
H-0285 (H1007-003) June 30, 2010
Computer Science

IBM Research Report

SPLGraph: Towards a Graph-Based Formalism for Software
Product Lines

Itay Maman
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Goetz Botterweck
Lero - The Irish Sofware Engineering Research Centre

Limerick, Ireland

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SPLGraph: Towards a Graph-based Formalism for
Software Product Lines

Itay Maman
IBM Haifa Research Lab

Haifa, Israel
imaman@il.ibm.com

Goetz Botterweck
Lero – The Irish Software Engineering Research

Centre
Limerick, Ireland

goetz.botterweck@lero.ie

ABSTRACT

This paper presents SPLGraph a graph-based model for Soft-
ware Product Lines, including (1) a formal definition; (2) an
algorithm that applies configuration decisions to an SPL-

Graph thus yielding a product specific graph; (3) a set of
patterns for typical SPLGraph structures, such as Boolean
operators, reuse of expressions, named configurations, op-
tional and alternative features and staged configuration; and
(4) an algorithm that infers product configuration per a vari-
ability point.

SPLGraph is generic, simple, and self sustaining in the
sense that an SPLGraph instance can apply variability to
itself. These properties make SPLGraph a basis for a solid
and complete formalism for Software Product Lines.

Keywords

Software product lines; variability modeling; graph;

1. INTRODUCTION

A software product line (SPL) is a set of software-
intensive systems that share a common, managed
set of features satisfying the specific needs of a
particular market segment or mission and that
are developed from a common set of core assets
in a prescribed way 1.

Like other definitions of SPL, this definition states an SPL
is developed from a “common set of core assets” without
imposing any concrete requirements on the actual assets—
both core (shared, common) assets and non-core assets—
making up the SPL.

Despite the wide spectrum of possibilities allowed by this
definition, most modern SPL systems share a stricter com-
mon denominator formed by the usage of technologies such
as variability modeling, feature modeling, variability pat-
terns, configuration parameters, etc.

1http://www.sei.cmu.edu/productlines

While some of these concepts have been properly formal-
ized (e.g., feature-modeling [13, 3, 1, 7, 15]) we have yet to
see a precise model that captures the overall relationships
between products, product families, assets and variability
in a generic (i.e., non domain specific) manner. This is a
predicament for both tool vendors and researchers.

For tool vendors, lack of a unifying formalization means
they need to “reinvent the wheel”whenever they orchestrate
the different mechanisms in a new tool. This leads to ad-hoc,
incomplete, solutions which are hard to standardize. In the
absence of a unifying formalism the vendor’s solution is often
coupled—too tightly—to a specific market or a customer.
Finally, interoperability across tools and transfer of solutions
between tools is also difficult.

For researchers, lack of formalization means lack of ter-
minology, semantics and building blocks which are essential
for devising new algorithms. More importantly, this implies
the absence of well defined ways for capturing the problems
that the researchers are asked to solve.

A case in point is that of modern development platforms
such as IBM’s Jazz project [9], which attempt to unify and
streamline multiple software life-cycle activities. While main-
taining traceability between artifacts that describe distinct
aspects of the system (user stories, unit tests, source code,
user manuals, deployment scripts, etc.) is already a chal-
lenging problem, doing so in the presence of variability is
nearly impossible if every aspect/tool has its own way of
representing variability, features or products.

It seems that the handling of SPL issues is a concern that
crosscuts all other which should be treated by a dedicated
mechanism that is capable of serving each aspect-specific
tool with the appropriate product-specific variants of the rel-
evant artifacts. This is not unlike the way versioning is han-
dled by source control tools. Instead of letting each (aspect-
specific) tool implement its own support for source control, a
uniform“source control” concept was devised. This concept,
which is built around notions such as revisions, branches,
and baselines, is agnostic of the particularities of a specific
aspect. A source control system is a realization of this con-
cept. It frees other tool vendors (which are not focusing on
source control) from reimplementing such support and, at
the same time, it fosters interoperability by offering consis-
tent semantics for the said notions.

It is our belief that SPL support should follow a similar
path in the sense that variability (and constraints on the
available variability options) should be described in a generic
form and independently from the particular type of artifact.
Eventually this may lead to the appearance of a new breed

of source management tools that will encompass both source
control and SPL capabilities.

This paper presents SPLGraph , A graph-based mathemat-
ical structure that attempts to pave the road toward such a
unifying formalism. SPLGraph is accompanied with several
algorithms, working on top of an SPLGraph instance, provid-
ing services such as materialization, extraction of unresolved
decision (per a variability point), etc. While we do discuss a
prototype implementation (Sec.5) SPLGraph is not an SPL
tool but rather a formal underpinning of SPL.

Background. Modern SPL tools are based on two key
mechanisms: (i) Variability Mechanism: Operators that ma-
nipulate SPL assets, transforming them from their generic
form into their product-specific form; (ii) Control Mecha-
nism: A language through which one can specify which
variability operators will be applied in a specific product,
typically via high-level abstractions. A particular example
for such a language is that of feature diagrams [11].

