoalis to maximize

argmax
i

∑
j

 1 	 Sj � Pi

j �
whereSj is theprobabilityof coveringtask j in theprevioussteps
andPi

j is theprobabilityof coveringtaskTj usingheuristicHi . The
future-awaregreedyalgorithmreplacesthisgoalfunctionwith

argmax
i

∑
j

 1 	 Sj � Pi

j 
 1 	 Fj � � (6)

whereFj is anestimationof theprobabilityof covering taskTj in
futuresteps.

Thequalityof theestimationof Fj affectsthequalityof thesolu-
tion providedby thefuture-awarealgorithm.It is easyto show that
exactknowledgeof Fj leadsto anoptimalsolution.Theproblemis
thatexactly calculatingFj is ashardasproviding anoptimalsolu-
tion to theprobabilisticregressionsuite. An optimisticestimation
of Fj maydegradethequalityof thesolution,sinceit mayunneces-
sarily punishgoodheuristicsbecauseof a too optimistic future. In
theextremecase,if weuseFj � 1, thegreedyalgorithmis reduced
to a randomselectionof heuristics.

Whena goodmethodfor estimatingFj is used,thefuture-aware
algorithmshouldperformbetterthanthegreedyalgorithm. But if
we look at coverageprogressas function of the stepin the algo-
rithm, thegreedyalgorithmshouldperformbetterthanthe future-
awaregreedyin theearlysteps.This happensbecausethegreedy
algorithmtriesto maximizethecurrentgain,while thefuture-aware
algorithm looks at a fartherhorizon. Figure1 illustratesthis. In
general,we expect the future-awarealgorithmfor n stepsto per-
form betterthanthefuture-awarealgorithmfor m � n stepsaftern
steps.

In our experiments(seeSection5), we examinedseveral meth-
odsof estimatingFj . Theseestimationmethodsdiffer in their ac-
curacy andcomputationalcomplexity. But generally, they all im-
proved the quality of the generatedregressionsuitescomparedto
thesimplegreedyalgorithm. Theestimationmethodswe usedfor
Fj were:

� Fj � 1 	�
 1 	 M j � k, wherek is the numberof stepsleft in
the algorithmandM j is the minimum probability of cover-
ing taskTj over all heuristics(i.e., M j � mini Pi

j ). This es-
timation is obviously pessimisticandit is usefulonly if the
coverageprobabilitymatrix

�
Pi

j � doesnotcontainmany zero
entries. Otherwise,this estimationis reducedto the simple
greedyalgorithm.

� Use datafrom previous executionsof the algorithm. This
methodtakes advantageof the fact that in many casesthe
regressionsuiteis used(andgenerated)many times. In this
case,Fj canbeestimatedastheaverageof theprobabilities
of coveringTj in previousactivationsof theregressionsuite
generationalgorithm.

� Whendatafrom previousactivationsof thefuture-awaregreedy
algorithmis not available,we canusedatafrom the greedy

algorithmitself to estimatethefuture. Let Hsl betheheuris-
tic selectedat stepl of the algorithm,thenan estimationof
the future probability of covering taskTj after the k stepis
givenby

Fj � 1 	 n

∏
l � k� 1


 1 	 Psl
j �

� The problemwith the previous estimationmethodsis that
they do not take into accountthe heuristicselectedin the
currentstepwhenestimatingthe future. To overcomethis
problem,we canmodify thepreviousestimationto consider
thevariouspossibilitiesfor thecurrentstep.Thatis, for each
heuristic,we calculate 
 1 	 Sj � Pi

j for all the coveragetasks
andusethisasthestartingpointfor thegreedyalgorithm.As
a result,theoutputof thegreedyalgorithmusesthecurrent
step,andtheestimationof the future is moreaccurate.The
costof thisestimationis thatin eachstepweneedto execute
thegreedyalgorithmoncefor eachheuristicinsteadof only
once.

