
H-0278 (H1002-004) February 6, 2010
Computer Science

IBM Research Report

 Model-based Design and Generation of Telecom Services

A. Hartman
IBM Research

Bangalore, India

M. Keren, S. Kremer-Davidson, D. Pikus
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Model-based Design and Generation of Telecom
Services

A. Hartman1, M. Keren2, S. Kremer-Davidson2, D. Pikus2,

1IBM Research, Bangalore, India
2IBM Research, Haifa, Israel

ahartman@in.ibm.com,
{keren|shiri|dpikus}@il.ibm.com

Abstract. We describe a model-based approach to the creation of services
supported by the telecommunications infrastructure (Next Generation
Networks, or NGN), including landlines, mobile phones, the Internet and other
devices. We introduce a protocol-independent, domain-specific modeling
language containing high-level entities that architects and developers can use in
their service design to rapidly support complex service flows in their telecom
services. We also describe the transformation and tooling created to support the
language, which enables the automatic generation of running services (structure
and behavior) without additional code being written. Examples of two typical
telecom services are provided to illustrate how the modeling language and
tooling are used for telecom service development. These examples show that
the presented approach can simplify and speed up the development of
innovative telecom services.

Keywords: Model-based development, domain specific language (DSL),
Telecommunication services, service design, model transformation

1. Introduction

The Telecom industry has grown and changed rapidly during the last few years. New
infrastructures and protocols are frequently introduced and telecommunication
companies are required to adapt rapidly to change. With the increasing demand for
more innovative services, the challenge of developing telecom services continues to
grow. Moreover, telecom services typically require invoking a variety of external
services that may be implemented in diverse ways (e.g., SIP services, web services)
and accessed using different protocols (e.g., SIP[1], HTTP[2], SOAP [3]).

Today, only protocol experts are able to develop telecom services. In this industry,
most developers do not use abstraction mechanisms in their service design. Thus, the
services tend to be closely coupled to the protocol layer, making the service design
protocol-dependent. The lack of separation between service logic and technical
interfaces reduces the service design flexibility and slows development.

To overcome such problems, other industries (e.g., automotive, aerospace) have
adopted both model-driven architecture and service-oriented architecture. This is
because modeling is an effective way to manage the complexity of service-oriented
software development and it enables the development of applications that can be
rapidly created and easily modified [4].

Model-driven architecture (MDA) formalizes the evolution of model-driven
development (MDD) by defining models at distinct levels of abstraction and defining
transformations that map and manage the relationships between those models and
various implementation technologies. MDD has many advantages, including:
increased productivity, simplified maintainability, better consistency, improved
communication, and the encapsulation and reuse of domain specific expertise. Our
intention is to bring these advantages to telecom service development.

Some work has been done in the telecom industry to adopt model-driven
architecture and service-oriented architecture [5, 6, 7], but is not widespread yet. The
level of abstraction has not been raised sufficiently to disconnect from the protocols
and allow non-telecom experts to develop quality telecom services rapidly.

For service development several platforms and tools are available that simplify the
service development process to some extent but they still require deep knowledge of
the protocols, technologies, and methods to synchronize between them all.

In this paper we describe a model-based approach to the creation of services
supported by the telecommunications infrastructure. This approach allows non-
telecom experts to develop telecom services. We expect the users of this tool to be
familiar with UML[14] and the language constructs we define. They are not required
to be familiar with telecom protocols, platforms or service development.

To achieve this, we defined a telecom service domain-specific language (TS-DSL),
developed a transformation that generates runnable code, implemented the Telecom
Service Creation environment tool and designed and developed several representative
sample telecom services to validate our approach. To enable the complete definition
of telecom service behavior, we have defined an action semantics over a subset of
UML behavior entities along with our TS-DSL-introduced behavior entities.

