
H-0275 (H1001-009) January 12, 2010
Computer Science

IBM Research Report

Screen Processing: Detection and Segmentation of
Antialiased Text

Boaz Ophir, Amir Geva, Ella Barkan, Mattias Marder
 IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Screen Processing: Detection and Segmentation of Antialiased Text

Boaz Ophir, Amir Geva, Ella Barkan, Mattias Marder
IBM Haifa Research Lab

boazo@cs.technion.ac.il, {geva,ella,mattiasm}@il.ibm.com

Abstract
Screen shot images is of interest for various applica-

tions. Handling of these images poses several new chal-
lenges compared to images traditionally handled by op-
tical character recognition (OCR). One such challenge
is caused by text antialiasing, where the character im-
ages are blurred by a low pass filter thus changing their
appearance according to context, and fuzing character
images together. In this work we offer simple low cost
procedures to locate antialiased text in a screen image
and to segment the text into separate character images,
as a preprocessing stage to OCR. An emphasis is given
to the low cost of the algorithms, enabling us to handle
large images in real time.

1. Introduction
Handling of screen images is of growing interest in

the last few years. Translation applications are the most
common application but there are multiple business do-
mains where automation, through automatic usage of an
applications’ user interface is of interest, for example:
• Automation of business processes done by back of-

fice human operators.
• Automation of access to legacy systems for the pur-

pose of, for example, data migration.
• Automation of software testing.

In order to be able to automate a process, state of
the art software must interface with the legacy systems,
either through a unique API or protocol, or by instru-
menting the system (i.e., modify or insert ”spy code”)
to allow the automation software to access the system’s
internal structure and state.

These approaches are problematic for various rea-
sons:
• Require knowledge of the legacy system’s internals.
• Time consuming, requiring a developer to create sys-

tem interfaces.
• Some closed systems is not accessible in this way.
• Changing the system may affect it’s behavior in un-

intended ways.
In order to complement this problematic approach,

a visual approach may also be used. This means that

instead of instrumenting the application, the application
may be accessed using its user interface directly [4].

In this method, in order to read the application’s user
interface state, the application’s window is captured and
analyzed. This analysis usually involves:
• Image processing, to recognize the screen features

such as lines, rectangles and circles, in order to de-
duce controls such as fields, check boxes et.

• Optical Character Recognition (OCR) to retrieve
text, such as titles, field text, etc.
On the one hand screen images are acquired under

seemingly ideal conditions with zero noise level. On
the other hand the complexity of these images is lim-
ited only by the designer’s imagination. The image can
contain characters of any of a multitude of fonts, styles,
sizes, colors etc., arranged in any particular layout.

Of particular interest to us is text antialiasing. This
process, explained in detail in section 2, involves hori-
zontal blurring of the character images. While this tends
to improve (albeit subjectively) text readability for the
human user, it may cause problems for OCR systems.
Antialiased characters, especially in small sized fonts,
tend to touch one another making contour or projection
based segmentation methods inapplicable.

This article deals with locating antialiased text
within a screen image and segmenting the characters
correctly. Our only assumptions are that characters in
a word are all the same color and that the immediate
background of the word is also uniform in color. An
important constraint, drawn from our targeted applica-
tions, is that a the complete screen image is processed
in near real time.

1.1 Previous Work
Different approaches to to handling antialiased small

sized fonts have been suggested. In [10, 9, 8] a joint
segmentation and recognition approach is taken. Word
images are segmented (and oversegmented) then the
segments are merged and classified. This type of ap-
proach requires many classification operations (much
more than the number of actual characters) and as such
is too time consuming for our needs.

In [2, 3] a Hidden Markov Model (HMM) is used for
joint segmentation and recognition. An HMM model
is matched to features extracted from a sliding window
over the word image. This approach is also overly com-
plex for our needs, specifically since competing HMM
models are needed for characters of all font types and
styles.

Unlike the above works our approach is based on
understanding the character image creation process and
using this understanding to segment the characters.

