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Learning Rules of Thumb

Dan Pelleg
�

IBM Haifa Research Labs

Abstract. When machines classify data, the rules can be arbitrarily complex.
Humans, on the other hand, have trouble manipulating large structures and al-
gebraic formulae. Therefore, when the rules are learned for the purpose of their
execution by humans, the classifier’s accuracy needs to be balanced against the
hardness of evaluating the rules given an unseen instance. This work examines
several known learners in this light, and proposes a new algorithm for building
human-friendly rules from datasets where easy classifications exist. We also pro-
pose a new accuracy-complexity measure. In contrast to measures like BIC where
the complexity penalty is rigid, ours allows flexibility in the weight given to com-
plexity. We evaluate our ”rule of thumb” learner against the known learners, and
show that it produces better results over a wide range of the complexity-accuracy
trade-off parameter.

1 Introduction

Often in real life, people are required to make ”fast and frugal” [1] decisions. The
canonical example is triage in an emergency room, where a classical decision tree may
contain many nodes and require many physiological tests to obtain attribute values. In
contrast, a much shallower tree with many fewer nodes will be faster and more practical
to follow. The improvement in decision time balances the (presumably small) loss of
prediction accuracy.

The same approach also holds in less extreme scenarios. Administrators of large
data storage systems can use machine learning tools to help them identify system per-
formance degradation and anticipate or mitigate downtime. But it would be much more
effective if they could also identify corrective actions, such as throttling certain applica-
tions, or ordering hardware upgrades. Ideally, such actions will be triggered by system-
level events that can be easily measured and found to cross some threshold value [2].
Once learned, the events and their corresponding actions could be taught at the training
classes for the administration of the corresponding storage system.

Our goal is to suggest a learner for a model that only contains very few if-then
elements, where each conditional is a simple threshold (or equality) test of a single
input attribute. It is flexible enough to lengthen the list of rules to improve accuracy, but
does this in addition to optimization for brevity. The idea is not to produce a general-
purpose classifier, but rather one that works if indeed there is such an easy separation
of the data. In more complex cases, its simplicity will necessarily mean high error rate.
In those cases it would be preferable to use a richer classifier, and possibly abandon the
idea of manual classification.



In the statistical context, penalization of model complexity has been addressed by
several model-selection criteria (e.g., AIC and BIC [3]). Below we propose an alterna-
tive measure, which differs in that it can be directly elicited from a human user depend-
ing on his or her requirements.

The rest of the paper is as follows. We first look at several well-known classifiers
which produce “simple” models. We proceed to describe our algorithm for greedily
learning short decision lists. We examine the performance of all algorithms on UCI
[4] data, and show our algorithm’s superiority over a wide range of the complexity-
accuracy trade-off parameter and a variety of inputs.

2 Related Work and Definitions

Some of the very first methods used for machine learning lend themselves easily to
human evaluation. These include decision trees [5] and decision lists [6]. But they were
not optimized for brevity, and in general may comprise of hundreds or thousands of
nodes. Even the typical evaluation of a single unseen instance will require going down
a long evaluation sequences from root to leaf. Sokolova et. al [7] address this issue, and
even propose parameterization of the accuracy cost like we do. But the basis features
they use are inclusion in hyperspheres. This is not only hard for humans to compute,
but also presumes the existence of a good distance metric. In addition, only binary
classification is discussed, and it seems the obvious multi-class extension would make
their models much more complex.

In [8], a learner is given for probabilistic decision lists (where the predicted value
is a list of probabilities). It is reported to produce much shorter lists than previous
algorithms. But this is a side-effect rather than a goal. Even so, the sizes reported are
significantly larger than what is conveniently grasped by a human.

Holte [9] suggested a “one rule” classifier, where a single attribute is used for clas-
sification. The rule is a simple lookup table (numeric values are discretized first), and
the attribute is chosen to minimize the error. Even though it was meant as a strawman,
it was found to perform reasonably well on many UCI datasets.

Typically in the context of boosting, a “decision stump” is learned. This is a sin-
gle if-else rule, chosen based on the squared error (for numeric classes) or entropy (for
nominal classes). Later, an ensemble of many stumps is composed to increase perfor-
mance.

Arguably, it is easy for humans to perform nearest-neighbor classification, on some
graphical plot of the data. The prior assumption is that the data is sparse and also lies
in a very low dimensional space. The same can be said on linear separators. Associ-
ation rules are also very intuitive, but have very low coverage (“support”), and so are
produced in very large numbers.

In what follows, we suggest our own quantifier of evaluation complexity. Its main
aim is to capture some subjective measure of human difficulty. It counts the number of
decision branches required in the worst case. Informally, a branch is a single compari-
son of one data attribute, and results (if matched) in a prediction of a single class. More
precisely, a branch must meet the following constraints:

1. A branch contains a single predicate on a single input attribute.



Al: ��� � ��� build wind float
else CHAINED:

Ba: �	� � 
��� build wind non-float
else � headlamps

Fig. 1. Example rule of thumb learned.