We observe that the question of expressive power is solved
in both mechanisms. Variability—If we treat all assets as
sequences of binary bits, then a set of operators such as:
replace-bit, delete-bit, insert-bit is enough for expressing any
possible transformation. Control—By using a Turing-comp-
lete language one can express arbitrarily rich control logic.

Clearly, both solutions are far from being optimal. De-
veloping SPL tools that are based on manipulation of assets
in granularity of bits is highly error prone and practically
infeasible. Using a Turing-complete language as a control
mechanism prevents meaningful reasoning on the configura-
tions (products). In particular, questions such as: are two
configurations equivalent? or is this a legal configuration?
cannot be answered without running the corresponding ma-
terialization (which, alas, is not guaranteed to terminate
under such circumstances).

We are therefore looking at a double trade off. In vari-
ability operators we trade the power to transform for higher
level of abstraction. In the control mechanism we trade the
power to configure for the ability to reason about the con-
figurations.

Design Considerations. SPLGraph chooses a directed,
labeled, graph as its data representation medium, where
rerouting of edges is its single variability operator. Clearly,
graphs stand at a higher level of abstraction than sequences
of bits and thus are more descriptive and less prone to er-
rors. Still, the price that we pay for this higher abstraction
is minimal: by rerouting edges one can change almost any
piece of information communicated by a graph. We would
argue that in a way graphs are the sweet-spot for striking
the variability mechanism trade off.

SPLGraph’s control language, realized by decision vertices,
is standard boolean algebra. As shown in the past [1] such a
language is sufficiently powerful for expressing the common
constructs of feature diagrams.

The second decision that drove the design of SPLGraph is
that of self sustainability. In addition to the “plain”data be-
ing represented as a graph, both variability and control are
represented as vertices/edges (namely: as mutation and de-
cision vertices). This allows one to use SPLGraph’s power to
enrich SPLGraph itself, as will be illustrated—for instance—
by the Named Configuration Reuse pattern (Sec.3.3).

Self sustainability is paramount to ensuring flexibility and
future adaptability. To see that let us imagine a scenario
where decision and mutation vertices were some mathemat-

SPL Assets

Input

SPLGraph

P0

Mapping

Selected root s Open decisions

Selection of

Product Root

Extraction of

Open

Decisions

Configuration

Process

Configuration

Algorithm

materialize

s

F, T

Output

SPLGraph

P1

P1

Deliverable

Product

Code

Generation

P0

Algorithm

apply

Algorithm

isReachable

uses

uses

Algorithm

traverse

uses

Figure 1: Overview of the engineering process.

Given an SPLGraph user selects a product root and

resolves open decisions. The materialize algorithm

will produce a new SPLGraph by the application of

various mutations.

ical structure foreign to the graph. If we were to provide a
way to customize decisions or mutations we had to introduce
another construct dedicated to this purpose which, in turn,
would require the introduction of yet another construct for
its own customization.

Self sustainability implies no new customization means
are needed for customizing the customization means already
built into SPLGraph. This is similar, in principle, to the ob-
ject model underlying modern object oriented languages [4].
In Smalltalk, for example, an object is an instance of a class,
but a class is also an object, thereby making mechanisms
such as inheritance, overriding, etc. applicable not only for
objects but for the classes themselves.

Finally, we intentionally kept the formalism simple: a sin-
gle variability operator, and only two kinds of special ver-
tices. This resulted in simple algorithms, in simple correct-
ness proofs, and in the ability to express a wide spectrum of
high level patterns in a precise, terse, manner.

Overall process. The fundamental operation of SPL is
that of materialization: the act of deriving a specific product
from the assets making up the product line. The activities
pertaining to the materialization are described in Fig.1.

The process shown in the figure starts from an existing
SPLGraph, Π0, which represents, via some mapping, assets of
the SPL. While this mapping is largely domain specific, the

representation of variability constructs (boolean conditions,
optional, alternative, etc.) is uniform across all SPLs and
is presented in this paper as a set of SPLGraph patterns.
After choosing Π0, the user chooses a product by selecting
a start vertex, extracts open decisions, and configures the
product according to his needs by resolving (some of) these
decisions.

Finally, the materialization algorithm is applied. This
yields another SPLGraph, Π1, which in turn may be further
materialized if it sports its own set of open decisions. Oth-
erwise, Π1 has no open decision and it describes a concrete
product with zero variability. In this case, one can apply
code generation to translate the SPLGraph into target assets
which form the final product.

The focus of this paper is on the parts of the process
(Fig.1) that are generic and do not require domain specific
knowledge. Specifically, we formally define: the SPLGraph

mathematical structure (Sec.2); the materialize algorithm
(Sec.2.1) along with its auxiliary algorithms apply , traverse
and isReachable; the patterns (Sec.3) that are central to the
mapping of SPL variability onto an SPLGraph instance; and,
finally, the justify algorithm (Sec.4) which is the backbone
of the extraction of open decisions activity.