2. Antialiased Character Image Creation

We start by explaining the conceptual steps to ren-
dering a character image. The process is composed of
three stages - the character position is computed (at sub-
pixel resolution) by the program generating the screen
image, then antialiasing filtration is applied. The input
to the filtration stage is a binary image with black text
on white background. Finally text and background col-
ors are applied.

Typical antialiasing filters are horizontal low pass fil-
ters. The filter can be applied either at full pixel resolu-
tion or at sub-pixel resolution according to system and
program settings. In Microsoft’s ClearTypeTM[7, 1] the
filter used is a simple 3-tap block filter with coefficients
{ 1
3 ,

1
3 ,

1
3}. This is the case we will focus on although

our algorithm is not limited to this antialiasing filter.
As a result of the antialiasing process the same

character can have different appearances depending
on neighboring characters and on the position of the
sampling grid. In particular there may be no back-
ground pixels separating adjacent characters causing
well-known segmentation methods [6] used in classical
OCR systems to fail.

(a) No antialiasing (b) Cleartype antialiasing
Figure 1. B/W Antialiasing Example

Color is applied to the rendered characters using the
following formula:

y = Tc +
Bc − Tc

255
x , c ∈ {r, g, b} (1)

where y is the final sub-pixel intensity, x is the sub-pixel
intensity after antialiasing, T is the text color and B
the background color. The different color channels do
not interact so the intensity of each sub-pixel is affected
only by the text and background color component that
is associated with that sub-pixel position. Adjacent sub-
pixels are thus affected differently by the coloring.

(a) Red on White (b) Yellow on Blue
Figure 2. Color Antialiasing Examples

3. Antialiased Text Detection
The first stage in handling antialiased text in a screen

image is identifying the the location of the text.
Many different text detection schemes have been

proposed for different scenarios [5]. None of these
works however address the specific problem we are
dealing with. Furthermore, such solutions do not dif-
ferentiate between antialiased and non-antialiased text.
Some technologies (Flex for instance) allow mixing dif-
ferent types of text in the same screen.

Our text detector is based on locating image ar-
eas containing the gradients caused by the antialiasing
process and grouping them together into equivalence
classes according to proximity.

A positive gradient detector Dp is defined on the
gray level image I by:

Dp
(i,j) =

{
1 I(i,j−1) + Th < I(i,j) < I(i,j+1) − Th
0 otherwise

(2)
The operator detects pixels that are lighter than their
neighbor to the left and darker than their neighbor to the
right, by a threshold Th. A negative gradient detector
Dn is similarly defined.

Connected components from both binary gradient
detector images are then grouped into equivalence
classes according to proximity. Since we expect gradi-
ents of opposite orientation when ”entering” and ”leav-
ing” a character, such gradient components are grouped
together if they have vertical overlap and are horizon-
tally close. We also group together gradients of similar
orientation if they have horizontal overlap and vertical
proximity.

The results can further be improved by adding addi-
tional layout rules to the equivalence grouping. These
rules can include looking at the image pixels between
the gradients, or checking to see that an equivalence
class has a base line (indicating that the class is most
likely a word or sentence).

The images contained by the equivalence classes’
bounding boxes are then used as input to the character
segmentation stage.

(a) Input image (b) Pos. and Neg. gradient detector
Figure 3. Antialiased Text Detection

2

4. Character Segmentation
Our character segmentation approach is based on the

understanding of the image creation process detailed in
the previous section.

Our first instinct was to treat this problem as a decon-
volution problem, however standard approaches such as
Weiner filtering produce unstable results that are too de-
pendent on initial and border conditions. Specifically,
ripple effects can easily render the results useless.

The results of more complex deconvolution schemes,
involving optimization of energy functionals and regu-
larization terms, were likewise insufficiently accurate.
In small fonts one missed pixel is enough to give incor-
rect segmentation results. These approaches especially
suffered when text and background shared a common
color component (or two).