2. If the predicate is true, a single class may be predicted. Alternatively, another
branch could be chained, and its predicated would be AND-ed.

3. The “else” arm may include either a single class prediction, or a branch.

It is evident that decision lists, decision trees and stumps, and other simple learners
can all be easily defined in terms of their branch count. We will examine this more
deeply in Section 4.

Given the (test set) accuracy � (in percent) and branch count � , our measure is��������� , where � is a parameter describing the weight we assign to complexity over
accuracy. For example, ������� means we would rather lose ��� percentage points of
accuracy than add another branch to the rule. And ����������� would mean the opposite.
We believe this parametrization makes it simpler for an end-user to understand how the
penalty affects actual performance. The parametrization by � stands in contrast to the
“one size fits all” nature of BIC. Arguably, it is also easier to elicit than the unit-less
penalties proposed by [7]. A similar goal has also been attempted by Atzmueller et.
al [10]. Their measure requires three user-supplied parameters (threshold  , ! , and " ),
and only broad guidelines are given to determine their value. In addition, their method
is computationally inefficient, and the reported results show rulesets with hundreds or
thousands of rules. In Section 4 below we show our method typically produces just a
handful of rules.

3 Rule of Thumb Learner

Our learner (abbreviated as TR below) produces a decision list. See Figure 1 for an
example. It works by iteratively learning an single additional branch in each step. The
branch has a single equality test for the nominal case, or a threshold test for the numeric
case. If the condition is met, a single class is predicted. If not, a default class is predicted.
In each step we refine the input by considering only the data covered by the “else” arm
of the previous rule learned. We learn a rule for this data, and substitute it for the default
branch of the previous rule. Thus, we grow a decision list, one additional rule per step.
In each step, each attribute is inspected in turn, and an optimal if-else rule derived for
it, as described below. To complete the step, the attribute with the least classification
error, and its associated rule, is chosen and committed to.

The stopping criterion is either reaching a user-defined branch count, or when the
accuracy of the current list is above a threshold. During list buildup, the BIC score of



each intermediate decision list is measured. The list finally output is the one with the
highest BIC score.

We now describe how to find an optimal rule, given an attribute. For nominal at-
tributes, we first populate a count matrix #%$'& for all attribute values ( and target classes)
. A single “if” branch corresponds to selecting an element ��$'& in this matrix, with ( be-

ing the value to compare against and
)

being the predicted class. Disregarding the “else”
branch, the best choice will produce the greatest number of correct predictions (against
the training set). To account for the “else” branch, we also look at the remainder of the
data, and its partition into classes. This information is obtained by subtracting the ( -th
row from the total class counts. We seek to increase the number of correct predictions,
and therefore choose the class with the maximal count. The precise algorithm is shown
in Figure 2. Note that the choice of class for the “else” branch is independent of the
value of the element representing the “if” branch.

For the numeric case, things are slightly more complicated. Again we fix an at-
tribute. Our first goal is to produce a counts matrix like in the nominal case. Here, the
rows will correspond to threshold values. We sort the possible values for the attribute in
question, and assign a matrix row to each unique value, in increasing order. As before,
matrix columns stand for prediction classes. After populating the matrix, the ( -th row
stores the class counts for the data which have their attribute value less than or equal to
the ( -th smallest value observed in the training data. Similarly to the nominal case, we
can choose the maximal element in the row for the “if” branch. And again, we subtract
the row from the total class distribution to get the complement distribution. We choose
the best (maximal) element in the complement distribution as before. See Figure 3.

For a single step in the nominal case, we scan the data set to compute the counts.
Then, for each attribute, we examine each of its possible values to find a maximum
among the target classes. Therefore the complexity due to a single attribute scan in one
step is *,+.-0/1023/54 , where - is the number of input records, / the maximal number of
attribute values, and 2 the number of target classes. In the numeric case, the operation is
preceded by sorting the values. This sums up to *,+.-7698;:<-=1>-0/?1@23/54 , where / here
is the largest number of unique values of any numeric attribute. For the overall time
complexity, the numbers above need to be multiplied by the number of attributes, and
the number of input records.

4 Experiments

In our experiments below we compared performance against the Weka [11] implemen-
tations of the following learners:

– ZeroR: A “zero-rule” classifier. Predicts the mean for a numeric target class, and
the mode for a nominal target class.

– OneR: Holte’s one-rule learner.
– PART: A greedy decision-list learner [12]. Iteratively, C4.5 trees are grown, and

one of their leaves is converted into a rule.
– DecisionStump: A decision stump as described above.
– REPTree: Weka’s fast decision-tree learner.