TS-DSL also captures a set of concepts that are commonly used in telecom service
development but are being reinvented time and time again in various proprietary
formats. We define these entities and others in the Telecom Library. The library also
contains a set of built-in reusable activities for commonly used behaviors. Details on
TS-DSL and the telecom library are provided in Section 2.

To enable developers to transform their service models into runnable deployable
code we defined a transformation that generates the code and other artifacts from the
service design. The generated service does not require any modification to run. Details
are provided in Section 3.

To ensure our language is applicable and simple to use, we implemented the
telecom service creation environment tool (TSCE) on top of IBM Rational Software
Architect (RSA)[15], which allowed designers to design telecom services using the
TS-DSL and the Telecom Library and generate code from it. Details are provided in
Section 4. Using TSCE, we designed and deployed several typical telecom services
(chosen in consultation with telecom service domain experts). This provided initial
indication that indeed the TS-DSL, telecom library and transformation greatly

improve the user experience and lower the expertise level required for developing
telecom services. Details on these typical telecom services are provided in Section 5.

Section 6 summarizes the related work. Section 7 concludes and discussed on
future directions.

2. Telecom Service Domain-Specific Language

When designing a service, the designer should focus more on its business logic and
less on its relation to the low-level details of the specific telecom platforms or
protocols. Model-based development enables rapid development and maintenance of
applications [4]. Thus a suitable domain specific language for telecom services
enables defining an abstract model built from telecom domain specific entities that can
be transformed into real application code via transformations.

TS-DSL is a language for defining platform- and protocol-independent models of
telecom services. The target audiences of this language are both telecom experts and
those with less expertise who need to develop quality telecom services efficiently.
These services typically require support for call management, instance messaging and
interaction with external services (e.g., presence service, billing service).

The main challenges of this work were related to defining the right level of
abstraction that is flexible enough for defining a wide range of applications in this
domain. The abstraction should be powerful enough to describe all the required
functionality of a telecom service. It should also be both simple and intuitive to allow
non-experts to design and develop telecom services by hiding the low-level platform
and protocol details.

TS-DSL supports design of both structural and behavioral aspects of the service.
To formalize the behavior definition, it introduces an action semantics over a subset of
UML behavior entities along with our TS-DSL behavior entities.

2.1 Telecom Service Structure

Service-oriented architecture (SOA) [16] is a commonly used architecture that
separates functions into distinct services that interact typically over a network in order
to allow users to combine and reuse them in the production of applications. Each
service includes a specification (via interfaces) that defines how it expects other
services to interact with it. In principle, each service can have multiple realizations.
Actual service-to-service communication also involves data passing. The TS-DSL
design was influenced by SOA concepts.

In TS-DSL, TelecomService is the top level entity representing the designed
telecom service (see Fig. 1 showing part of the TS-DSL telecom service UML
profile). Each TelecomService exposes a set of TelecomServiceSpecifications that
define its interfaces. As TS-DSL focuses especially on defining a realization of the
TelecomService, each TelecomService can have a number of realizations. We expect
each model to contain a realization, named ServiceImplementor (extends UML’s
class) that contains all information needed for implementing the interfaces.

As in SOA, each TelecomServiceSpecification exposes the interface through which
the service expects others to interact with it. TelecomServiceSpecifications expose a
set of ServiceOperations (extending UML’s operation). ServiceOperation includes a
Boolean attribute called “isSynchronous” that specifies the synchronization required
for the invocation process. Actual synchronization-related tasks are left to the model
transformation. Although this characteristic is not typical in SOA, it is important in the
telecom domain because in some cases, delicate protocol interchange-related
functionality defined in the specification must be completed without interruption (e.g.,
in billing).

Each TelecomServiceSpecification also defines the set of notifications and errors it
can send/receive throughout its lifecycle. To be able to precisely identify the
semantics of the signal we introduce Notification and Errors both extend UML Signal.

Fig. 1. Telecom service structure

2.2 Modeling Telecom Service Behavior

To define telecom service behavior we utilize the UML2 semantics for state machines
and activities.