In light of this we propose first a simple scheme for
graylevel text/background segmentation and then ex-
tend it for color. It should be noted that when sub-pixel
antialiasing is applied to graylevel text & background,
the resulting image is actually a color image with red
and blue hued pixels as well as gray pixels.
Graylevel Combining the antialiasing filtering
scheme with the prior knowledge that character edges
are generally sharp leads us to a very simple character
segmentation approach. Character masks are grown
from local minima (assuming black text on white
background) following the gradient, until reaching
either background or local maxima.
Character Segmentation Algorithm:
1. Sub-pixel image - for sub pixel antialiasing (clear

type) create a grey level image with sub pixel reso-
lution. Convert each RGB pixel into 3 adjacent grey
level pixels, the color intensity is used as the grey
level intensity. Care needs to be taken with the spa-
tial order of the color channels (RGB or BGR). If no
sub pixel antialiasing is used skip this step.

2. Contrast stretching - linearly stretch contrast to full
dynamic range. In the standard case of dark text
on bright background designate TEXT = 0, BACK-
GROUND = 255

3. Brighten local maxima to BACKGROUND value. A
local maxima is defined as either:
(a) A pixel that is brighter than both adjacent pixels

(right and left).
(b) A pixel that is brighter or equal to both adjacent

pixels and brighter than both pixels 2 positions
removed.

4. Initialize text mask to indicate all pixels with value
TEXT or are local minima. A local minima is de-
fined in similar manner as in the previous step.

5. Grow masks - scan the image and mask twice - one
left-to-right scan and one right-to-left scan. For each

location - if the current location is adjacent to a mask
pixel (but not in the mask itself) then check if this
location is on a gradient - if so then add it to the
mask. Updates are done in place. A pixel is consid-
ered ”on” a gradient if both conditions apply (this is
for the case the current pixel is left of a mask pixel):
(a) The pixel is lighter or equal to the mask pixel

(which is its neighbor on the right).
(b) The pixel is darker than its neighbor on the left

either once,twice,three or four times removed.
When the mask neighbor is on the left, switch di-
rection of the gradient check. At the end of this
stage each 4-connected component in the mask im-
age should represent the sub-pixels associated with
one character.

Working at sub-pixel resolution alleviates the problem
of character appearance (at full pixel resolution) being
dependent on position relative to the sampling grid.

(a) Subpixel Resolution (b) Initial Mask

(c) Mask Growing L-R (d) Mask Growing R-L
Figure 4. Graylevel Segmentation Steps

The algorithm allows character masks to grow hori-
zontally. Local maxima prevent mask segments in the
same row from merging, however segments in adjacent
rows can merge. In most cases this is a good thing
since these segments usually belong to the same char-
acter, however in some cases different characters can
merge. Many of these cases can be identified however
since the connection is usually weak. We define a mask
location (i, j) as a potential breakpoint if ALL the fol-
lowing conditions are fulfilled:
1. The location (i, j) is on the mask
2. The graylevel value of the sub-pixel image at loca-

tion (i, j) is above a certain threshold (i.e., this pixel
is rather bright).

3. The location (i, j) is on the mask border, i.e. one of
it’s neighbors (right or left) is NOT in the mask

4. Conditions 1-3 also all apply also to the position be-
low, (i+ 1, j).

5. Positions (i, j) and (i+ 1, j) are mask borders from
opposite sides, i.e. if the right side neighbor (i, j+1)
is not in the mask and neither is the left side neighbor
below (i+ 1, j − 1) (or vice versa).

We used a threshold value of 0.5, equivalent to 127 on
the contrast stretched sub-pixel image.

3

(a) Input image (b) Mask w/ breakpoint (gray)
Figure 5. Candidate Breakpoint

Color Assuming the colors of both text and back-
ground are known, we can invert equation (1) to recover
x and achieve ”decoloring”:

x =
255

Bc − Tc
(y − Tc) , c ∈ {r, g, b}. (3)

After decoloring the segmentation algorithm can be ap-
plied as is.
This method is susceptible to two difficult scenarios:
• A color component is identical in both Text and

Background. In this case recovering x directly is im-
possible.

• Color saturation at character borders can cause text
sub-pixels to merge with the background (and vice
versa).

Several simple procedures, augmenting the decoloring
stage, can handle most of these cases:
• If the whole pixel (all 3 color channels) is equal to

the Background (Text) color, designate its sub-pixels
as Backround (Text) and give them value 255 (0).