Input:A
Data instancesB
The attribute’s values CED � �'� FHG
for elements of

A
I

Instance labels where
I<JLK�M CED � �'� NEG

for
K C A

Output:O
Equality value for the “if” branchP Predicted class for the “if” branchQ
Predicted class for the “else” branch

1. Scan
A

, populate an FSRTN count matrix U whereUWV X%Y[Z D K C A Z B JLK5M Y@\�] I^JLK5M Y`_ G Z .
2. For \aY � �'�'� F :

(a) Populate a
� RbN complement vector: U X Ydcfegihaj�U g X^klU V X .

(b) Let Pnm Y>oqpsrutvoqwxDqU V X Z _Y � �'�'� NyG
(c) Let

Q m Y>oqpsrztvo{wxD U|X}Z _Y � �'�'� NyG
(d) If U VL~ ����� U�� � is greater than any value seen so far:

Let
O Y@\ ;

Q Y Q m ; P Y P�m

Fig. 2. Branch construction for a nominal attribute.

Given our definition, the branch complexity of the algorithms above is:

– ZeroR One.
– OneR The number of distinct values in the prediction attribute (nominal), or num-

ber of bins (numeric).
– PART The number of rules.
– DecisionStump Two. Optionally, a third branch is added for handling missing

values.
– REPTree The number of tree nodes.

A brief description of the datasets in our experiments is shown in Table 1. Based
only on such simple statistics on the data, we can already determine that several datasets
are particularly hard to classify with a concise rule. These include: LETTER, with ���
equally-sized target classes, OPTDIGITS and PENDIGITS, each with ��� equally-sized
target classes, VOWEL, with �}� equally-sized target classes, and SOYBEAN, where the
top � classes make up �x�;� of the data, and the remaining ��� classes being roughly
equal in size. The difficulty is due to a combination of two factors. First, by definition,
the number of predicted labels cannot exceed the number of branches. Second, the ratios
of class sizes is such that no small set of classes covers a significant fraction of the data.
When these two hold, no algorithm, including ours, can achieve both a short description
and high accuracy. Therefore, any reasonable usage scenario will preclude the “simple”
algorithms from consideration for these kinds of datasets. But we include them in the
experiments for completeness. Removing them from the input improves the results in
our favor (data not shown).



Input:A
Data instancesB
The attribute’s values
for elements of

A
whereB JLK5M CyD O j ���'� O e G for

K C AI
Instance labels whereI<JLK5M CyD � �'� NyG for

K C A
Output:O

Upper bound for the
“if” branch comparisonP Predicted class for the
“if” branch comparisonQ
Predicted class for the
“else” branch

1. Sort
A

by increasing value of
B

. Populate an F�RTN matrix � where� V X YfZ D K C A Z B JLK5M Y O V ] I^JLK5M Y`_ G Z .
2. For \aY � �'�'� F and _�Y � ���'� N , letUWV X%Y c V gnh�j � g X .

/* NowU V X Y[Z D K C A Z B JLK5M � O V ] I<JLK�M Y`_ G Z */
3. For \aY � �'�'� F :

(a) Populate a
� RbN complement vector: U^X�Y c e gihaj U g X klUWV X .

(b) Let Pnm Y>oqpsrutvoqwxDqU V X Z _Y � �'�'� NyG
(c) Let

Q m Y>oqpsrztvo{wxD U X Z _Y � �'�'� NyG
(d) If U VL~ � ��� U � � is greater than any value seen so far:

Let
O Y O V ;

Q Y Q m ; P Y P m

Fig. 3. Branch construction for a numeric attribute.



Table 1. Summary of test datasets.

Datasets Instances Attributes Classes

anneal 898 39 6
arrhythmia 452 280 13
audiology 226 70 24
autos 205 26 6
balance-scale 625 5 3
breast-cancer 286 10 2
colic 368 23 2
credit-a 690 16 2
credit-g 1000 21 21
diabetes 768 9 2
ecoli 336 8 8
glass 214 10 6
heart-c 303 14 2
heart-h 294 14 2
heart-statlog 270 14 2
hepatitis 155 20 2
hypothyroid 3772 30 4
ionosphere 351 25 2
iris 150 5 3
kr-vs-kp 3196 37 2
labor 57 17 2
letter 20000 17 26
lymph 148 19 4
mushroom 8124 23 2
optdigits 5620 65 10
pendigits 10992 17 10
primary-tumor 339 18 21
segment 2310 20 7
sick 3772 30 2
sonar 208 61 2
soybean 683 36 19
vehicle 846 19 4
vote 435 17 2
vowel 990 14 11
waveform-5000 5000 41 3
zoo 101 18 7