2. A FORMAL MODEL
An SPLGraph is a 7-tuple Π ≡ 〈G, M, F, T, X, L, δ〉:

• G = 〈V, E〉 is a finite directed graph.

• M ⊆ V is a set of mutation vertices.

• F ∈ V is the False vertex.

• T ∈ V , T 6= F is the True vertex.

• X ∈ V , X 6= F, X 6= T is the Unknown vertex. X is a
sink: it has no out-going edges.

• L is a finite set of words over some alphabet. We
assume the existence of some order over L (or a lex-
icographic order over the alphabet of L). This order
will make enumeration over a set of vertices or edges
well defined: enumeration will follow the ordering of
the respective labels (see δ below).

• δ : V ∪ E → L is a labeling function associating a
word from L with each vertex or edge. Each vertex
has a unique label, i.e., for any two vertices v ∈ V ,
u ∈ V , δ(v) = δ(u)⇔ v = u. Two edges e1 = 〈v1, w1〉,
e2 = 〈v2, w2〉 may share the same label only if they go
out from two different vertices: δ(e1) = δ(e2) ⇒ v1 6=
v2 ∨ e1 = e2.

We will use the square brackets notation (similar to the ar-
ray access operator found in many programming languages)
to denote the association of vertices via edges. This oper-
ator is defined as follows: for a vertex v and a label l, the
expression v[l] evaluate to u if there is an edge from v to u

whose label is l, or X otherwise.
This definition implies that we do not distinct between an

edge going to X and a missing edge. a[“x”] = X can mean
either (i) the existence of an edge labeled“x” from a to X; or
(ii) that there is no edge labeled “x” going out from a. For
our purposes there is no need to distinct between the two
cases: For the remainder of this paper, an edge going to X

is a non-existing edge.

SPLGraph makes no assumption on the information repre-
sented by the graph. User is free to choose any translation
scheme for mapping domain entities (source code, require-
ments, tests, manuals, etc.) to graph elements.

To illustrate the versatility of the graph structure let us
outline a particular translation scheme that maps source
code of an object-oriented program to a directed labeled
graph. Note that our model does not rely on this transla-
tion scheme in any way and it is provided here purely for
illustrative purposes.

Each class will be represented by a single vertex. Inter-
class relationships, such as the subclassing relationship, will
be represented by an edge associating the corresponding
classes. For instance, class inheritance is depicted by an
edge labeled “extends” that connects the subclass to the su-
perclass. Additional relationships (e.g., class-field) can be
expressed by introducing a vertex for each field and associ-
ating the declaring class with these via edges such as“field

1
”,

“field
2
”, etc.

We will now turn our attention to two kinds of vertices
that provide SPLGraph with the ability to express variability.
Mutation vertices describe potential changes to the graph
while decision vertices describe conditions which, ultimately,
control which changes are to be applied. This behavior is
dictated by the materialize algorithm which is subsequently
presented.

Mutation vertices. Vertices in M are referred to as G’s
mutation vertices and they formalize the notion of variability
or variation points that is central to many SPL systems. In
SPLGraph, a mutation vertex is a vertex that describes a
change to the SPLGraph itself.

A mutation vertex must have at least three outgoing edges
carrying the labels “subject”, “key” and “target”.

The semantics of such vertices is realized by algorithm
apply from Alg. 1. The reader should note that this algo-
rithm has little utility on its own: as shown in Fig.1 it is a
building block of the materialize algorithm.

Algorithm: apply(Π, m)

Input Π = 〈G = 〈V, E〉, M, F, T, X, L, δ〉, m ∈M

1: s← m[“subject”]
2: k ← m[“key”]
3: l← δ(k)
4: s[l] ← m[“target”]

Algorithm 1: Enactment of the mutation represented by a
mutation vertex m: An edge in the subject vertex, s, is
rerouted to the target vertex, m[“target”].

The Apply algorithm in Alg. 1 accepts, as input, a vertex
m from which it finds s, the subject vertex (the vertex that
will be mutated), by m[“subject”]. It then finds the label
of the edge that will be mutated, l, by going to the vertex
m[“key”] and extracting its label. Finally, apply makes the
actual mutation by rerouting the edge with the label l (going
out from s) to m[“target”].

Decision vertices. Decision vertices provide the ability
to define conditions. Structurally, a decision vertex is indi-
cated by a self edge carrying the label “d” (for “decision”)
and by the existence of three additional edges with the fol-
lowing labels: “condition”, “f ” and “t”.

Alg.2 depicts a graph traversal algorithm that takes into

account the decisions embodied by decision vertices 2.