� An algorithm that turns out to combinegood performance
with excelentresultsis one in which insteadof estimating
thefuturewe choosein thefuture! This is accomplishedby
runningthe regular greedyalgorithmto completionbut in-
steadof choosingthe heuristicfor the first stepwe choose
theon thatwaschosenfor the laststep.Theintuition is that
we choosetheonethat is chosenwith themostknowledge.
We repeattheprocessfor every choice.Thenumberof sim-
plegreedyalgorithmstepsis asquareof thenaivealgorithm.
Wecalledthis algoritmthereversegreedyalgorithm.

Notethatthefuture-awaregreedyapproachisnotlimited to prob-
abilistic problems.Thereis a largebodyof work on usinggreedy
algorithmsfor thesetcover problem[20]. While this is not thefo-
cusof thiswork,wecomparedthefuture-awareapproachsuggested
in this paperto greedyalgorithmsfor deterministicsetcover. The
ideais verysimilar. Insteadof choosingthealgorithmthataddsthe
most tasks,we weight the tasksaccordingto the probability that
wewill seethemin thefutureandchooseaccordingto this weight.
Experimentalresultsshow that thefuture-awareapproachis supe-
rior to thegreedyapproachandachievesfull coveragewith fewer
setsor bettercoveragewith a limited numberof sets.

4. REGRESSIONSUITESWITH INTERME-
DIATE COVERAGE MEASUREMENT

Until now, weassumedthatthegenerationof theregressionsuites
is doneoff-line. That is, we first createtheentireregressionsuite
andthenwe executeit andmeasurethecoverageit achieves. The
quality of theoff-line (or static)generationof theregressionsuite
canbeimprovedif wegeneratetheregressionsuiteonthefly. That
is, executepartsof the regressionsuiteandmeasureits coverage
while generatingtherestof thesuite.

In general,findingtheoptimalregressionsuitewith intermediate
coveragemeasurementis ascomplex asfindingtheoptimalregres-
sionsuitewithout intermediatecoveragemeasurement.Therefore,
our generationschemesarebasedon thegreedyandfuture-aware
greedyalgorithmspresentedin the previous sections. In the fol-
lowing discussion,we assumethat the generationand execution
of partsof the regressionsuitearedonesequentially. That is, we
generatepartof theregressionsuite,executeit, measurethecover-
age,andafterthecoveragemeasurementis completed,wecontinue
with thegenerationof thenext partof thesuite.Underthisassump-
tion, at the endof eachstep,we canremove all the tasksthatare
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T1 T2 T3
H1 1.00 0.00 0.00
H2 0.00 1.00 0.00
H3 0.10 0.10 0.10

Table 2: Coverageprobability matrix for regressionsuite with
intermediate measurementexample

coveredin the stepandstartgeneratinga “new” suitewith fewer
tasksandfewer tests. In addition,we assumethat in eachstepa
single heuristicis selectedand executed. Under this assumption
thegreedyalgorithmselectstheheuristicHi thatmaximizestheex-
pression∑ j Pi

j , wherePi
j is theprobabilityof coveringTj usingHi

if Tj is not coveredand0 if Tj is covered.
The future-aware approachwith intermediatemeasurementsis

more complex than the future-aware approachwithout measure-
mentsbecausethealgorithmneedsto considerthesizeof thecur-
rent step(1 in our case)in addition to the size of the entire re-
gressionsuite.To illustratethis, considera simplecase,wherethe
goalis to maximizethecoverageof threetasks(T1, T2 andT3) with
threetestcasesselectedfrom thethreeheuristicsandthecoverage
probabilitymatrix shown in Table2.

Both the greedyalgorithm and the future-aware greedyalgo-
rithm presentedin the previous stepselectH1 (or H2) at the first
stepof thealgorithmon their way to generatingtheoptimal solu-
tion

�
1� 1� 1� . This selectionis not very usefulwhenintermediate

measurementsareused,sinceits outcome(after measurement)is
known andthe measurementdoesnot help to improve thequality
of thesolution.Ontheotherhand,executingH3 in thefirst stepcan
improve thesolution,becauseafterthecoveragemeasurement,we
know if T1 (or T2) is coveredandH1 (or H2) is no longerneeded.