Each TelecomService is created with a main state machine. The state machine
defines how the service state changes in response to events it receives or exceptions
that are thrown during the service operation.

To reduce the complexity of defining and managing such a state machine, the
telecom service state machine captures the service interaction with a single party.
Thus it is not contaminated by events arriving from other parties that require handling
in parallel to the main service flow.

A TelecomService state machine includes a set of states and transitions. Each state
in the state machine can contain “do”, “entry” and “exit” activities. An “entry” activity
is launched on entrance to the state. An “exit” activity is launched just before leaving
the state (due to the arrival of a signal that causes the state machine to move to another
state). A “do” activity is launched to perform the actual logic in the state.

If a state includes one of these activity instances, it is responsible to launch it at the
expected time and pass it to the event (and its data) that caused this state to be

processed. Note that if Notifications and/or Errors events are thrown from the
activities and not caught by them, they will reach the state machine and may also
cause state transition.

A transition between states in a TelecomService may be triggered by an event
caused by either: a service invocation request (a request made to invoke one of the
service’s provided interfaces, i.e., a ServiceOperation) or the arrival of a Notification
or TelecomError event. An empty transition between states is defined to allow moving
from one state to the other with no specific event causing the trigger. Flow passes
through this transition only after a source state behavior finishes. In all cases,
constraints (guards) on the transition must be met for the transition to take place.

To capture this in the profile, we introduce the following events (see Fig. 2):
� ServiceRequest (extends UML CallEvent): A request to activate a service-

provided operation arrived

� NotitificationEvent (extends UML SignalEvent): A notification arrived

� TelecomErrorEvent (extends UML SignalEvent): A TelecomError arrived

� TelecomSignalEvent(extends UML SignalEvent): A telecom-related protocol
signal arrived (for advance designers)

Fig. 2. Event types

We identified three main types of telecom services: a basic stateless service (i.e., no
client information is stored for future interactions); a service that keeps the full state of
the required interaction (e.g., call management); and a bidirectional service that keeps
some data from the user and is able to interact with him when needed (e.g., subscribe-
notify management).

Fig. 3. Basic stateless service state machine

Fig. 4. Call management service state machine

Fig. 5. Subscribe/Notify service state machine

TS-DSL enables the design of these service families and others. Figures 3-5 capture
the state machines of these types of services. Note that transitions marked with
“TelecomError” mean that an error event arrived. All other marked transitions
represent service invocations.

We now focus on the UML activities used to define service behavior for each state.
A state’s “do”, “entry”, and “exit” activities are the TS-DSL’s entry points to the
activity flow.

Each UML activity includes actions and control nodes connected via control flow
links. Data flow is defined via data links between the action’s pins. The TS-DSL
introduces a set of telecom-related actions to answer telecom domain-specific needs.
Their intent is to simplify flow design for telecom service designers. The TS-DSL
actions are defined below.
� AcceptServiceRequestAction (extends UML AcceptCallAction): Used as an

initial flow node in a state’s activities with an incoming transition caused by a
ServiceRequest event. The action output pins pass data as parameters in the event.
This action specifies that the client expects a service operation to be invoked.
Since we differentiate between the specification and realization, the action does
not dictate precisely what behavior is to be invoked, and therefore its return
information is not used. Nevertheless, a designer will usually design the activity
to invoke the related ServiceImplementor class operation.

� AcceptNotificationAction (extends UML AcceptEventAction): Similar to
AcceptServiceRequestAction. This action is used as an initial flow node in a
state’s activities with an incoming transition caused by a NotificationEvent. The
action output pins pass the Notification instance data. This action is relevant to
the TelecomErrorEvent that inherits from it.

� AcceptTelecomSignalAction (extends UML AcceptEventAction): Similar to
AcceptServiceRequestAction, This action is used as an initial flow node in
activities invoked after a telecom signal arrives.