Algorithm: traverse(Π, s)

Input Π = 〈G = 〈V, E〉, M, F, T, X, L, δ〉, s ∈ V

Output An ordered set of vertices
1: T ← φ //an ordered set
2: if s is not marked as “explored” then

3: mark s as “explored”
4: T ← T ∪ {s}
5: if s[“d”] 6= s then

6: for all v such that v ∈ neighbors(Π, s) do

7: T ← T ∪ traverse(Π, v)
8: else

9: if s[“condition”] = T then

10: v ← s[“t”]
11: T ← T ∪ traverse(Π, v)
12: else if s[“condition”] = F then

13: v ← s[“f ”]
14: T ← T ∪ traverse(Π, v)
15: return T
Algorithm 2: Traverse an SPLGraph from a given vertex, s.
T is an ordered set. T ∪ Q indicates the sequence concate-
nation. neighbors computes all immediate neighbors of the
given vertex, ignoring edges to X. When a decision vertex is
discovered traversal continues through the“t”edge or the“f ”
edge, determined by s[“condition”]. The algorithm assumes
that initially all vertices are marked as “unexplored”.

The algorithm in Alg.2 is based on the well known (recur-
sive) Depth First Search (DFS) algorithm [5]. Specifically, it
computes a sequence of vertices specifying order of traversal
throughout the graph. Unlike classic DFS, it does not guar-
antee that all reachable vertices will be traversed, which is
due to the existence of decision vertices.

The algorithm assumes that a vertex can be marked as ei-
ther “unexplored”or “explored”and that initially all vertices
are “unexplored”. If the current vertex, s, is “explored” the
algorithm will do nothing. Otherwise, it immediately marks
s as “explored” and then decides if s is a decision vertex, by
checking for a self edge labeled “d”. If s is not a decision
vertex, all immediate neighbors of s will be traversed by a
recursive application of the algorithm on each.

In a decision vertex, the algorithm checks the “condition”
edge going out of s. If it leads to T traversal will continue
recursively on s[“t”]. If it leads to F traversal will continue
recursively on s[“f ”]. If neither of these two cases apply, no
further traversal takes place.

Lemma 1. Algorithm traversal from Alg.2 always termi-
nates.

Proof. There is only one loop in the body Alg.2. Given
that the graph is finite by definition, this loop is bound to
be finite. Non-termination is thus possible only via infinite
recursion. Prior to any recursive call the algorithm changes
the status of a vertex from“unexplored”to“explored”. Thus,
an infinite recursion implies an infinite number of unexplored
vertices, which contradicts the finiteness of the graph.

Lemma 2. Algorithm traversal from Alg.2 always returns
a finite set.
2Just like apply , this is also an auxiliary algorithm that is
used by the main algorithm materialize

Proof. Each application of Alg.2 directly contributes one
element to the result. Given that the number of applications
is finite (see Lem. 1), and that the result is initially empty,
we have that the result is also finite.

Note that unlike mutation vertices, decision vertices are
not part of the SPLGraph definition. Any vertex that has
a self “d” edge is considered to be a decision vertex. This
looseness is intentional: we want the formalism to be as
flexible as possible. In particular, a mutation vertex can
change a plain vertex into a decision vertex or vice-versa,
which were not possible if decision vertices were fixed at
the SPLGraph definition (for example, as a set D of decision
vertices, similar to the set, M , of mutation vertices).

The isReachable algorithm, depicted in Alg.3 is built on
top of the traverse algorithm. It will return “true” iff a
traversal (as per traverse) that starts at s passes through t.

Algorithm: isReachable(Π, s, t)

Input Π = 〈G = 〈V, E〉, M, F, T, X, L, δ〉, s ∈ V , t ∈ V

1: for all v ∈ V do

2: mark v as “unexplored”
3: T ← traverse(Π, s)
4: return t ∈ T //either True of False

Algorithm 3: Determine if a traversal (as-per the traversal
algorithm) from s will pass through t.

2.1 Materialization
We can now define the main algorithm materialize that

relies on the algorithms presented so far. As shown in Fig.1
this algorithm expects its user to supply an SPLGraph (Π),
a configuration that resolves open decisions (F , T) and a
root vertex for the product that the user is interested in (s).
This algorithm is depicted in Alg.4.

Algorithm: materialize(Π, F, T, s)

Input Π = 〈G = 〈V, E〉, M, F, T, X, L, δ〉, F ⊆ V , T ⊆ V ,
s ∈ V

1: for all v ∈ F do

2: v[“condition”]← F

3: for all v ∈ T do

4: v[“condition”]← T

5: R← {v ∈M | isReachable(Π, s, v)}
6: for all v ∈ R do

7: apply(Π, v)
8: return Π

Algorithm 4: Derive an SPLGraph by mutating an existing
SPLGraph, Π. F , T specify the configuration: sets of deci-
sion vertices that are resolved to F, T (respectively). s is the
root vertex of the product.

The algorithm starts by rerouting the “condition” edge of
all vertices in the input sets F , T to F, T (respectively).
In step (5) the algorithm finds all mutation vertices that are
reachable from s via traversals that respect decision vertices.
It then actuates the mutations therein by invoking apply on
each such vertex (7).