Still, astheexperimentalresultsin thenext sectionshow, using
the first stepof the future-awarealgorithmwith any of the meth-
odsof estimatingthefutureandmeasuringcoverageaftereachtest
case,improvesthe quality of the regressionsuiteover the simple
greedyalgorithm. Onepossiblemethodto improve this simpleal-
gorithmis to considernotonly theaveragecontributionto coverage
of eachheuristic,but alsothe amountof informationaddedwhen
the heuristicis executed(from the knowledgethat is will be ex-
ecuted). For example,we can generatethe entire suite (without
measurement)andselectfrom it the heuristicthat hasthe highest
variance,becausetheoutcomeof thisheuristicaddsthemostinfor-
mation.Thetopic of how to combinetheaveragecontribution and
thevarianceis partof our futureresearchin this area.

5. EXPERIMENT AL RESULTS
To demonstratethefeasibility andapplicabilityof thesuggested

formalisms,we conductedseveral experimentson regressiondata
collectedfrom bothsoftwaretestingandhardwareverificationen-
vironments,usingreal-lifeapplicationsandcoveragemodels.

5.1 Experimental approach
Wedescribedtwo approachesfor usingouralgorithm,in oneap-

proachourpolicy is dynamicin thesensethatwemeasurecoverage
after eachexecutionanddecideon the next activation. The other
approachis static, we createan activation policy and executeit.
Our measurementshave shown that creatinga dynamicactivation
policy with a naive greedyalgorithmyieldsbetterresultsthanthe
beststaticactivationpolicy thatour algorithmswereableto create
(seeTable3 for example)thereforewe will discusseachapproach
separatley.

Best Worst

DynamicPolicy 95.6 94.9
StaticPolicy 93.33 92.8

Table3: Averagecoveragefor the UE problemwith 20 tests

Our primary measurementof an algorithm’s quality is its aver-
agenumberof coveredtasks,andoursecondarymeasurementis its
distribution over hardtasks.We show thatthefutureawaregreedy
algorithmnot only yields a betteraveragebut also investsits re-
sourcesin hardertasks.

5.2 RegressionSuite for Software Testing
A test in the multi-threadeddomainis a combinationof inputs

and interleavings, where an interleaving is the relative order in
which the threadswereexecuted. Runningthe sameinput twice
may result in differentoutcomes,eitherby designor due to race
conditionsthat exist in the code. Re-executingthe samesuiteof
testsmay result in other tasksbeing executed. Therefore,a re-
gressionsuitedoesnot have thesamemeaningasin thesequential
domain.

ConTest[5] is a tool for generatingdifferentinterleaving for the
purposeof revealingconcurrentfaults. ConTest takesa heuristic
approachof seedingthe programwith instrumentationin concur-
rently significant locations. At run-time, we make heuristically,
possiblycoverage-based,decisionsregardingwhichnoise(sleep(),
yield(), or priority()) to activateateachinterleaving. Theheuristics
differ in theprobability thatnoiseis createdfor eachinstrumenta-
tion point andin the noisestrength. For example,if the noiseis
yield(), thenumberof timesit is executeddependson thestrength.
Low strengthmeansthatyield is executedjusta few timesandhigh
strengthmeansthatyield is executedmany times. For sleep(),the
strengthparameterimpactthelengthof thesleep.Someheuristics
haveadditionalfeaturessuchaslimiting thelocationof thenoiseto
variablesthataresharedbetweenthreadsor having additionaltypes
of noiseprimitives.ConTestdramaticallyincreasestheprobability
of finding typical concurrentfaults in Java programs.The proba-
bility of observingtheconcurrentfaultswithout theseededdelays
is very low.

Thetestedprogramin theexperimentis a crawling enginefor a
largewebproduct.For theexperiment,weused18differentheuris-
ticsasthetestspecificationsand9 synchronizationeventsastasks.

