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An Example of a ∆-extendible Proof with a Spurious Interpolant

Oded Fuhrmann and Shlomo Hoory

IBM Haifa Research Lab

Abstract. We give an example of a model and a ∆-extendible refutation that a given property hold
for all cycles up to k = 5. We show that a classical partition of the axioms into initial and final sets
A,B where the common variables reside in cycle 2 leads to a ’spurious’ interpolant. The interpolant is
spurious in the sense that there exists a legeal path from the states conforming to it and a state that
violates the specified property.
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Note: This document was written as a brief footnote to On Extending Bounded Proofs to Inductive
Proofs, see [FH09]. As such we assume equiantence with the above and will freely adopt all defenitions and
notations.

1 The Example

Fig. 1. The model

Consider the model described in Figure 1 in which each box is anottated with the name of the corre-
sponding output net. We examine the case with init constraints I =

{(
l0a
)
,
(
l0b
)}

and the desired property
that net o is true for all cycles. It is easily observed that this specification holds for all cycles. In Figure 2a
we give a refutation for the BMC formula, proving that no bug exists up to cycle k=5 for the axioms:

I (W0) ∧
k−1∧
i=1

T (Wi, Wi+1) ∧
k∨

i=1

P (¬Wi) ,



where Wi stands for the set of problem variables at cycle i.

The given proof is 1-extendible since every path from an init axiom in I to the root passes through
u =

(
a1
)
, and v =

(
a0
)
. Therefore, the property holds ad infinitum.

We partition the leaf axioms of the refutation into two sets A,B where A contains all axioms with at
least one lit in the [0 . . . 2] range, and B contains all other axioms. It is easy to verify that the resulting
interpolat, Int, computed as described in interpolation [McM03], is l2b ∧ o2. Yet the formula:

Int(W1) ∧
k∧

i=1

T (Wi, Wi+1) ∧
k+1∨
i=2

¬P (Wi),

is satisfies for the assignment in Figure 2b, implying that it is a spurious counter example for the interpolant.

cycle la lb a lc ld le o
2 0 1 0 1 1 1 1
3 0 0 0 0 1 1 1
4 0 0 0 0 0 1 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0

(a) (b)

Fig. 2. (a) A refutation showing that no bug in the first five cycles, (b) An assignment where the interpolant holds,
yet the property does not
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