� ServiceInvocationAction (extends UML CallOperationAction): Used to invoke
an external service from within the activity flow. Telecom service design typically
requires invoking a variety of external services that may be implemented in
diverse ways (e.g., SIP services, web services) and accessed using different
protocols (e.g., SIP, HTTP, SOAP). When creating such an action, the designer
selects an operation from the provided interface of an external service.

� InvokeTelecomOperationAction (extends UML CallOperationAction): Used to
invoke operations of telecom model library entities (to be further discussed in
Section 2.3) from the activity flow. This action indicates that a
‘TelecomModelLibrary’ operation is called.

� CreateTelecomElementAction (extends UML CreateObjectAction): Used to
indicate that a 'TelecomModelLibrary' entity is to be created.

� FreeFormAction (extends UML OpaqueAction): Allows specifying snippets of
Java code within an activity. The action’s input and output pins are treated as
variables used in this code. Although not telecom domain-specific, we found this
action very useful in situations where basic general purpose computation (code
snippets) is needed. This action reduces flow clutter, as it replaces chains of
atomic UML actions to perform simple computations.

Other elements of activity were modified or extended inside the TS-DSL (e.g.,
ForEach, Next, InputList, DecisionAction) to allow the efficient manipulation of
activity flows and their transformation into runnable code.

The TS-DSL entities in this section are intended to be used by both telecom experts
and non-experts; they do not rely on any knowledge of low-level technical telecom
details. Parts of these entities guide service designers in their use of Telecom Model
Library entities (see section 2.3) for additional telecom domain-specific operations.

For telecom experts who want low level control over the telecom protocol-related
events, we define the TelecomSignalReception (extends UML reception). In UML,
receptions can be attached to a UML class indicating what behavior (e.g., an activity)
to invoke if a particular signal is received (asynchronously). In TS-DSL, we allow
designers to add TelecomSignalReceptions and specify what activity is to be invoked
if a TelecomSignal arrives. Moreover, they can indicate if they would like the activity
to be invoked either after the signal arrived or before it is sent. The latter is not
supported in UML.

Telecom services logic usually requires collaboration with other services (maybe
even from different providers) to make use of their functionality. But invoking

external services from telecom services is not a trivial task. This is mainly because
external services may be implemented in diverse ways (e.g., SIP services, web
services) and accessed using different protocols (e.g., SIP, HTTP, SOAP).
To hide these details in the telecom service design, we treat each external service as a
component with a provided interface. The designer can use the
ServiceInvocationAction (described above) to indicate what operation from its
provided interface it wants to invoke.

2.3 Telecom Services Library

The Telecom Service Library (TSL) includes a set of entities that are intended to be
used without modification, independent of the implementation platform and protocols.

TSL entities include: abstractions of concepts that are commonly used in telecom
service development and often reinvented; an object-oriented abstraction over telecom
communication flows; and a set of reusable activities capturing commonly used
behaviors.

The TSL is divided into three parts: data types, business entities, and
communication entities.

Data types allow designers to use predefined, widely used data types. The content
is derived from industry standards, including shared information data (SID) models
related to the TeleManagement Forum (TMF) [22] working on the eTOM and SID
evolving standards. These standards provide common abstractions and terminology
that allow easier understanding between the different worlds of service providers and
users. In TSL, we extended some SID elements with additional attribute fields
specialized according to naming conventions in the IMS area. Examples include Party,
Person, Phone number, and URI. The data part also includes several commonly used
Notifications (e.g. CommunicationEstablishedNotification), and Errors (e.g.
AccessDeniedError).

The business entities can be used to provide accounting, authorization and user
profile management capabilities to the service. For example: Customer, Account, and
CreditProfile. Other business entities focus on accounting procedures and enable both
session-based and event-based billing.

The communications entities are used to manage calls and other modes of
communication in an intuitive, object-oriented manner that is flexible, simple to use
and efficient. One of the main entities, CommunicationThread is described below.