During the testingprocess,we collectedthestatisticsneededto
constructprobabilistic regressionsuites. Prior to this work, our
practicewasto usea predefinedrandommix of heuristics.No tun-
ing wasdonefor specificapplicationsandtestcases.We demon-
stratethebenefitof suchtuning.

Giventhestatisticscollectedfor the18heuristics,weconstructed
dynamicpolicies designedto maximizethe coverageof the nine
events,using10 test runs andfive test runs. thesepolicieswere
executed100,000timesandtheresultsshow theaveragecoverage
they yielded.

Weshow in Figure2how thepessimisticfutureawaregreedy, the
worstof ourfutureawareheuristics,is ableto producebetterresults
thangreedy. Thegraphshows thedifferencebetweenfutureaware
greedyandgreedy. We seehow greedyachievesbetterresultsat
thebeginning,while futureawarebypassesit at somepoint in the
middleof thewholeregression.Thisis becauseit canpredictwhich
taskswill be coveredregardlessof its efforts, andso it investsin
hardertasks.We alsoseehow in thefive testrunsthefutureaware
startsto climb earlierandalsobypassesthe greedyat aroundthe

5



1 2 3 4 5 6 7 8 9 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

tests

P
es

si
m

is
tic

 F
ut

ur
e 

A
w

ar
e 

−
 G

re
ed

y

Figure2: GreedyVs PessimisticFutur eAware Greedy
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Figure 3: GreedyVs PessimisticFutur eAware Greedy: Distri-
bution over tasks

third test. Figure3 shows theprobability for future awaregreedy
to cover a taskcomparedto greedy. Thisshows how ouralgorithm
investsmoreresourcesin hardertasks- taskswith a probabilityof
(0.2- 0.55)andfewer resourcesin easierones.

5.3 RegressionSuite for Hardware Verifica-
tion

Thegoalof theexperimentswasto constructrandomregression
suitespairedwith staticactivationpoliciesthatmaximizestheav-
eragenumberof coveredtasks

Theseexperimentswereconductedonsubsetsof acoveragemodel
usedin theverificationof theStorage Control Element(SCE)of an
IBM z-seriessystem,asshown in Figure4. Theenvironmentand
coveragemodelusedin the experimentsaresimilar to thoseused
in [8]. Theenvironmentcontainsfour nodesthatareconnectedin
a ring. Eachnodeis comprisedof a local store,eightCPUs(CP0
– CP7),andanSCEthathandlescommandsfrom theCPUs.Each
CPUconsistsof two coresthatgenerateindependentlycommands
to theSCE.EachSCEhandlesincomingcommandsusingtwo in-
ternalpipelines. Whenthe SCEfinisheshandlinga command,it

sendsa responseto thecommandingCPU.
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Figure 4: Structur e of the SCE simulation envir onment of an
IBM z-seriessystem

Thecoveragemodelconsistsof all thepossibletransactionsbe-
tweentheCPUsandtheSCE.It containssix attributes:thecorethat
initiatedthecommand,thepipelinein theSCEthathandledit, the
commanditself, andthreeattributesthat relateto theresponse.In
this experiment,we concentrateon a subsetof thecoveragemodel
thatdealswith unrecoverableerrors(UE). Thesizeof theUE space
is 98events,all of whicharerelatively hardto cover.

Therepositoryweusedconsistedof 98setsof testspecifications,
eachof which wasdesignedto provide the bestpossibleconfigu-
ration to cover oneof theevents. The inherentrandomnessin the
testgenerationmechanismenablesthecoverageof othereventsas
well, duringa simulationrun. (Otherwise,there’s no hopeof con-
structinga regressionsuitesmallerthanthewholerepository).