Note that materialize is expressed in imperative terms:
it mutates its input, Π, and then returns it. As conven-
tion, we will assume that the algorithm always accepts a

h

a

g extends

b

c

s

d

f

t

extends

s
u
b
je

c
t

key

target

e1

Figure 2: Π0: An SPLGraph with three plain vertices

a, b, c; a decision vertex, h; a mutation vertex, g,

representing the following mutation: a[“extends”] ←
c. Given that h[“t”] = g then g will be applied only

if h[“condition”] were rerouted to T.

copy of its input, that is: a call to materialize(Π, F, T, s) is
a shorthand for materialize(copy(Π), F, T, s) where copy is
a function that duplicates its input. This convention will
allow expression such as Π1 ← materialize(Π0, F, T, s) to be
meaningful as it will make sure the mutations applied during
materialization will not affect the input Π0.

Lemma 3. Algorithm materialize from Alg.4 always ter-
minates.

Proof. Call to isReachable terminates (trivial, by relying
on Lem.1). M is finite by definition so number of calls to
isReachable is also finite. Every element of R is also an
element of M so R is finite and so is the iteration over its
elements (loop in steps (6)-(7)).

2.2 A Simple Example
Let us now present a small SPL, Π0, defined over the

domain of Java code capable of producing two products that
differ only in the superclass of one of the classes (see Fig.2).
Π0 uses the program-to-graph translation scheme presented
earlier (Sec.2).

Convention. We omit, from the figures in this paper,
edges that arrive at the X vertex. This is in alignment with
our definition of the v[“e”] operator. We also omit any of
the vertices X, F or T if it is not needed.

Examining Fig.2 we note that Π0 defines an empty class a

that subclasses (“extends”) the empty class b. It also defined
the empty class c.

The dashed border of vertex g indicates that it is a mu-
tation vertex (g ∈ M). g’s outgoing edges realize the fol-
lowing mutation: a[“extends”] ← c (change the superclass
of a to c). h is a decision vertex since it has a self edge
labeled “d”. Its “t” edge goes to g. Therefore, h states that
if h[“condition”] = T then a traversal starting from s will
reach g.

We can now examine the effect of materialization (Alg.4)
on Π0. Our materialization will bind h to the logical truth
value (h[“condition”] ← T) by materializing with the con-
figuration 〈F, T 〉 = 〈φ, {h}〉. Specifically, we define Π1 as
Π1 ≡ materialize(Π0, φ, {h}, s).

Examining Π1 (see Fig. 3) we see that now a[“extends”] =
c whereas in Π0 a[“extends”] = b. Π1 therefore represents
one of the products that can be obtained from Π0.

In order to get the other product obtainable from Π0, one
needs to reroute h’s “condition” edge to F. This rerouting is
expressed by the configuration 〈F, T 〉 = 〈{h}, φ〉 which we
use in Π2 ≡ materialize(Π0, {h}, φ, s)

h

a

g extends

b

c

s

d

f

t

extends

s
u
b
je

c
t

key

target

e1

�condition

Figure 3: Π1: An SPLGraph that is a product of Π0:

Π1 ≡ materialize(Π0, φ, {h}, s). Π1 is different from Π0

in h[“condition”] = T and in a[“extends”] = c, due to the

application of the mutation vertex g.

This change prevents the materialization algorithm from
passing through g thereby preventing the mutation from tak-
ing place. In the resulting SPL, Π2, a[“extends”] will be
identical to a[“extends”] in Π0, that is: a[“extends”] = b

This illustrates how changes in configuration affect the
materialized SPL.

3. PATTERNS
In this section we show several patterns that capture re-

curring SPL structures. Note that all these patterns can be
expressed in terms of SPLGraph as presented so far.

3.1 Boolean Operators
Although decision vertices realize only a simple if-else de-

cision, they are sufficiently powerful to express all boolean
formulae. We will justify this claim by showing how decision
vertices can express disjunction and negation.

Fig.4 shows a (partial) graph expressing disjunction.

h1 h2

s

d

f

t

g

d

t

e1

Figure 4: Π2: An SPLGraph showing the disjunction

pattern. h1 and h2 are decision vertices. g is a muta-

tion vertex whose outgoing edges were omitted from

the figure. g will be applied if either h1[“condition”]
or h2[“condition”] are rerouted to T.

In the figure, h1 and h2 are decision vertices where h1[“f ”] =
h2 and h1[“t”] = h2[“t”] = g. Traversal from h1 will in-
clude g (a mutation vertex, outgoing edges omitted) if either
h1[“condition”] = T or h2[“condition”] = T.

Negation of a decision vertex is even simpler and can be
done by switching the labels “f ” and “t” of the outgoing

h a

g� extends

b

c

s

d

f

t

extends

s
u
b
je

c
t

key

target

s1 g1

condition

key

e1

e2

ta
rg

e
t

s
u
b
je

c
t

Figure 5: Π4: An extension of Π0 from Fig.2. Ma-

terialization from s1 will unconditionally apply the

g1 mutation: h[“condition”] ← T thereby forcing the

application of g in subsequent materializations.

edges. Clearly, a system that is capable of expressing dis-
junction and negation is sufficiently powerful for expressing
any boolean formula.