We first discuss the raw performance of all algorithms along two “base” axes. For
each of the �}� datasets, and for each algorithm, we measured the average accuracy
(percentage of correct predictions) and complexity (number of branches) for ��� cross-
validated runs. In the results below, we refer to the negative of the complexity, which
we call simplicity. This way, the direction its optimization (up) matches that of accu-
racy. For our learner, the upper limit on number of rules was set to ��� , and the accuracy
stopping criterion was set to �}��� . Note that the values we measured are not compara-
ble across datasets (as is generally the case with model selection measures). Therefore,
we sorted the values obtained for each dataset, and considered just the ranks of each
algorithm. Thus, the best possible score is � , and the worst is � . The score we report for
a given algorithm is its average rank across all datasets. See Figure 4. There are no sur-
prises here. Algorithms which consistently produce concise models have low accuracy,
and the algorithms with the best accuracy also have the most elaborate descriptions.

1R TR PART 0R DecStump     REPTree
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Fig. 4. Raw performance.

Table 2 summarizes the statistics on the number of rules produced by various algo-
rithms on the test data. In particular, observe how the number of rules produced varies
highly for OneR, PART, and REPTree, and it is also generally too high for manual
evaluation.

It is well-known (and also evident from the data) that accuracy and complexity
need to be traded off. In the statistical context, log-likelihood is usually penalized by
an increasing measure of model complexity [3]. And the main objective criterion for
our algorithm is indeed BIC. However, we chose not to judge its relative performance
based on BIC. The first reason is that no other algorithm optimizes directly for BIC,
and such a comparison would be unfair. But more importantly, we suggest a new eval-
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Fig. 5. Combined performance as a function of � .

Table 2. Aggregate number of rules for each algorithm.

Algorithm Mean Min Max Median

OneR 14.5 2.0 101.5 6.3
TR 2.05 1.0 6.0 2.0
PART 45.5 3.4 733.2 18.8
REPTree 80.9 1.0 1212.0 30.3

uation measure. Our measure has one degree of freedom, which can be interpreted as
the importance one places on the simplicity of the learned model. Depending on the
case, a user could prefer accuracy or simplicity by setting the value of the parameter
appropriately.

Our main result (Figure 5) is based on our penalized accuracy measure. For each
algorithm and dataset, we computed our performance measure, and considered the av-
erage ranks as above. We did this for values of � in the range �5��� – �}� , and plotted the
results as a function of � 1. As can be seen, our algorithm is superior throughout the
range ��� � – �}�;� � , with ZeroR and PART dominating it in the obvious places.

To establish statistical significance for the data in Figure 5, we performed Wilcoxon
signed-ranks tests [13], comparing our algorithm and each of the five others, for each
value of � . At the �l���5� �5� significance level (after applying Bonferroni correction for
five tests), our algorithm is superior throughout the range ��� � – ��� � for � . If we instead

1 The lines balance off for �d� ��� ; this region has been cut out for clarity.



use the Friedman test and apply the Bonferroni-Dunn correction [13], we establish sig-
nificance throughout the range �5�'� – ����� . The (conservative) interpretation is that in those
scenarios where loss of up to � percentage points of accuracy is preferred to the addition
of a single decision rule, our method should be used.

5 Conclusion

This work examines the model selection problem from a human-cognitive aspect. We
suggest a new complexity-accuracy trade-off designed to support decision making. It
is parameterized in a way that makes it very clear what is the price (in terms of com-
plexity) one is willing to pay for increased accuracy. This, too, fits our philosophy of
simplicity, as can be judged by non-technical users. Additionally, we propose a new and
very computationally-efficient algorithm for the learning of “rules of thumb”, and eval-
uate its performance. We show it reliably produces good classifications with very few
rules, while being flexible enough to allow for more complex modeling where needed.

Our weighted penalty measure is a function of an algorithm’s black-box perfor-
mance, and so does not require calculation of log-likelihoods. This property makes it a
preferred alternative where log-likelihoods are not easily computed (ZeroR and OneR
come to mind). But in general, future work should more deeply inspect the relation-
ship between BIC and our measure. Another interesting aspect would be an algorithm
that takes the complexity weight � as input, and produces a learner optimized for the
induced cost function, similarly to the way [7] incorporates the loss function.

Admittedly, rules of thumb can only work in easy cases. We do not aim to address
scenarios where the number of significant classes is large, where the important features
are complex functions of the input attributes, or even with XOR-type difficult inputs.
The scope of this work is the assumption that a (presumably human) consumer of the
classification rules is after a rule that is easy and cheap to execute. Where this does not
hold, classifiers with greater power, or ensembles of simple classifiers, should be used.
To the best of our knowledge, no similar work has attempted to cover this space.

We present performance results for several well-known algorithms. These can be
used to guide the selection of a particular classification algorithm where rule brevity
is sought. Given the desired value of � , one can select the best-performing algorithm.
This, too, acts as a rule of thumb — this time, for selecting the classification algorithm.
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