Theregressionsuiteandactivatingpolicy weregeneratedusing
boththestaticanddynamicactivationpolicies,westartwith exam-
ining resultsfrom thestaticpolicies.We usethegreedyalgorithm
andthereversegreedyalgorithmdescribedin Section3. Thegraph
in Figure5 shows the differencebetweenthe reversegreedyand
greedy. Thedatadepictstheexpectedaverageresultsin eachtest.
We show 10 testrunsand20 testruns,andonceagainwe seethat
thefutureawarealgorithmachievesbetterresultsat theendof the
plannedtest and worseintermediateresults. We also seehow it
dependson thenumberof testsin therun.

In Figure6 we comparethereversegreedyalgorithm’s distribu-
tion to the greedyalgorithm’s distribution over the tasks. We can
seethatreversegreedyfindsgreedy’shardtaskseasierandgreedy’s
easytasksjustaseasy. thecomparisonis donefor thecasewith 20
testruns,a comparisonfor the10 testrunscaseyieldssimilar re-
sults

Finally, show the resultsfor the dynamicpoliciesgeneratedby
greedyandthefutureawaregreedy, whichpredictsthefutureusing
simplelearningtechniques.Theresultsaretheaverageof 100,000
regressionruns. Figure7 shows for eachstep,the averagetasks
coveredfor 10 testrunsand20 testrunsfuture awaregreedyand
the 20 test runsgreedy. (It gives the samefirst 10 test resultsas
the10 testrunsgreedysoaddingit to thegraphdoesn’t addinfor-
mation). The distribution over tasksalsoshows that future aware
attributesmoreimportanceto theweaktasks.In Table4, we show
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Figure5: Coverageprogressof the SCEmodel
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Figure 6: Coverage progressof the SCE model distrib ution
over tasks

theaveragenumberof coveredtasks(averagedover 100,000runs)
for the20 testrun for greedy, pessimisticfutureawaregreedyand
the future awarethat useslearningtechniquesto approximatethe
future.Onecanclearlyseethatthepessimisticisnotagoodenough
approximation.

Greedy 94.94
Pessimistic 94.96
Learning 95.61

Table4: Averagecoveragefor the UE problemwith 20 tests

6. CONCLUSIONS AND FUTURE WORK
Theproblemof testselectionandtestprioritizationfor efficient

regressiontestinghasreceiveda lot of theoreticalandpracticalat-
tention. Besidebeing theoreticallyinteresting,closely relatedto
one of the bestknown NP-C problems– the set cover problem

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

tests

C
ov

er
ed

 ta
sk

s

Greedy
20 test Future Aware Greedy
10 test Future Aware Greedy

Figure 7: Coverage progressof the SCE model distrib ution
over tasks

[25] – it is alsoof immensepracticalvalue. The problemof cre-
atinggoodregressionsuiteshasmany facetsthataretreatedin the
literature: minimize the numberof testswhile maintaininggood
coverage;evaluatingwhich testsarerelevantto whichcodechange
usingimpactanalysis;choosingteststhataregeneratedby testgen-
eratorson thefly; andmany others.

This paperdealswith a relatedproblemof choosinginput pa-
rametersfor testgeneratorsin sucha way that the suiteof gener-
atedtestswill havegoodexpectedcharacteristics.Whenwestarted
this research,we werenot awareof any work on input parameter
selection/prioritization.We startedby proposinga methodto for-
mulatetheconstructionof randomregressionsuitesasoptimization
problems.solving theoptimizationproblemprovidesinformation
on which specificationshouldbeusedandhow many testsshould
be generatedfrom eachspecification. This formalism allows us
to designrandomregressionsuitesthatmaximizecoveragewith a
limitednumberof tests.Thequalityof theregressionsuitebecomes
aknown qualityandinformeddecisionscanbemaderegardingthe
sizeanddistributionof theregressionsuites.