CommunicationThread (see Fig. 6) is a class responsible for organizing a runtime
aspect of a Call. Each Call contains 1 or more CommunicationThreads. Each
CommunicationThread points to a set of participants and specifies how they are
grouped. It also holds information on the thread initiator, and indicates if the thread is
active or suspended (more then one thread can be active in a time). The
CommunicationThread abstraction enables a variety of options such as services that
intermittently interrupt a call with some information, yet are not full-time participants
in the call.

The TSL also contains a set of predefined activities that capture commonly used
behavior patterns. These activities include creating and establishing a call, terminating
a call and applying standard session-based accounting

Fig. 6. Communication entities

3. Transformation to Runnable Code

One of the main challenges in this work was defining a transformation to runnable
service code, i.e., defining mapping rules and infrastructure that close the abstraction
gap. This task also includes support for the UML behavioral semantics and closing its
variation points. We put additional emphasis on generating code that is efficient,
readable and easy to modify. Note that we do not follow the OMG’s MDA process of
generating a domain-specific model before generating code, but rather separate the
transformation into domain-independent and domain-specific parts, without
generating an intermediate model. The reason for this is to allow rapid service
development without going into low-level platform-specific details. This follows the
practice advocated in Mellor and Balcer REF for embedded systems [23].

The transformation infrastructure has three main layers:
A. A generic platform- and protocol-independent layer capturing the structure and

behavior-related classes (e.g., Activity abstract class, event managing engines).
This layer was designed to be domain-independent so it can be reused by other
domains.

B. A generic platform- and protocol-independent layer implementing the telecom
model library APIs. This also simplifies service portability (e.g., the ability to run
the service on networks with different protocols).

C. A platform- and protocol-specific layer implementing a well-defined
specification. This layer’s interfaces are used by the other layers hiding the
protocol-specific implementation from them. As a result, migrating a service to
another platform or protocol requires only replacing a single, well-defined library
realizing the defined specification.

Numerous transformations exist that can generate the skeleton code (structure) of
an application from a UML model. We extended IBM Rational Software Architect’s
built-in transformation from UML to Java and added our service-specific rules to
generate both the special telecom model structure (e.g., SIP Servlet structure, sip.xml)
and behavioral parts of the application.

For example, each model activity is transformed into a class that extends the
abstract Activity class from layer “A”. Transformation rules populate this class with:
1. A constructor that sets the activity input data and registers it as a listener to events

2. Methods for each action in its flow. Fig. 7 includes the code of the two invoke
activity actions seen in the diagram on the left. Each extracts the data from the
pins, creates the target activity, invokes it with the data and then sets the returned
information in the output pin.

3. Methods that implement the flow graph corresponding to the activity flow .

4. Methods that initiate data flow-related entities and dependencies between them.

The generated activity code has a structure that resembles the source activity. This
simplifies understanding and enables code modifications if needed.

One of the main simplification decisions we chose for the designers and decided to
keep for coders was that the main service state machine represents the interaction of
the service with a single client and not multiple clients. Nevertheless, at runtime, the
service needs to interact with multiple clients simultaneously. To enable this, we
create a context object for each client interaction that includes all interaction state
information. When an event arrives it is processed and dispatched to the correlated
client interaction for processing. Each context runs in a separate task. To manage this
and enable simultaneous client processing, we handle threading and synchronization
in a scalable manner to ensure that the service does not consume too many resources
and has reasonable performance.

The implementation of the TSL was complicated, especially in situations where
method implementation could not be independent of the runtime environment.
Moreover, some implementations require event-based interaction with the network.
For example: to establish a call, the library Call class “establish()” operation is
invoked. The implementation of this operation requires managing numerous message
exchanges between parties until both are connected. This operation requires
interaction with the network to receive events. But network interaction is handled by
the servlet, and this operation should not interfere with the regular servlet-client

interaction. Moreover, the model library should not depend on a particular service
implementation. To overcome this, each Call instance registers as a behavior entity to
the core infrastructure event dispatcher for specific events; on arrival, these events are
passed straight to the Call instance and the service state is not modified.