• If a neighboring pixel (3 sub-pixels) is equal to the
Background (Text) color, designate the current sub-
pixel as Backround (Text) and give it value 255 (0).

• In all other cases - interpolate between nearest recov-
erable sub-pixels.

While this segmentation algorithm is very simple and
effective, it is not 100%. There are instances that any
combination of the above still give mistaken results at
character borders:
• A text sub-pixel is categorized as background lead-

ing to over segmentation.
• A background sub-pixel is categorized as text lead-

ing to under segmentation.
In addition, even without antialiasing, in some com-
binations of characters, font and font size, characters
are fuzed together with no background subpixel be-
tween them. In these cases much more expensive joint
segmentation-recognition approaches need be applied.

5. Results
The evaluation of the quality of our approach is done

at this time by human experts. An automated sys-
tem, including OCR, is currently under development.
The detection algorithm was tested on a benchmark
of screen images. Almost all the antialiased text was
successfully detected with the exception of some iso-
lated characters (not enough hits to create a meaning-
ful equivalence class). In addition, some text adjacent

or overlapping with screen graphics was grouped to-
gether with some part of graphics. The segmentation
algorithm was tested on text only images generated by
word processing software for various fonts, sizes and
colors (both text and background). Results were gen-
erally good, with a large percentage of the characters
segmented correctly. In some instances all the char-
acters were segmented correctly with the exception of
characters that were fuzed together prior to antialias-
ing. The results were understandingly degraded for
very small fonts and text/background color combina-
tions with some similar color channels.

6. Conclusion and Future Work
In this paper we introduced low cost procedures for

detection and segmentation of antialiased text in screen
images, with good results. These procedures can be
used with low overhead as preprocessing stages prior
to OCR. We are currently integrating the detection and
segmentation with a fast OCR engine optimized for
screen images. Future work will focus on adding an
adaptive element to the OCR engine designed to handle
segmentation/matching errors.

References
[1] C. Betrisey, J. Blinn, B. Dresevic, B. Hill, G. Hitch-

cock, B. Keely, D. Mitchell, J. Platt, and T. Whitted.
Displaced filtering for patterned displays. In Proc. Soc.
for Inf. Display Symposium, pages 296–299, 2000.

[2] F. Einsele, R. Ingold, and J. Hennebert. A hmm-based
approach to recognize ultra low resolution anti-aliased
words. In Int. Conf. on Pat. Rec. and Mach. Int., 2007.

[3] F. Einsele, R. Ingold, and J. Hennebert. A language-
independent, open-vocabulary system based on hmms
for recognition of ultra low resolution words. Journal of
Universal Computer Science, 14(18):2982–2997, 2008.

[4] A. Geva and E. Walach. US 2008/0001959 A1: System,
method and computer program product for performing
information transfer using a virtual operator. US Patent
Application, Jan. 2008.

[5] K. Jung, K. Kim, and A. Jain. Text information extrac-
tion in images and video: a survey. Pattern Recognition,
37(7):977–997, 2004.

[6] G. Nagy. Twenty years of document image analysis in
PAMI. IEEE Trans. on Pat. Anal. and Machine Int.,
22(1):38–62, 2000.

[7] J. Platt. Optimal filtering for patterned displays. IEEE
Signal Processing Letters, 7(7):179–181, 2000.

[8] S. Wachenfeld, S. Fleischer, and X. Jiang. A multi-
ple classifier approach for the recognition of screen-
rendered text. In Proc. of Int. Conf. on Computer Anal-
ysis of Images and Patterns, pages 921–928, 2007.

[9] S. Wachenfeld, H. Klein, S. Fleischer, and X. Jiang.
Segmentation of very low resolution screen-rendered
text. In Proc. of Int. Conf. on Doc. Anal. and Rec., 2007.

[10] S. Wachenfeld, H. Klein, and X. Jiang. Recognition
of screen-rended text. In Proc. of the 18th Int. Conf. on
Pattern Recognition, volume 2, pages 1086–1089, 2006.

4