3.2 Named Configurations
So far, the distinction between the different products that

can be derived from a given SPL was determined by the
configuration (〈F, T 〉 parameters) specified at materializa-
tion time. A recurring practical need is that of defining
several canned configurations.

One can express such configurations by defining additional
vertices that will be used instead of the “original” start ver-
tex. An example is Π4 (Fig.5) which is an extension of Π0

(Fig.2). The only additions are three new vertices s1, g1 and
condition along with their adjacent edges.

The new mutation vertex g1 will mutate h as follows:
h[“condition”] ← T. The vertex s1 is connected to g1 via
the “e2” edge. If we materialize Π4 from s1 we will get an
SPLGraph, Π′

4, where h[“condition”] is already wired to T.
A subsequent materialization of Π′

4 will produce an SPL-

Graph that is equivalent to Π1 even if we choose an empty
configuration 〈F, T 〉 = 〈φ, φ〉.

The additions made by Π4 show how a configuration of a
specific product can be expressed inside an SPLGraph. The
s1 vertex provides an access point to this configuration, thus
serving as its “name”.

Note that a start vertex has no special, formal distinction,
i.e., any vertex can be passed as s when calling materialize.
However, from a practical point of view, the engineer de-
signing the SPL is likely to treat one of the vertices as the
root of the complete product family. The same goes for s1:
it has no formal role, but it serves, from the user’s point of
view, as the root of a specific product.

3.3 Named Configuration Reuse
It is quite common for the configurations of two (or more)

products to exhibit a high degree of overlap. In a similar
manner to reuse of boolean expression one can use plain
edges to express this type of reuse.

To see that let us assume that we add an s2 vertex to Π4

(Fig.5). We want s2 to reuse the product configuration of
s1. We add an edge from s2 to s1: s2[“e3”] = s1.

Materialization from s2 will start at s2 and then follow
the exact same steps as those of s1. This was achieved with-
out duplicating s1’s specific logic (namely: the g1 vertex).
Moreover, subsequent evolution of the SPL and of s1 (such
as: s1 will have additional edges going out to other mutation
vertices) will automatically be reflected in s2.

Of course, s2 can also define his own mutation3 that will
be applied either before or after the mutations of s1 are
taking place, depending on the labeling on the edges and
the order defined upon these labels.

3.4 Optional and Alternative
Many SPL tools support, at least, two variability oper-

ators: Optional and Alternative. The former allows the
(conditional) exclusion of a certain artifact from the final
product. The latter allows the inclusion of a single artifact
out of a designated set of two or more artifacts.

In our model, optionality of a vertex v can be expressed
by a path of mutation vertices each one removing one of the
edges going into v (an edge can be removed if the “target” of
the mutation vertex is X) The path starts from one or more
decision vertices expressing the boolean formula controlling
the inclusion/exclusion.

The alternative operator can be modeled by a repeated
application of the optional operator. An alternative of n

becomes n instances of optional, each time with a different
condition along with a constraint that specifies the mutual
exclusion: (c1∧¬c2∧¬c3 . . .¬cn)∨ (¬c1∧ c2∧¬c3 . . .¬cn)∨
. . . (¬c1 ∧ ¬c2 ∧ ¬c3 . . . cn)

3.5 Staged Materialization
A common SPL scenarios, is that of Supply Chain devel-

opment. In such settings, a vendor configures an SPL not
for the sake of obtaining a product, but for the purpose of
obtaining a partially configured SPL that is then passed to
another vendor, which will configure it further.

This type of development is supported by our formalism
because there is no distinction between the input and the
output of the materialize algorithm. Specifically, one can
form a chain of materializations materialize(. . .materialize(
materialize(Π, F, T, s), F1, T1, s1), . . . Fn, Tn, sn) to express a
multi-staged materialization process.

4. JUSTIFICATION
A central question in SPL development is that of extract-

ing open decisions: what decisions are still unresolved?
The algorithm presented here goes a step beyond that.

It determines what configurations will ensure that a given
mutation vertex is applied.

Formally, the justification problem can be defined as fol-
lows: given an SPLGraph, Π, a vertex s and a vertex m ∈M ,
describe all possible assignments into F and T such that
materialize(Π, F, T, s) will induce the invocation apply(m).

As an example let us consider Π2 from Fig.4. Looking at
vertex g in Π2 we intuitively note that it will be applied in a
materialization from s if either h1 is wired to T or h2 is wired
to T (that is: h1[“condition”] = T or h2[“condition”] = T.
We therefore conclude that any configuration 〈F, T 〉 wherein
either h1 ∈ T or h2 ∈ T will induce the application of g.