Fig. 7. Generated code segment

This architecture allows the flexibility of deploying the service over networks that
use different protocols for different tasks, requiring only a different implementation of
the model library jar and either minor or no code changes.

4. Telecom Service Creation Environment

To ensure TS-DSL can be used by none telecom experts and to ensure its
applicability, we implemented the telecom service creation environment (TSCE). The
TSCE provides an interface to the TS-DSL introduced in Section 2 and the
transformation introduced in Section 3, and provides a level of automation for
implementing the service design methodology we adopted.

The TSCE is implemented as set of plug-ins, UML profile, and transformations
built on top of the IBM Rational Software Architect, which is itself built on top of the
Eclipse tooling framework. As such, the tooling is open and extensible. It is designed
in a way that enables the addition of a further level of customization when deploying it
in a commercial context.

The telecom model library view (seen on the left of Fig. 8) is a tree view, exposing
model library entities that can be used in a service model. The external services view
exposes the set of external services used within the model. It also supports importing
specifications of other services from the service registry to be used in the service.

The TSCE includes a set of service creation templates. This set is extensible to
allow the introduction of additional templates. The basic TSCE has three templates,
one for each family identified in Section 2.2.

The TSCE also exposes reusable structures provided with the tool, including a
media player and a unit convertor that can be seen in the bottom panel of Fig. 8. New
reusable elements may be added by domain experts.

5. Telecom Service Examples

 We designed, implemented and deployed several typical telecom services using
TSCE. In this section, we describe two of these services: the “Meet Me Now” service
(MMNS) and the “Free Calls with Advertisement” service (FCWAS).

To ensure that the services we selected span a wide variety of requirements for
telecom services, we worked with a number of sessions with telecom service
development experts from within IBM.

These examples illustrate that indeed telecom service development can require only
knowledge in UML and TS-DSL and not in underlining telecom protocols and
platforms.

5.1 Meet Me Now Service (MMNS)

The primary user of the MMNS has a cellular phone where address book contacts are
grouped into buddy lists. When the service is invoked it, sends an SMS message to all
the members of a selected buddy list that are within a fixed distance from the user, and
where their presence information states that they are available. The implementation of
this service uses a buddy list service, a location service, a presence service, and an
SMS service.

The service was created in TSCE using the “basic” service family template (see
Fig. 3). The service starts in the “Active” state. When an “invokeMeetMeNow”
service invocation event arrives, the service collects the data and moves to the
“ProcessingMeetMeNow” state for sending SMSs to the appropriate parties. If any
error is raised, the flow is interrupted and the service moves to the “ErrorHandling”
state. Otherwise, the processing finishes.

To handle the “invokeMeetMeNow” service invocation event, the designer adds a
“do” activity to the “ProcessingMeetMeNow” state. This “MeetMeNow” activity is
seen on the left of Fig. 7. This activity includes two activity invocation actions:
� “LocateNearFriends” activity includes the logic that determines what sub-group

of buddies to send an SMS to.
� “InviteBuddies” activity, seen in Fig. 8, includes the logic that sends an SMS to

the available buddies nearby. It uses two ServiceInvocationAction instances that
specify the invocation of the findLocation() operation of the location service and
the extractBuddyList operation of the BuddyList service. This illustrates the
simplicity of invoking external services, where one only needs to make sure all
input is supplied and treat it as a regular operation invocation.

During the MMNS Service definition, a structure diagram is built in parallel by the
tool, capturing its relationship to external services used in the logic.

Fig. 8. Telecom service creation environment

5.1 Free Calls with Advertisement Service

The “Free Calls with Advertisement” (FCWAS) service is a different telecom service,
where the emphasis is on call manipulation requirements, in contrast to the external
service requirements in MMNS. This service allows users to place free-of-charge calls
that are interrupted from time-to-time with an audio advertisement. It allows registered
“gold” users (users who are registered with higher privileges) to place calls with a
better quality line (codec) than regular users.