Not surprisingly, our first attempts[7] wereanadaptationof the
known algorithmsfor test selectionand prioritization to our do-
main. The main differenceis that a given set of input parame-
tersimpactstheprobabilityof having certaincharacteristicsin the
tests.Thework is not deterministicbut probabilistic.Wecreateda
new greedyalgorithmthat choosesparametersto try to maximize
the quality of the tests. Unlike the setcover problem,wherethe
selectedtasksareremoved from the problem,in the probabilistic
case,theprobabilityof the tasksbeingobserved is impacted.Ex-
perimentalresultsshow that the impact is large as the regression
suitescreatedareexpectedto bemuchbetterthanthosecreatedin
random.Specifically, we show thatwhenthereareseveralspecifi-
cations,noneof whichdominatestheother, asmartselectionof the
amountof resourcesdedicatedto theuseof eachis muchbetterthat
usingall theresourceson thebestparametersourceor distributing
theresourcesevenly.

We thencameup with the conceptof the future-awaregreedy
for probabilisticregressionsuites,which is the main contribution
of this paper. Future-awaregreedyis basedon theobservationthat
theamountof resourcesusedto solve theproblemis known. Since
the numberof teststo be executedis known the probability that
taskswill be seenin the future canbe estimated.This probabil-
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ity, togetherwith theknowledgeof thepast,is usedto impactthe
choice� of input parameter. After convincing ourselvesthat this is
usefulon artificial problems,we tried theideaon realworld prob-
lem and showed that it works. The interestingproblem,we are
just startingto investigate,is how to evaluatethe future. ”Safe”
evaluationturnedout to betoo pessimisticandnot of muchvalue.
Learningalgorithmsshow promiseand thereare probablymany
otherheuristiconecandevise,which mayperformbetterin some
scenarios.

The work has beenexecutedin two similar domains: one in
which the policies use no feedbackfrom the execution and an-
other in which feedback,in the form of coverage,is used. The
two domainsshouldnot bemixed,asa simplealgorithmthatuses
feedbackoutperformthebestalgorithmwithout feedback.Theal-
gorithmsusedin both arevery similar;, however, someheuristic
work betterin onedomainthan in the other. An obvious differ-
encebetweenthetwo is thatwhenfeedbackis used,it replacesthe
evaluationof thepast.We have not beenableto ascertain,or even
get goodintuition, how this impactsthe heuristics. However, we
have shown in bothdomainsthat it paysto beawareof thefuture.
Furtherfutureawarenessis shown to yield goodresultsin thede-
terministicsetcover problemaswell.

We have shown that futureawareheuristicsandtheuseof cov-
eragearebothbeneficial.This researchis in its earlystage.Weare
currentlyinvestigatingtheuseof hybrid schemesthatcombinethe
building of futureawareprobabilisticregressionsuiteswith snap-
shotsof the currentcoveragestate. We needto decidehow fre-
quentcheckpointsat which coverageis measuredshouldbe. At
eachcheckpoint,re-generationof theregressionsuiteis calculated
for thenon-coveredtasks.As thecostof re-generatingthesuiteis
small comparedto the costof testing,we expect that an optimal
solutionwill have several suchcheckpoints.We alsoneedto im-
prove our predictionof thefuture. We expectthatsomeheuristics
will bebetterin somedomains.As we arediscussingtestingwith
limited resources,we have to decidehow muchof the testingre-
sourcesshouldbededicatedto decidingwhich heuristicto run and
how muchto runningtheheuristics.We shouldseewhenwe reach
thepointof diminishingandactuallynegativereturns.As all theal-
gorithmsdiscussedin this paperarevery efficient, we assumethat
they will be of benefitbut still we can not executethemwithout
regardto resources.

Specialattentionshouldbe given to tasksthatarecoveredwith
a very low probability. With our currentcostfunctions,thesetasks
have low impacton theselectionprocessastrying to reachthemis
notefficient(unlessmany testswill areexecuted).Careneedsto be
takensothat this taskgetsproperattention.Whenregressionsare
executedregularly, we needto usehistoricaldatato decideabout
whichregressionto chooseafterthesetasks.As regressionsarenot
independent,weshouldfavor heuristicsthatreachdifferenttasksin
differentregressionsevenif theirtotalishigher– averysimilaridea
to thefuture-awaregreedyusedin a singleregressionexplainedin
this paper.
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