3Alas, the graph in the figure is too simple for such muta-
tions to be meaningful

The justify algorithm depicted in Alg.5 computes the jus-
tification of a vertex m. It returns a boolean formula which
is satisfied by a configuration if and only if the configuration
will lead to the application of m in the materialization. The
algorithm works by computing a set of paths. A path is a
sequence of pairs 〈v, l〉 where v is a vertex and l is a label of
an edge leaving v (that is: v[l] 6= X).

Algorithm: justify(m, s)

Input m ∈M , s ∈ V

1: let P = set of all cycle free paths s to m

2: for all pi ∈ P do

3: remove from pi all pairs 〈v, l〉 where v[“d”] 6= v or
l 6= “true ′′ or l 6= “false ′′

4: for all pi ∈ P do

5: for all 〈vj , lj〉 ∈ pi do

6: if lj =“true” then

7: let ti,j = vj

8: else

9: let ti,j = ¬vj

10: return a formula (t1,1∧t1,2∧ . . .)∨(t2,1∧t2,2∧ . . .)∨ . . .

Algorithm 5: Obtain a boolean formula that specifies the
conditions under which the mutation vertex, m, will be ap-
plied in a materialization.

Algorithm jutsify starts with calculating all paths from s

(a starting vertex) to m, the mutation vertex we are in-
terested in. It then considers only decision vertices (on
these paths) and only decision-related edges and translates
them into a boolean formula using these rules:(i) vertices
on the same path are conjuncted; (ii) Different paths are
disjuncted. Negation is determined by the edge associated
with a vertex (on the path at hand): an “f ” edge will induce
negation4.

When computing justify(Π2, s, g) the algorithm will build
two paths that start as s and end at g: 〈〈s, e1〉, 〈h1, true〉〉
and 〈〈s, e1〉, 〈h1, false〉, 〈h2, true〉〉.

Discarding non-decision vertices we get: 〈〈h1, true〉〉 and
〈〈h1, false〉, 〈h2, true〉〉. These paths are then translated into
the following boolean formula: h1∨¬h1∧h2 which is equiv-
alent, as expected, to h1 ∨ h2.

5. IMPLEMENTATION
In order to evaluate our approach we implemented a pro-

totype of an SPLGraph-based product lines tools. The tool
is implemented as a Java GUI application. The user can
import Java source files into the tool, browse the various
program elements (packages, classes, methods, fields) and
mark them as optional. An optional element is realized as
a decision vertex combined with a mutation vertex that will
delete the edge attaching that element to its owner in the
Java hierarchy.

The underlying SPLGraph is implemented as an in-memory
data structure which maps edges to vertices. The Java-to-
SPLGraph translation scheme that we used represents pack-
ages, classes, methods, fields, and parameters as distinct
vertices. Bodies of methods (as well as field initializers) are
stored as text.

Although we did not try to optimize the current repre-
sentation (neither for space nor speed) it can cope with
4Correctness and termination proofs of this algorithm are
left out of this paper due to space limitations.

Construction time vs. #Classes

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

#Classes

T
im

e
 (

S
e
c
o
n
d
s
)

Figure 6: Construction time of an SPLGraph of a sam-

ple Java program as a function of number of classes.

Java programs of several thousand classes. For instance,
a Java program5 comprising 1,661 classes, 4,826 methods
and 10,189 fields and parameters requires 215MB of mem-
ory when represented as an SPLGraph structure.

Fig.6 shows the time needed for building an SPLGraph

from the sources of the said code6.
The figure shows the time needed for parsing and cre-

ating an SPLGraph as a function of the number of parsed
Java files. We note that after initial 500 classes construc-
tion rate was quite steady. Overall time for 1,600 classes
was 14.524 seconds. Note that sizes of classes in a real-life
Java programs are not uniform and are typically following a
power-law distribution. This incurs occasional fluctuations
in construction time.

We then turned to evaluate materialization time. We gen-
erated several SPLGraphs off of the the SPLGraph of the said
Java programs by randomly selecting a subset of n vertices
(n goes from 20,000 to 27,500).

For each of these generated graphs we chose m vertices to
be optional (m goes from 5,000 to 20,000 in steps of 5,000).
We then measured the (median) time needed for material-
ization. In each materialization half of the decision vertices
were defined to be true and half were defined to be false.
Results are depicted in Fig.7.

Materialization time vs. #Vertices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20000 22500 25000 27500

#Vertices

T
im

e
 (

S
e

c
o

n
d

s
)

5000

10000

15000

20000

Figure 7: Materialization time as a function of num-

ber of vertices in the graph. Each curve corresponds

to a different number of decision vertices.

Each curve in the figure corresponds to a different value

5http://openjtl.sourceforge.net
6Our experiments were executed on a 2GB Windows XP ma-
chine running on a 2.39GHz Intel processor with two cores.

of m. The X-axis values corresponds to n. Measured time
is represented by the Y-axis. Materialization time of our
largest input (n = 27, 500, m = 20, 000) was 1.57 seconds.