This service design depends heavily on entities defined in the TSL communication
part. In the service logic, a Call object is created, with two ends pointing at the call
initiator and the specified target. To allow the service to interrupt the call from time to
time with an advertisement, a new CommunicationThread is added in which the
service enrolls itself as an additional end to the call. When an invoked timer sends an
event indicating that the time has come to play an advertisement the Call's active
threads are switched (i.e. the new CommunicationThread status is set to active and the
original CommunicationThread state is set to suspended) to allow the service to take
control over the call and play the advertisement. When the advertisement ends, the
threads state is restored to allow the normal continuation of the call. Fig. 9 displays
the “Play advertisement" activity that is responsible for switching the threads and
playing the advertisement.

Fig. 9. FCWA “Play advertisement” activity

6. Related Work

In IP telephony, several platforms and tools are available for service development that
simplifies the service development process. The IBM WebSphere Application Server
(WAS) [10] version 6.1 with IBM WebSphere IMS Connector [11], Oracle BEA
WebLogic SIP Server [12], and Avaya SIP Application Server [13] are examples of
such platforms. However, they all require the architect to have an understanding of
SIP (RFC 3261 [1] for basic signaling support within a telecom service; Diameter
base protocol (RFC 3588 [9]) message structure, and message structure for the
relevant Diameter applications. Moreover, developers need to understand the
interaction between the Diameter and SIP protocols.

The efficient development of telecom application has been addressed by several
authors using the model-driven and service-oriented approach. Georgalas et al. [5, 17]
have applied model driven architecture (MDA) in several case-studies that
demonstrate the advantages it offers in the process of designing, developing and
integrating operational support systems (OSS) in terms of improved quality and lower
costs. In the latter paper, they describe an Eclipse-based environment of model-driven
development (MDD) facilities that supports the automatic generation of domain-
specific tools. However, in different from us they do not provide telecom-specific
runtime support.

Live Sequence Charts approach and the Play-Engine tool have also been used to
model telecommunication applications [18], where they take advantage of use cases

and sequence diagrams as scenario-based requirements describing the behavior of
such applications. Their work allows validation of the behavior on the model level and
connecting existing components, but it does not have code generation support.

Belaunde et al. [19, 20] define a DSL for voice interactions. The language is a
dialect of UML and describes voice dialogs by state machines. In the later paper, the
initial approach is extended for composite service modeling. Our work takes a similar
approach to theirs, but tackles the more complex domain of NGN telecom protocols
(e.g., SIP, Diameter) and extends the approach by introducing higher levels of
abstraction and reusable service components.

For telecommunication service development, IBM provides a package of software
capabilities named IBM Rational Unified Service Creation Environment (USCE). It
includes Conallen’s SIP modeling toolkit [6, 7]. This toolkit includes a set of domain
extensions to the IBM Rational modeling platform for the development of SIP
services. Its DSL defines basic SIP service constructs and enables the description of
the interaction flow of client-service messages using UML sequence diagrams. This
environment simplifies development of telecom services but developers still need to
be familiar with protocol details and remain responsible for coding the behavioral
parts of the service, in different from our approach.

7. Conclusions and Future Directions

This paper describes a model-based approach for the design and creation of
telecom services hiding the complexity and details of the underlying protocols from
designers. Our approach simplifies service design, cuts down design and development
time, makes the design process accessible to designers not familiar with telephony
protocol details and simplifies maintenance as the changes are done in a higher level
of abstraction.

We introduced the telecom service domain-specific language, telecom library, a
transformation to runnable code (including behavior) and the telecom service creation
environment that exposes it and is crafted to fit the telecom service designer’s
requirements. We illustrated the language and environment by designing and
implementing two representative services.