We also note that materialization time depends primarily
on the size of the graph. Changes in the number of decisions,
m, had only a secondary effect on materialization time.

6. RELATED WORK
Examining existing research we note that a large body of

work concentrates on formalizing particular aspects of SPLs.
A specific aspect where significant formalization attempts
have been made is that of type checking. Kastner and Apel’s
CFJ calculus [12] which extends the Feathrerweight Java [14]
calculus with variability constructs, is a recent example.

Formal foundations of control mechanisms have been stud-
ied in works ([1, 8]) that showed the connection between well
known mathematical structures (grammars, propositional
logic, boolean formulae) and features.

Our work goes beyond these as it tries to formalize SPL
as a whole, rather than specific parts thereof. In that sense
its goal is similar to that of Bayer et-al’s Consolidated meta-
model [2].

The two works represent different approaches to the same
topic. In particular, Bayer’s model focuses mostly on the
variability mechanisms. The exploration of the control mech-
anism, resolution model in Bayer’s terminology, is limited
(a similar difference arises when comparing SPLGraph with
the work of Haugen, Møller-Pedersen et-al [10]). Thus, it
does not support the type of reasoning that is offered by our
justify algorithm.

Another difference, is in the size of the core. In SPLGraph

there are only a few core constructs. Additional constructs
are expressed as patterns built on top of the core. In the con-
solidated model, these patterns are defined as core entities
(meta-model classes).

7. FUTURE WORK AND CONCLUSIONS
In this paper we presented the justify algorithm as an

application algorithm that allows an engineer to better un-
derstand the SPL at hands. A future extension of justify will
provide the justification not for a mutation vertex, but for a
triplet of vertex, edge label, vertex: 〈v, l, u〉. The output will
be the justification that will cause the mutation v[l]← u to
take place.

Another useful service is an algorithm that computes all
possible mutations that can be applied to a given vertex.
This algorithm will provide the information that is needed
for validation purposes, such as SPL type checking [12].

Another question is that of scalability in terms of perfor-
mance and size. A possible solution to such issue will be that
of using a tree-oriented data base (such such as Neo4j7) for
storing the underlying data.

Another topic for future research is that of enhancing
the decision vertices. This new control construct will al-
low certain boolean formulae, such as the ones needed for
the Or pattern [6], to be expressed more succinctly, a-la the
choosen,m(e1, . . . , ek) operator of propositional logic [1].

Overall, it seems that the versatility of SPLGraph, as shown
by the broad spectrum of patterns it can express, is largely
due to what is informally called the Lego Principle: the
smaller the building blocks, the more reusable they are. This

7http://neo4j.org

versatility is what turns, in our minds, SPLGraph into a solid
basis for a generic underpinning for SPL tools.

Acknowledgments. This work is partially supported by
Science Foundation Ireland under grant no. 03/CE2/I303 1
to Lero – The Irish Software Engineering Research Centre,
http://www.lero.ie. The authors thank Keren Lenz for her
thorough feedback.

8. REFERENCES
[1] D. Batory. Feature models, grammars, and

propositional formulas. In SPLC 2005, pages 7–20,
Rennes, France, 2005. Springer Verlag.

[2] J. Bayer, S. Gerard, Ø. Haugen, J. X. Mansell,
B. Møller-Pedersen, J. Oldevik, P. Tessier, J.-P.
Thibault, and T. Widen. Consolidated product line
variability modeling. In Software Product Lines, pages
195–241. Springer, 2006.

[3] Y. Bontemps, P. Heymans, P.-Y. Schobbens, and J.-C.
Trigaux. The semantics of FODA feature diagrams. In
Workshop on Software Variability Management for
Product Derivation, Boston, MA, August 2004.

[4] P. Cointe. Metaclasses are first class: The ObjVlisp
model. In OOPSLA 1987, pages 156–162, New York,
NY, USA, 1987. ACM.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2nd revised edition edition, September 2001.

[6] K. Czarnecki and U. W. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. SPI&P, 10(1):7–29, 2005.

[8] M. de Jonge and J. Visser. Grammars as feature
diagrams. manuscript, 2002.

[9] R. Frost. Jazz and the Eclipse Way of Collaboration.
IEEE Software, 24(6):114–117, 2007.

[10] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. K.
Olsen, and A. Svendsen. Adding standardized
variability to domain specific languages. In SPLC
2008, pages 139–148, 2008.

[11] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical report,
CMU/SEI-90TR-21, 1990.

[12] C. Kästner and S. Apel. Type-checking software
product lines - a formal approach. In ASE 2008, pages
258–267, 2008.

[13] M. Mannion. Using first-order logic for product line
model validation. In SPLC 2002, pages 176–187,
August 2002.

[14] T. Nipkow and D. von Oheimb. Javalight is
type-safe—definitely. In POPL 1998, pages 161–170,
New York, NY, USA, 1998. ACM.

[15] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux.
Feature diagrams: A survey and a formal semantics.
In RE 2006, pages 136–145, 2006.