During this process, we were faced with many research challenges. Most are related
to defining the right abstractions (and mapping rules) that hide the low level protocol
and platform details from the designers but are powerful enough to provide a rich set
of service functionalities in an intuitive manner. Others relate to defining the behavior
semantics, closing some UML variation points in relation to telecom services and
generating high-quality behavior code - not only skeleton code.

We received positive feedback from service developers who developed services
with IMS-related protocols. We plan to continue the industrial validation to allow
service designers to develop their services with TSCE.

In the future we plan to focus our research on other aspects of model-based
development of telecom services. This includes extensions for model-based testing

and debugging at the TS-DSL level. We will do this by defining an extension to the
generic model execution engine [21] and using its simulator.

8. References

1. RFC 3261, SIP: Session Initiation Protocol, http://www.ietf.org/rfc/rfc3261.txt
2. RFC 2616, Hypertext Transfer Protocol-- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt
3. SOAP Specifications, http://www.w3.org/TR/soap/
4. Gernosik, G., Naiburg, E.: The Value of Modelling,

http://www.ibm.com/developerworks/rational/library/6007.html, 2004
5. Georgalas, N., Azmoodeh, M., Ou, S.: Model Driven Integration of Standard Based OSS

Components, Proc. of the Eurescom Summit 2005 on Ubiquitous Services and Applications,
2005, Heidelberg, Germany

6. Conallen, J.: Introduction to SIP Modeling Toolkit,
http://www.ibm.com/developerworks/rational/library/07/0807_conallen/

7. Conallen, J., Olvovsky, S.: Model-based Development and Testing of Session Initiation
Protocol Services, IBM Rational Software Development Conference 2008, Orlando, FL

8. RFC 2327, SDP: Session Description Protocol, http://www.ietf.org/rfc/rfc2327.txt
9. RFC 3588, Diameter Base Protocol, http://www.ietf.org/rfc/rfc3588.txt
10. WebSphere Application Server, version 6.1, http://www-

01.ibm.com/software/webservers/appserv/was/
11. WebSphere IP Multimedia Subsystem Connector, http://www-

01.ibm.com/software/pervasive/multisubcon/
12. Oracle BEA WebLogic SIP Server,

http://www.oracle.com/technology/pub/articles/dev2arch/2006/02/communications-
platform.html

13. Avaya SIP Application Server, http://www.avaya.com/gcm/master-usa/en-
us/products/offers/sip_application_server.htm

14. Unified Modelling Language (UML2.0), OMG, June 2004,
http://www.omg.org/technology/ documents/formal/uml.htm.

15. IBM Rational Software Architect,
http://www.ibm.com/developerworks/rational/products/rsa/

16. Service-oriented architecture (SOA) definition, http://www.service-architecture.com/web-
services/articles/service-oriented_architecture_soa_definition.html

17. Achilleos, A., Georgalas, N., Yang, K.: An Open Source Domain-Specific Tools
Framework to Support Model Driven Development of OSS, ECMDA-FA 2007: 1-16

18. Combes, P., Harel, D., Kugler, H.: Modeling and Verification of a Telecommunication
Application using Live Sequence Charts and the Play-Engine Tool, ATVA, 2005

19. Presso, M.J., Belaunde, M.: Applying MDA to Voice Applications: An Experience in
Building an MDA Tool Chain. ECMDA-FA 2005

20. Belaunde, M., Falcarin, P.: Realizing an MDA and SOA Marriage for the Development of
Mobile Services. ECMDA-FA 2008.

21. Kirshin, A., Dotan, D., Hartman, A.: A UML Simulator Based on a Generic Model
Execution Engine , MoDELS Workshops 2006 - LNCS, Springer, 2007

22.The TeleManagement Forum (TMF), http://www.tmforum.org
23. Stephen J Mellor & Marc J Balcer Executable UML: A Foundation for Model-driven

Architecture (2nd Edition) Addison Wesley 2002.

